1
|
Hadjicharalambous A, Newman H, Lewis N, Rowland C, Bournakas N, Stanway SJ, Dawson M, Skynner MJ, Beswick P. Investigating Penetration and Antimicrobial Activity of Vector-Bicycle Conjugates. ACS Infect Dis 2024; 10:2381-2389. [PMID: 38865197 PMCID: PMC11249977 DOI: 10.1021/acsinfecdis.3c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Growing antibiotic resistance is rapidly threatening the efficacy of treatments for Gram-negative infections. Bicycle molecules, constrained bicyclic peptides from diverse libraries generated by bacteriophage display that bind with high affinity to a chosen target are a potential new class of antibiotics. The generally impermeable bacterial outer membrane currently limits the access of peptides to bacteria. The conjugation of membrane active peptides offers an avenue for outer membrane penetration. Here, we investigate which physicochemical properties of a specific membrane active peptide (MAP), derived from ixosin-B, could be tweaked to enhance the penetration of conjugates by generating multiple MAP-Bicycle conjugate variants. We demonstrate that charge and hydrophobicity are important factors, which enhance penetration and, therefore, antimicrobial potency. Interestingly, we show that induction of secondary structure, but not a change in amphipathicity, is vital for effective penetration of the Gram-negative outer membrane. These results offer insights into the ways vectors could be designed to deliver Bicycle molecules (and other cargos) through biological membranes.
Collapse
Affiliation(s)
- Andreas Hadjicharalambous
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1QN, U.K.
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Hector Newman
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
- School
of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K.
| | - Nick Lewis
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Catherine Rowland
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Nikolaos Bournakas
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Steven J. Stanway
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Michael Dawson
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Michael J. Skynner
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Paul Beswick
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| |
Collapse
|
2
|
Dong Z, Zhang X, Zhang Q, Tangthianchaichana J, Guo M, Du S, Lu Y. Anticancer Mechanisms and Potential Anticancer Applications of Antimicrobial Peptides and Their Nano Agents. Int J Nanomedicine 2024; 19:1017-1039. [PMID: 38317847 PMCID: PMC10840538 DOI: 10.2147/ijn.s445333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Traditional chemotherapy is one of the main methods of cancer treatment, which is largely limited by severe side effects and frequent development of multi-drug resistance by cancer cells. Antimicrobial peptides (AMPs) with high efficiency and low toxicity, as one of the most promising new drugs to replace chemoradiotherapy, have become a current research hotspot, attracting the attention of worldwide researchers. AMPs are natural-source small peptides from the innate immune system, and certain AMPs can selectively kill a broad spectrum of cancer cells while exhibiting less damage to normal cells. Although it involves intracellular mechanisms, AMPs exert their anti-cancer effects mainly through membrane destruction effect; thus, AMPs also hold unique advantages in fighting drug-resistant cancer cells. However, the poor stability and hemolytic toxicity of peptides limit their clinical application. Fortunately, functionalized nanoparticles have many possibilities in overcoming the shortcomings of AMPs, which provides a huge prospect for better application of AMPs. In this paper, we briefly introduce the characteristics and different sources of AMPs, review and summarize the mechanisms of action and the research status of AMPs used as an anticancer therapy, and finally focus on the further use of AMPs nano agents in the anti-cancer direction.
