1
|
Abdul-Khalek N, Wimmer R, Overgaard MT, Gregersen Echers S. Decoding the impact of neighboring amino acids on ESI-MS intensity output through deep learning. J Proteomics 2024; 309:105322. [PMID: 39341565 DOI: 10.1016/j.jprot.2024.105322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Peptide-level quantification using mass spectrometry (MS) is no trivial task as the physicochemical properties affect both response and detectability. The specific amino acid (AA) sequence affects these properties, however the connection between sequence and intensity output remains poorly understood. In this work, we explore combinations of amino acid pairs (i.e., dimer motifs) to determine a potential relationship between the local amino acid environment and MS1 intensity. For this purpose, a deep learning (DL) model, consisting of an encoder-decoder with an attention mechanism, was built. The attention mechanism allowed to identify the most relevant motifs. Specific patterns were consistently observed where a bulky/aromatic and hydrophobic AA followed by a cationic AA as well as consecutive bulky/aromatic and hydrophobic AAs were found important for the prediction of the MS1 intensity. Correlating attention weights to mean MS1 intensities revealed that some important motifs, particularly containing Trp, His, and Cys, were linked with low responding peptides whereas motifs containing Lys and most bulky hydrophobic AAs were often associated with high responding peptides. Moreover, Asn-Gly was associated with low response. The model predicts MS1 response with a mean average percentage error of ∼11 % and a Pearson correlation coefficient of ∼0.64. While dimer representation of peptide sequences did not improve predictive capacity compared to single AA representation in earlier work, this work adds valuable insight for a better understanding of peptide response in MS analysis. SIGNIFICANCE: Mass spectrometry is not inherently quantitative, and the response of a compound relies not only on its concentration but also on the molecular composition. For mass spectrometry-based analysis of peptides, such as in bottom-up proteomics, this directly implies that the response cannot be used directly to quantify individual peptides. Moreover, the dependency of the response on the amino acid sequence of individual peptides remains poorly understood. Using a deep learning model based on a recurrent neural network with an attention mechanism, we here investigate how the presence of dimer motifs within a peptide affects the MS1 response through the analysis of intended equimolar peptide pools comprising almost 200,000 unique peptides in total. Not only do we identify certain dimer classes and specific dimers that substantially affect the MS1 response, but the model is also able to predict peptide intensity with low error rates within the independent test subset. The findings not only improve our understanding of the link between sequence and response for peptides but also highlight the potential of utilizing deep learning for developing methods allowing for absolute, label-free peptide quantification.
Collapse
Affiliation(s)
- Naim Abdul-Khalek
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg 9220, Denmark
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg 9220, Denmark
| | - Michael Toft Overgaard
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg 9220, Denmark
| | - Simon Gregersen Echers
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg 9220, Denmark..
| |
Collapse
|
2
|
Szaniszló S, Csámpai A, Horváth D, Tomecz R, Farkas V, Perczel A. Unveiling the Oxazolidine Character of Pseudoproline Derivatives by Automated Flow Peptide Chemistry. Int J Mol Sci 2024; 25:4150. [PMID: 38673739 PMCID: PMC11050244 DOI: 10.3390/ijms25084150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Pseudoproline derivatives such as Thr(ΨPro)-OH are commonly used in peptide synthesis to reduce the likelihood of peptide aggregation and to prevent aspartimide (Asi) formation during the synthesis process. In this study, we investigate notable by-products such as aspartimide formation and an imine derivative of the Thr(ΨPro) moiety observed in flow peptide chemistry synthesis. To gain insight into the formation of these unexpected by-products, we design a series of experiments. Furthermore, we demonstrate the oxazolidine character of the pseudoproline moiety and provide plausible mechanisms for the two-way ring opening of oxazolidine leading to these by-products. In addition, we present evidence that Asi formation appears to be catalyzed by the presence of the pseudoproline moiety. These observed side reactions are attributed to elevated temperature and pressure; therefore, caution is advised when using ΨPro derivatives under such harsh conditions. In addition, we propose a solution whereby thermodynamically controlled Asi formation can be kinetically prevented.
Collapse
Affiliation(s)
- Szebasztián Szaniszló
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary; (S.S.); (D.H.); (R.T.)