Collapse
Affiliation(s)
- Ziyi Dong
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Research and Development Centre in Beijing, CSPC Pharmaceutical Group Limited, Beijing, People’s Republic of China
| | - Xinyu Zhang
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Qing Zhang
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jakkree Tangthianchaichana
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Mingxue Guo
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shouying Du
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yang Lu
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Feijoo-Coronel ML, Mendes B, Ramírez D, Peña-Varas C, de los Monteros-Silva NQE, Proaño-Bolaños C, de Oliveira LC, Lívio DF, da Silva JA, da Silva JMSF, Pereira MGAG, Rodrigues MQRB, Teixeira MM, Granjeiro PA, Patel K, Vaiyapuri S, Almeida JR. Antibacterial and Antiviral Properties of Chenopodin-Derived Synthetic Peptides. Antibiotics (Basel) 2024; 13:78. [PMID: 38247637 PMCID: PMC10812719 DOI: 10.3390/antibiotics13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Antimicrobial peptides have been developed based on plant-derived molecular scaffolds for the treatment of infectious diseases. Chenopodin is an abundant seed storage protein in quinoa, an Andean plant with high nutritional and therapeutic properties. Here, we used computer- and physicochemical-based strategies and designed four peptides derived from the primary structure of Chenopodin. Two peptides reproduce natural fragments of 14 amino acids from Chenopodin, named Chen1 and Chen2, and two engineered peptides of the same length were designed based on the Chen1 sequence. The two amino acids of Chen1 containing amide side chains were replaced by arginine (ChenR) or tryptophan (ChenW) to generate engineered cationic and hydrophobic peptides. The evaluation of these 14-mer peptides on Staphylococcus aureus and Escherichia coli showed that Chen1 does not have antibacterial activity up to 512 µM against these strains, while other peptides exhibited antibacterial effects at lower concentrations. The chemical substitutions of glutamine and asparagine by amino acids with cationic or aromatic side chains significantly favoured their antibacterial effects. These peptides did not show significant hemolytic activity. The fluorescence microscopy analysis highlighted the membranolytic nature of Chenopodin-derived peptides. Using molecular dynamic simulations, we found that a pore is formed when multiple peptides are assembled in the membrane. Whereas, some of them form secondary structures when interacting with the membrane, allowing water translocations during the simulations. Finally, Chen2 and ChenR significantly reduced SARS-CoV-2 infection. These findings demonstrate that Chenopodin is a highly useful template for the design, engineering, and manufacturing of non-toxic, antibacterial, and antiviral peptides.
Collapse
Affiliation(s)
- Marcia L. Feijoo-Coronel
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena 150101, Ecuador
| | - Bruno Mendes
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena 150101, Ecuador
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | - Carlos Peña-Varas
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile
| | | | - Carolina Proaño-Bolaños
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena 150101, Ecuador
| | - Leonardo Camilo de Oliveira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Diego Fernandes Lívio
- Campus Centro Oeste, Federal University of São João Del-Rei, Rua Sebastião Gonçalves Filho, n 400, Chanadour, Divinópolis 35501-296, Brazil
| | - José Antônio da Silva
- Campus Centro Oeste, Federal University of São João Del-Rei, Rua Sebastião Gonçalves Filho, n 400, Chanadour, Divinópolis 35501-296, Brazil
| | - José Maurício S. F. da Silva
- Departamento de Bioquímica, Centro de Ciências Biomédicas, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, Sala E209, Alfenas 37130-001, Brazil
| | - Marília Gabriella A. G. Pereira
- Departamento de Bioquímica, Centro de Ciências Biomédicas, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, Sala E209, Alfenas 37130-001, Brazil
| | - Marina Q. R. B. Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biomédicas, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, Sala E209, Alfenas 37130-001, Brazil
- Departamento de Engenharia de Biossistemas, Campus Dom Bosco, Federal University of São João Del-Rei, Praça Dom Helvécio, 74, Fábricas, São João del-Rei 36301-160, Brazil
| | - Mauro M. Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Paulo Afonso Granjeiro
- Campus Centro Oeste, Federal University of São João Del-Rei, Rua Sebastião Gonçalves Filho, n 400, Chanadour, Divinópolis 35501-296, Brazil
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK
| | | | - José R. Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena 150101, Ecuador
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK
| |
Collapse
|
4
|
Carrera-Aubesart A, Gallo M, Defaus S, Todorovski T, Andreu D. Topoisomeric Membrane-Active Peptides: A Review of the Last Two Decades. Pharmaceutics 2023; 15:2451. [PMID: 37896211 PMCID: PMC10610229 DOI: 10.3390/pharmaceutics15102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In recent decades, bioactive peptides have been gaining recognition in various biomedical areas, such as intracellular drug delivery (cell-penetrating peptides, CPPs) or anti-infective action (antimicrobial peptides, AMPs), closely associated to their distinct mode of interaction with biological membranes. Exploiting the interaction of membrane-active peptides with diverse targets (healthy, tumoral, bacterial or parasitic cell membranes) is opening encouraging prospects for peptides in therapeutics. However, ordinary peptides formed by L-amino acids are easily decomposed by proteases in biological fluids. One way to sidestep this limitation is to use topoisomers, namely versions of the peptide made up of D-amino acids in either canonic (enantio) or inverted (retroenantio) sequence. Rearranging peptide sequences in this fashion provides a certain degree of native structure mimicry that, in appropriate contexts, may deliver desirable biological activity while avoiding protease degradation. In this review, we will focus on recent accounts of membrane-active topoisomeric peptides with therapeutic applications as CPP drug delivery vectors, or as antimicrobial and anticancer candidates. We will also discuss the most common modes of interaction of these peptides with their membrane targets.