- ELTE Hevesy György Ph.D. School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary
| | - Antal Csámpai
- Instutite of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary;
| | - Dániel Horváth
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary; (S.S.); (D.H.); (R.T.)
| | - Richárd Tomecz
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary; (S.S.); (D.H.); (R.T.)
| | - Viktor Farkas
- HUN-REN—ELTE Protein Modeling Research Group, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary; (S.S.); (D.H.); (R.T.)
- HUN-REN—ELTE Protein Modeling Research Group, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary
| |
Collapse
|
3
|
Mthembu SN, Chakraborty A, Schönleber R, Albericio F, de la Torre BG. Morpholine, a strong contender for Fmoc removal in solid-phase peptide synthesis. J Pept Sci 2024; 30:e3538. [PMID: 37609959 DOI: 10.1002/psc.3538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023]
Abstract
Morpholine, which scores 7.5 in terms of greenness and is not a regulated substance, could be considered a strong contender for Fmoc removal in solid-phase peptide synthesis (SPPS). Morpholine in dimethylformamide (DMF) (50%-60%) efficiently removes Fmoc in SPPS, minimizes the formation of diketopiperazine, and almost avoids the aspartimide formation. As a proof of concept, somatostatin has been synthesized using 50% morpholine in DMF with the same purity as when using 20% piperidine-DMF.
Collapse
Affiliation(s)
- Sinenhlanhla N Mthembu
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Amit Chakraborty
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | | | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
| | - Beatriz G de la Torre
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
4
|
Personne H, Siriwardena TN, Javor S, Reymond JL. Dipropylamine for 9-Fluorenylmethyloxycarbonyl (Fmoc) Deprotection with Reduced Aspartimide Formation in Solid-Phase Peptide Synthesis. ACS OMEGA 2023; 8:5050-5056. [PMID: 36777595 PMCID: PMC9910063 DOI: 10.1021/acsomega.2c07861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Herein, we report dipropylamine (DPA) as a fluorenylmethyloxycarbonyl (Fmoc) deprotection reagent to strongly reduce aspartimide formation compared to piperidine (PPR) in high-temperature (60 °C) solid-phase peptide synthesis (SPPS). In contrast to PPR, DPA is readily available, inexpensive, low toxicity, and nonstench. DPA also provides good yields in SPPS of non-aspartimide-prone peptides and peptide dendrimers.
Collapse
Affiliation(s)
- Hippolyte Personne
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Thissa N. Siriwardena
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
- Shanghai
Space Peptides Pharmaceutical Co., Ltd., Shanghai 201210, China
| | - Sacha Javor
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Jean-Louis Reymond
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
5
|
Mthembu SN, Chakraborty A, Schönleber R, Albericio F, de la Torre BG. Solid-Phase Synthesis of C-Terminus Cysteine Peptide Acids. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Sinenhlanhla N. Mthembu
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Amit Chakraborty
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | | | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Barcelona 08028, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Beatriz G. de la Torre
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
6
|
Apostol CR, Bernard K, Tanguturi P, Molnar G, Bartlett MJ, Szabò L, Liu C, Ortiz JB, Saber M, Giordano KR, Green TRF, Melvin J, Morrison HW, Madhavan L, Rowe RK, Streicher JM, Heien ML, Falk T, Polt R. Design and Synthesis of Brain Penetrant Glycopeptide Analogues of PACAP With Neuroprotective Potential for Traumatic Brain Injury and Parkinsonism. FRONTIERS IN DRUG DISCOVERY 2022; 1. [PMID: 35237767 PMCID: PMC8887546 DOI: 10.3389/fddsv.2021.818003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is an unmet clinical need for curative therapies to treat neurodegenerative disorders. Most mainstay treatments currently on the market only alleviate specific symptoms and do not reverse disease progression. The Pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenous neuropeptide hormone, has been extensively studied as a potential regenerative therapeutic. PACAP is widely distributed in the central nervous system (CNS) and exerts its neuroprotective and neurotrophic effects via the related Class B GPCRs PAC1, VPAC1, and VPAC2, at which the hormone shows roughly equal activity. Vasoactive intestinal peptide (VIP) also activates these receptors, and this close analogue of PACAP has also shown to promote neuronal survival in various animal models of acute and progressive neurodegenerative diseases. However, PACAP's poor pharmacokinetic profile (non-linear PK/PD), and more importantly its limited blood-brain barrier (BBB) permeability has hampered development of this peptide as a therapeutic. We have demonstrated that glycosylation of PACAP and related peptides promotes penetration of the BBB and improves PK properties while retaining efficacy and potency in the low nanomolar range at its target receptors. Furthermore, judicious structure-activity relationship (SAR) studies revealed key motifs that can be modulated to afford compounds with diverse selectivity profiles. Most importantly, we have demonstrated that select PACAP glycopeptide analogues (2LS80Mel and 2LS98Lac) exert potent neuroprotective effects and anti-inflammatory activity in animal models of traumatic brain injury and in a mild-toxin lesion model of Parkinson's disease, highlighting glycosylation as a viable strategy for converting endogenous peptides into robust and efficacious drug candidates.