Collapse
Affiliation(s)
- Adam Carrera-Aubesart
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Maria Gallo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Sira Defaus
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Toni Todorovski
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - David Andreu
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| |
Collapse
|
5
|
Chen N, Jiang C. Antimicrobial peptides: Structure, mechanism, and modification. Eur J Med Chem 2023; 255:115377. [PMID: 37099837 DOI: 10.1016/j.ejmech.2023.115377] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023]
Affiliation(s)
- Na Chen
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Cheng Jiang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| |
Collapse
|
6
|
van Dijk A, Guabiraba R, Bailleul G, Schouler C, Haagsman HP, Lalmanach AC. Evolutionary diversification of defensins and cathelicidins in birds and primates. Mol Immunol 2023; 157:53-69. [PMID: 36996595 DOI: 10.1016/j.molimm.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Divergent evolution for more than 310 million years has resulted in an avian immune system that is complex and more compact than that of primates, sharing much of its structure and functions. Not surprisingly, well conserved ancient host defense molecules, such as defensins and cathelicidins, have diversified over time. In this review, we describe how evolution influenced the host defense peptides repertoire, its distribution, and the relationship between structure and biological functions. Marked features of primate and avian HDPs are linked to species-specific characteristics, biological requirements, and environmental challenge.
Collapse
|
7
|
Hadjicharalambous A, Bournakas N, Newman H, Skynner MJ, Beswick P. Antimicrobial and Cell-Penetrating Peptides: Understanding Penetration for the Design of Novel Conjugate Antibiotics. Antibiotics (Basel) 2022; 11:1636. [PMID: 36421280 PMCID: PMC9686638 DOI: 10.3390/antibiotics11111636] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short oligopeptides that can penetrate the bacterial inner and outer membranes. Together with cell-penetrating peptides (CPPs), they are called membrane active peptides; peptides which can translocate across biological membranes. Over the last fifty years, attempts have been made to understand the molecular features that drive the interactions of membranes with membrane active peptides. This review examines the features of a membrane these peptides exploit for translocation, as well as the physicochemical characteristics of membrane active peptides which are important for translocation. Moreover, it presents examples of how these features have been used in recent years to create conjugates consisting of a membrane active peptide, called a "vector", attached to either a current or novel antibiotic, called a "cargo" or "payload". In addition, the review discusses what properties may contribute to an ideal peptide vector able to deliver cargoes across the bacterial outer membrane as the rising issue of antimicrobial resistance demands new strategies to be employed to combat this global public health threat.
Collapse
Affiliation(s)
- Andreas Hadjicharalambous
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Nikolaos Bournakas
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Hector Newman
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Michael J. Skynner
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Paul Beswick
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| |
Collapse
|
8
|
Tryptophan, more than just an interfacial amino acid in the membrane activity of cationic cell-penetrating and antimicrobial peptides. Q Rev Biophys 2022; 55:e10. [PMID: 35979810 DOI: 10.1017/s0033583522000105] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trp is unique among the amino acids since it is involved in many different types of noncovalent interactions such as electrostatic and hydrophobic ones, but also in π-π, π-cation, π-anion and π-ion pair interactions. In membranotropic peptides and proteins, Trp locates preferentially at the water-membrane interface. In antimicrobial or cell-penetrating peptides (AMPs and CPPs respectively), Trp is well-known for its strong role in the capacity of these peptides to interact and affect the membrane organisation of both bacteria and animal cells at the level of the lipid bilayer. This essential amino acid can however be involved in other types of interactions, not only with lipids, but also with other membrane partners, that are crucial to understand the functional roles of membranotropic peptides. This review is focused on this latter less known role of Trp and describes in details, both in qualitative and quantitative ways: (i) the physico-chemical properties of Trp; (ii) its effect in CPP internalisation; (iii) its importance in AMP activity; (iv) its role in the interaction of AMPs with glycoconjugates or lipids in bacteria membranes and the consequences on the activity of the peptides; (v) its role in the interaction of CPPs with negatively charged polysaccharides or lipids of animal membranes and the consequences on the activity of the peptides. We intend to bring highlights of the physico-chemical properties of Trp and describe its extensive possibilities of interactions, not only at the well-known level of the lipid bilayer, but with other less considered cell membrane components, such as carbohydrates and the extracellular matrix. The focus on these interactions will allow the reader to reevaluate reported studies. Altogether, our review gathers dedicated studies to show how unique are Trp properties, which should be taken into account to design future membranotropic peptides with expected antimicrobial or cell-penetrating activity.