Collapse
Affiliation(s)
- Christopher R Apostol
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Kelsey Bernard
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States
| | | | - Gabriella Molnar
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Mitchell J Bartlett
- Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Lajos Szabò
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Chenxi Liu
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - J Bryce Ortiz
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Maha Saber
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Katherine R Giordano
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Tabitha R F Green
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - James Melvin
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Biological Sciences, University of Bath, Bath, United Kingdom
| | - Helena W Morrison
- College of Nursing, University of Arizona, Tucson, AZ, United States
| | - Lalitha Madhavan
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - John M Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Michael L Heien
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Torsten Falk
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Robin Polt
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
7
|
Gutenthaler SM, Tsushima S, Steudtner R, Gailer M, Hoffmann-Röder A, Drobot B, Daumann LJ. Lanmodulin peptides – unravelling the binding of the EF-Hand loop sequences stripped from the structural corset. Inorg Chem Front 2022; 9:4009-4021. [PMID: 36091973 PMCID: PMC9362731 DOI: 10.1039/d2qi00933a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 12/25/2022]
Abstract
Lanmodulin (LanM), a naturally lanthanide (Ln)-binding protein with a remarkable selectivity for Lns over Ca(ii) and affinities in the picomolar range, is an attractive target to address challenges in Ln separation. Why LanM has such a high selectivity is currently not entirely understood; both specific amino acid sequences of the EF-Hand loops and cooperativity effects have been suggested. Here, we removed the effect of cooperativity and synthesised all four 12-amino acid EF-Hand loop peptides, and investigated their affinity for two Lns (Eu(iii) and Tb(iii)), the actinide Cm(iii) and Ca(ii). Using isothermal titration calorimetry and time-resolved laser fluorescence spectroscopy (TRLFS) combined with parallel factor analysis, we show that the four short peptides behave very similarly, having affinities in the micromolar range for Eu(iii) and Tb(iii). Ca(ii) was shown not to bind to the peptides, which was verified with circular dichroism spectroscopy. This technique also revealed an increase in structural organisation upon Eu(iii) addition, which was supported by molecular dynamics simulations. Lastly, we put Eu(iii) and Cm(iii) in direct competition using TRLFS. Remarkably, a slightly higher affinity for Cm(iii) was found. Our results demonstrate that the picomolar affinities in LanM are largely an effect of pre-structuring and therefore a reduction of flexibility in combination with cooperative effects, and that all EF-Hand loops possess similar affinities when detached from the protein backbone, albeit still retaining the high selectivity for lanthanides and actinides over calcium. Taking a closer look at Lanmodulin’s remarkable selectivity for lanthanides (Ln) over Ca(ii) and high Ln/actinide affinities on the amino acid level by investigating the four binding-loops as peptides with Ca(ii), Eu(iii), Tb(iii) and Cm(iii).![]()
Collapse
Affiliation(s)
- Sophie M. Gutenthaler
- Department of Chemistry Ludwig-Maximilians-University Munich Butenandtstraße 5-13, 81377 München, Germany
| | - Satoru Tsushima
- Institute of Resource Ecology Helmholtz-Zentrum Dresden-Rossendorf e.V. Bautzner Landstraße 400, 01328 Dresden, Germany
- International Research Frontiers Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Meguro 152-8550, Tokyo, Japan
| | - Robin Steudtner
- Institute of Resource Ecology Helmholtz-Zentrum Dresden-Rossendorf e.V. Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Manuel Gailer
- Department of Chemistry Ludwig-Maximilians-University Munich Butenandtstraße 5-13, 81377 München, Germany
| | - Anja Hoffmann-Röder