Collapse
|
9
|
Jafari A, Babajani A, Sarrami Forooshani R, Yazdani M, Rezaei-Tavirani M. Clinical Applications and Anticancer Effects of Antimicrobial Peptides: From Bench to Bedside. Front Oncol 2022; 12:819563. [PMID: 35280755 PMCID: PMC8904739 DOI: 10.3389/fonc.2022.819563] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a multifaceted global health issue and one of the leading causes of death worldwide. In recent years, medical science has achieved great advances in the diagnosis and treatment of cancer. Despite the numerous advantages of conventional cancer therapies, there are major drawbacks including severe side effects, toxicities, and drug resistance. Therefore, the urgency of developing new drugs with low cytotoxicity and treatment resistance is increasing. Antimicrobial peptides (AMPs) have attracted attention as a novel therapeutic strategy for the treatment of various cancers, targeting tumor cells with less toxicity to normal tissues. In this review, we present the structure, biological function, and underlying mechanisms of AMPs. The recent experimental studies and clinical trials on anticancer peptides in different cancer types as well as the challenges of their clinical application have also been discussed.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Amirhesam Babajani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Sarrami Forooshani
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Mohsen Yazdani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Robles-Loaiza AA, Pinos-Tamayo EA, Mendes B, Ortega-Pila JA, Proaño-Bolaños C, Plisson F, Teixeira C, Gomes P, Almeida JR. Traditional and Computational Screening of Non-Toxic Peptides and Approaches to Improving Selectivity. Pharmaceuticals (Basel) 2022; 15:323. [PMID: 35337121 PMCID: PMC8953747 DOI: 10.3390/ph15030323] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/27/2022] Open
Abstract
Peptides have positively impacted the pharmaceutical industry as drugs, biomarkers, or diagnostic tools of high therapeutic value. However, only a handful have progressed to the market. Toxicity is one of the main obstacles to translating peptides into clinics. Hemolysis or hemotoxicity, the principal source of toxicity, is a natural or disease-induced event leading to the death of vital red blood cells. Initial screenings for toxicity have been widely evaluated using erythrocytes as the gold standard. More recently, many online databases filled with peptide sequences and their biological meta-data have paved the way toward hemolysis prediction using user-friendly, fast-access machine learning-driven programs. This review details the growing contributions of in silico approaches developed in the last decade for the large-scale prediction of erythrocyte lysis induced by peptides. After an overview of the pharmaceutical landscape of peptide therapeutics, we highlighted the relevance of early hemolysis studies in drug development. We emphasized the computational models and algorithms used to this end in light of historical and recent findings in this promising field. We benchmarked seven predictors using peptides from different data sets, having 7-35 amino acids in length. According to our predictions, the models have scored an accuracy over 50.42% and a minimal Matthew's correlation coefficient over 0.11. The maximum values for these statistical parameters achieved 100.0% and 1.00, respectively. Finally, strategies for optimizing peptide selectivity were described, as well as prospects for future investigations. The development of in silico predictive approaches to peptide toxicity has just started, but their important contributions clearly demonstrate their potential for peptide science and computer-aided drug design. Methodology refinement and increasing use will motivate the timely and accurate in silico identification of selective, non-toxic peptide therapeutics.
Collapse
Affiliation(s)
- Alberto A. Robles-Loaiza
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador; (A.A.R.-L.); (B.M.); (J.A.O.-P.); (C.P.-B.)
| | - Edgar A. Pinos-Tamayo
- Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Campus Gustavo Galindo Km. 30, 5 Vía Perimetral, Guayaquil 09-01-5863, Ecuador;
| | - Bruno Mendes
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador; (A.A.R.-L.); (B.M.); (J.A.O.-P.); (C.P.-B.)
| | - Josselyn A. Ortega-Pila
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador; (A.A.R.-L.); (B.M.); (J.A.O.-P.); (C.P.-B.)
| | - Carolina Proaño-Bolaños
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador; (A.A.R.-L.); (B.M.); (J.A.O.-P.); (C.P.-B.)
| | - Fabien Plisson
- Consejo Nacional de Ciencia y Tecnología, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación Y de Estudios Avanzados del IPN, Irapuato 36824, Mexico;
| | - Cátia Teixeira
- Laboratório Associado para a Química Verde-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (C.T.); (P.G.)
| | - Paula Gomes
- Laboratório Associado para a Química Verde-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (C.T.); (P.G.)
| | - José R. Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador; (A.A.R.-L.); (B.M.); (J.A.O.-P.); (C.P.-B.)
| |
Collapse
|
11
|
Luo Y, Song Y. Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities. Int J Mol Sci 2021; 22:ijms222111401. [PMID: 34768832 PMCID: PMC8584040 DOI: 10.3390/ijms222111401] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) are regarded as a new generation of antibiotics. Besides antimicrobial activity, AMPs also have antibiofilm, immune-regulatory, and other activities. Exploring the mechanism of action of AMPs may help in the modification and development of AMPs. Many studies were conducted on the mechanism of AMPs. The present review mainly summarizes the research status on the antimicrobial, anti-inflammatory, and antibiofilm properties of AMPs. This study not only describes the mechanism of cell wall action and membrane-targeting action but also includes the transmembrane mechanism of intracellular action and intracellular action targets. It also discusses the dual mechanism of action reported by a large number of investigations. Antibiofilm and anti-inflammatory mechanisms were described based on the formation of biofilms and inflammation. This study aims to provide a comprehensive review of the multiple activities and coordination of AMPs in vivo, and to fully understand AMPs to realize their therapeutic prospect.
Collapse
Affiliation(s)
- Ying Luo
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
| | - Yuzhu Song
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Medical College, Kunming University of Science and Technology, Kunming 650500, China
- Correspondence: ; Tel.: +86-871-65939528
| |
Collapse
|
12
|
Shagaghi N, Clayton AHA, Aguilar MI, Lee TH, Palombo EA, Bhave M. Effects of Rationally Designed Physico-Chemical Variants of the Peptide PuroA on Biocidal Activity towards Bacterial and Mammalian Cells. Int J Mol Sci 2020; 21:ijms21228624. [PMID: 33207639 PMCID: PMC7696940 DOI: 10.3390/ijms21228624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/20/2020] [Accepted: 11/11/2020] [Indexed: 01/07/2023] Open
Abstract
Antimicrobial peptides (AMPs) often exhibit wide-spectrum activities and are considered ideal candidates for effectively controlling persistent and multidrug-resistant wound infections. PuroA, a synthetic peptide based on the tryptophan (Trp)-rich domain of the wheat protein puroindoline A, displays strong antimicrobial activities. In this work, a number of peptides were designed based on PuroA, varying in physico-chemical parameters of length, number of Trp residues, net charge, hydrophobicity or amphipathicity, D-versus L-isomers of amino acids, cyclization or dimerization, and were tested for antimicrobial potency and salt and protease tolerance. Selected peptides were assessed for effects on biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and selected mammalian cells. Peptide P1, with the highest amphipathicity, six Trp and a net charge of +7, showed strong antimicrobial activity and salt stability. Peptides W7, W8 and WW (seven to eight residues) were generally more active than PuroA and all diastereomers were protease-resistant. PuroA and certain variants significantly inhibited initial biomass attachment and eradicated preformed biofilms of MRSA. Further, P1 and dimeric PuroA were cytotoxic to HeLa cells. The work has led to peptides with biocidal effects on common human pathogens and/or anticancer potential, also offering great insights into the relationship between physico-chemical parameters and bioactivities, accelerating progress towards rational design of AMPs for therapeutics.