- Department of Chemistry Ludwig-Maximilians-University Munich Butenandtstraße 5-13, 81377 München, Germany
| | - Björn Drobot
- Institute of Resource Ecology Helmholtz-Zentrum Dresden-Rossendorf e.V. Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Lena J. Daumann
- Department of Chemistry Ludwig-Maximilians-University Munich Butenandtstraße 5-13, 81377 München, Germany
| |
Collapse
|
8
|
Pryyma A, Gunasekera S, Lewin J, Perrin DM. Rapid, High-Yielding Solid-Phase Synthesis of Cathepsin-B Cleavable Linkers for Targeted Cancer Therapeutics. Bioconjug Chem 2020; 31:2685-2690. [PMID: 33274932 DOI: 10.1021/acs.bioconjchem.0c00563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibody-drug conjugates (ADCs) constitute an emerging class of anticancer agents that deliver potent payloads selectively to tumors while avoiding systemic toxicity associated with conventional chemotherapeutics. Critical to ADC development is a serum-stable linker designed to decompose inside targeted cells thereby releasing the toxic payload. A protease-cleavable linker comprising a valine-citrulline (Val-Cit) motif has been successfully incorporated into three FDA-approved ADCs and is found in numerous preclinical candidates. Herein, we present a high-yielding and facile synthetic strategy for a Val-Cit linker that avoids extensive protecting group manipulation and laborious chromatography associated with previous syntheses and provides yields that are up to 10-fold higher than by standard methods. This method is easily scalable and takes advantage of cost-effective coupling reagents and high loading 2-chlorotrityl chloride (2-CTC) resin. Modularity allows for introduction of various conjugation handles in final stages of the synthesis. Facile access to such analogues serves to expand the repertoire of available enzymatically cleavable linkers for ADC generation. This methodology empowers a robust and facile library generation and future exploration into linker analogues containing unnatural amino acids as a selectivity tuning tool.
Collapse
Affiliation(s)
- Alla Pryyma
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Shanal Gunasekera
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Joshua Lewin
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - David M Perrin
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
9
|
Kumar A, Alhassan M, Lopez J, Albericio F, de la Torre BG. N-Butylpyrrolidinone for Solid-Phase Peptide Synthesis is Environmentally Friendlier and Synthetically Better than DMF. CHEMSUSCHEM 2020; 13:5288-5294. [PMID: 32720474 DOI: 10.1002/cssc.202001647] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Solid-phase peptide synthesis (SPPS) is the method of choice for the preparation of peptides in both laboratory scale and large production. Although the methodology has been improved during the last decades allowing the achievement of long peptides and challenging sequences in good yields and purities, the process was not revised from an environmental point of view. One of the main problems in this regard is the large amount of solvents used, and therefore the tons of generated waste. Moreover, the solvent of choice for the SPPS is N,N-dimethylformamide (DMF), which is considered as reprotoxic; thus, there is an urgent necessity to replace it with safer solvents. The DMF substitution by a green solvent is not a trivial task, because it should solubilize all the reagents and byproducts involved in the process, and, in addition to facilitating the coupling of the different amino acids, it should not favor the formation of side-reactions compared with DMF. Herein, it was demonstrated that the use of the green solvent N-butylpyrrolidinone (NBP) as a replacement of DMF was beneficial in two well-documented side reactions in peptide synthesis, racemization and aspartimide formation. The use of NBP rendered a lower or equal level of racemization in the amino acids more prone to this side reaction than DMF, whilst the aspartimide formation was clearly lower when NBP was used as solvent. Our findings demonstrate that the use of a green solvent does not hamper the synthetic process and could even improve it, making it environmentally friendlier and synthetically better.