Collapse
Affiliation(s)
- Nadin Shagaghi
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia; (N.S.); (E.A.P.)
| | - Andrew H. A. Clayton
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia;
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; (M.-I.A.); (T.-H.L.)
| | - Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; (M.-I.A.); (T.-H.L.)
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia; (N.S.); (E.A.P.)
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia; (N.S.); (E.A.P.)
- Correspondence: ; Tel.: +61-3-9214-5759
| |
Collapse
|
13
|
Frederiksen N, Hansen PR, Zabicka D, Tomczak M, Urbas M, Domraceva I, Björkling F, Franzyk H. Alternating Cationic-Hydrophobic Peptide/Peptoid Hybrids: Influence of Hydrophobicity on Antibacterial Activity and Cell Selectivity. ChemMedChem 2020; 15:2544-2561. [PMID: 33029927 DOI: 10.1002/cmdc.202000526] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/01/2020] [Indexed: 12/17/2022]
Abstract
The influence of hydrophobicity on antibacterial activity versus the effect on the viability of mammalian cells for peptide/peptoid hybrids was examined for oligomers based on the cationic Lys-like peptoid residue combined with each of 28 hydrophobic amino acids in an alternating sequence. Their relative hydrophobicity was correlated to activity against both Gram-negative and Gram-positive species, human red blood cells, and HepG2 cells. This identified hydrophobic side chains that confer potent antibacterial activity (e. g., MICs of 2-8 μg/mL against E. coli) and low toxicity toward mammalian cells (<10 % hemolysis at 400 μg/mL and IC50 >800 μg/mL for HepG2 viability). Most peptidomimetics retained activity against drug-resistant strains. These findings corroborate the hypothesis that for related peptidomimetics two hydrophobicity thresholds may be identified: i) it should exceed a certain level in order to confer antibacterial activity, and ii) there is an upper limit, beyond which cell selectivity is lost. It is envisioned that once identified for a given subclass of peptide-like antibacterials such thresholds can guide further optimisation.
Collapse
Affiliation(s)
- Nicki Frederiksen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Paul R Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Dorota Zabicka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Magdalena Tomczak
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Malgorzata Urbas
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Ilona Domraceva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100, Copenhagen, Denmark
| |
Collapse
|
14
|
Analogues of a Cyclic Antimicrobial Peptide with a Flexible Linker Show Promising Activity against Pseudomonas aeruginosa and Staphylococcus aureus. Antibiotics (Basel) 2020; 9:antibiotics9070366. [PMID: 32629881 PMCID: PMC7399811 DOI: 10.3390/antibiotics9070366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
The emergence of multi-drug resistant bacteria is becoming a major health concern. New strategies to combat especially Gram-negative pathogens are urgently needed. Antimicrobial peptides (AMPs) found in all multicellular organisms act as a first line of defense in immunity. In recent years, AMPs have attracted increasing attention as potential antibiotics. Naturally occurring antimicrobial cyclic lipopeptides include colistin and daptomycin, both of which contain a flexible linker. We previously reported a cyclic AMP BSI-9 cyclo(Lys-Nal-Lys-Lys-Bip-O2Oc-Nal-Lys-Asn) containing a flexible linker, with a broad spectrum of activity against bacterial strains and low hemolytic activity. In this study, improvement of the antimicrobial activity of BSI-9, against the European Committee on Antimicrobial Susceptibility Testing (EUCAST) strains of S. aureus, E. coli, A. baumannii, and P. aeruginosa was examined. This led to synthesis of eighteen peptide analogues of BSI-9, produced in four individual stages, with a different focus in each stage; cyclization point, hydrophobicity, cationic side-chain length, and combinations of the last two. Specifically the modified compound 11, exhibited improved activity against Staphylococcus aureus and Pseudomonas aeruginosa with MIC of 4 µg/mL and 8 µg/mL, respectively, compared to the original BSI-9, which had an MIC of 16–32 µg/mL.