Collapse
Affiliation(s)
- Ashish Kumar
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Mahama Alhassan
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - John Lopez
- Novartis Pharma AG, Lichtstrasse 35, 4056, Basel, Switzerland
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine & Department of Organic Chemistry, University of Barcelona, 08028, Barcelona, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Beatriz G de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| |
Collapse
|
10
|
Knauer S, Koch N, Uth C, Meusinger R, Avrutina O, Kolmar H. Sustainable Peptide Synthesis Enabled by a Transient Protecting Group. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sascha Knauer
- Sulfotools GmbH In der Niederwiesen 24a 64291 Darmstadt Germany
- Institute for Organic Chemistry and Biochemistry TU Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Niklas Koch
- Sulfotools GmbH In der Niederwiesen 24a 64291 Darmstadt Germany
| | - Christina Uth
- Sulfotools GmbH In der Niederwiesen 24a 64291 Darmstadt Germany
| | - Reinhard Meusinger
- Institute for Organic Chemistry and Biochemistry TU Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Olga Avrutina
- Institute for Organic Chemistry and Biochemistry TU Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry TU Darmstadt Alarich-Weiss-Strasse 4 64287 Darmstadt Germany
| |
Collapse
|
11
|
Knauer S, Koch N, Uth C, Meusinger R, Avrutina O, Kolmar H. Sustainable Peptide Synthesis Enabled by a Transient Protecting Group. Angew Chem Int Ed Engl 2020; 59:12984-12990. [PMID: 32324944 PMCID: PMC7496111 DOI: 10.1002/anie.202003676] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Indexed: 01/22/2023]
Abstract
The growing interest in synthetic peptides has prompted the development of viable methods for their sustainable production. Currently, large amounts of toxic solvents are required for peptide assembly from protected building blocks, and switching to water as a reaction medium remains a major hurdle in peptide chemistry. We report an aqueous solid‐phase peptide synthesis strategy that is based on a water‐compatible 2,7‐disulfo‐9‐fluorenylmethoxycarbonyl (Smoc) protecting group. This approach enables peptide assembly under aqueous conditions, real‐time monitoring of building block coupling, and efficient postsynthetic purification. The procedure for the synthesis of all natural and several non‐natural Smoc‐protected amino acids is described, as well as the assembly of 22 peptide sequences and the fundamental issues of SPPS, including the protecting group strategy, coupling and cleavage efficiency, stability under aqueous conditions, and crucial side reactions.
Collapse
Affiliation(s)
- Sascha Knauer
- Sulfotools GmbH, In der Niederwiesen 24a, 64291, Darmstadt, Germany.,Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Alarich-Weiss-Strasse 4, 64287, Darmstadt, Germany
| | - Niklas Koch
- Sulfotools GmbH, In der Niederwiesen 24a, 64291, Darmstadt, Germany
| | - Christina Uth
- Sulfotools GmbH, In der Niederwiesen 24a, 64291, Darmstadt, Germany
| | - Reinhard Meusinger
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Alarich-Weiss-Strasse 4, 64287, Darmstadt, Germany
| | - Olga Avrutina
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Alarich-Weiss-Strasse 4, 64287, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Alarich-Weiss-Strasse 4, 64287, Darmstadt, Germany
| |
Collapse
|
12
|
Samson D, Rentsch D, Minuth M, Meier T, Loidl G. The aspartimide problem persists: Fluorenylmethyloxycarbonyl-solid-phase peptide synthesis (Fmoc-SPPS) chain termination due to formation of N-terminal piperazine-2,5-diones. J Pept Sci 2019; 25:e3193. [PMID: 31309675 PMCID: PMC6772008 DOI: 10.1002/psc.3193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 11/24/2022]
Abstract
Aspartimide (Asi) formation is a notorious side reaction in peptide synthesis that is well characterized and described in literature. In this context, we observed significant amounts of chain termination in Fmoc‐SPPS while synthesizing the N‐terminal Xaa‐Asp‐Yaa motif. This termination was caused by the formation of piperazine‐2,5‐diones. We investigated this side reaction using a linear model peptide and independently synthesizing its piperazine‐2,5‐dione derivative. Nuclear magnetic resonance (NMR) data of the side product present in the crude linear peptide proves that exclusively the six‐membered ring is formed whereas the theoretically conceivable seven‐membered 1,4‐diazepine‐2,5‐dione is not found. We propose a mechanism where nucleophilic attack of the N‐terminal amino function takes place at the α‐carbon of the carbonyl group of the corresponding Asi intermediate. In addition, we systematically investigated the impact of (a) different adjacent amino acid residues, (b) backbone protection, and (c) side chain protection of flanking amino acids. The side reaction is directly related to the Asi intermediate. Hence, hindering or avoiding Asi formation reduces or completely suppresses this side reaction.
Collapse
Affiliation(s)
- Daniel Samson
- Bachem AG, Hauptstrasse 144, CH-4416, Bubendorf, Switzerland
| | - Daniel Rentsch
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Laboratory for Functional Polymers, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland
| | - Marco Minuth
- Bachem AG, Hauptstrasse 144, CH-4416, Bubendorf, Switzerland
| | - Thomas Meier
- Bachem AG, Hauptstrasse 144, CH-4416, Bubendorf, Switzerland
| | - Günther Loidl
- Bachem AG, Hauptstrasse 144, CH-4416, Bubendorf, Switzerland
| |
Collapse
|