Collapse
|
15
|
Wu PS, Lai SJ, Fung KM, Tseng TS. Characterization of the structure–function relationship of a novel salt-resistant antimicrobial peptide, RR12. RSC Adv 2020; 10:23624-23631. [PMID: 35517355 PMCID: PMC9054785 DOI: 10.1039/d0ra04299d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 11/21/2022] Open
Abstract
Antimicrobial peptides (AMPs) are potential candidates in designing new anti-infective agents. However, many AMPs show poor bactericidal activities in physical salt and serum solutions. Here, we disclosed the structure–function relationships of a novel salt-resistant antimicrobial peptide, RR12, which could further explain its mode of action and show its applicability in developing new antibacterial agents. Antimicrobial peptides (AMPs) are potential candidates in designing new anti-infective agents.![]()
Collapse
Affiliation(s)
- Ping-Sheng Wu
- Division of Infectious Diseases
- Department of Pediatrics
- Taipei Tzu Chi Hospital
- Buddhist Tzu Chi Medical Foundation
- New Taipei
| | - Shu-Jung Lai
- Institute of Biological Chemistry
- Academia Sinica
- Taipei 115
- Taiwan
- Graduate Institute of Biomedical Sciences
| | - Kit-Man Fung
- Institute of Biological Chemistry
- Academia Sinica
- Taipei 115
- Taiwan
| | - Tien-Sheng Tseng
- Institute of Molecular Biology
- National Chung Hsing University
- Taichung
- Taiwan
| |
Collapse
|
16
|
Lone A, Thomsen TT, Nielsen JE, Thulstrup PW, Klitgaard RN, Løbner-Olesen A, Lund R, Jenssen H, Hansen PR. Structure-Activity Study of an All-d Antimicrobial Octapeptide D2D. Molecules 2019; 24:E4571. [PMID: 31847173 PMCID: PMC6943423 DOI: 10.3390/molecules24244571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 11/16/2022] Open
Abstract
The increasing emergence of multi-drug resistant bacteria is a serious threat to public health worldwide. Antimicrobial peptides have attracted attention as potential antibiotics since they are present in all multicellular organisms and act as a first line of defence against invading pathogens. We have previously identified a small all-d antimicrobial octapeptide amide kk(1-nal)fk(1-nal)k(nle)-NH2 (D2D) with promising antimicrobial activity. In this work, we have performed a structure-activity relationship study of D2D based on 36 analogues aimed at discovering which elements are important for antimicrobial activity and toxicity. These modifications include an alanine scan, probing variation of hydrophobicity at lys5 and lys7, manipulation of amphipathicity, N-and C-termini deletions and lys-arg substitutions. We found that the hydrophobic residues in position 3 (1-nal), 4 (phe), 6 (1-nal) and 8 (nle) are important for antimicrobial activity and to a lesser extent cationic lysine residues in position 1, 2, 5 and 7. Our best analogue 5, showed MICs of 4 µg/mL against A. baumannii, E. coli, P. aeruginosa and S. aureus with a hemolytic activity of 47% against red blood cells. Furthermore, compound 5 kills bacteria in a concentration-dependent manner as shown by time-kill kinetics. Circular dichroism (CD) spectra of D2D and compounds 1-8 showed that they likely fold into α-helical secondary structure. Small angle x-ray scattering (SAXS) experiments showed that a random unstructured polymer-like chains model could explain D2D and compounds 1, 3, 4, 6 and 8. Solution structure of compound 5 can be described with a nanotube structure model, compound 7 can be described with a filament-like structure model, while compound 2 can be described with both models. Lipid interaction probed by small angle X-ray scattering (SAXS) showed that a higher amount of compound 5 (~50-60%) inserts into the bilayer compared to D2D (~30-50%). D2D still remains the lead compound, however compound 5 is an interesting antimicrobial peptide for further investigations due to its nanotube structure and minor improvement to antimicrobial activity compared to D2D.
Collapse
Affiliation(s)
- Abdullah Lone
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark;
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark;
| | - Thomas T. Thomsen
- Department of Clinical Microbiology, Rigshospitalet, Henrik Harpestrengs Vej 4A, 2100 Copenhagen, Denmark;
- Department of Biology, Section for functional Genomics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark; (R.N.K.); (A.L.-O.)
| | - Josefine Eilsø Nielsen
- Department of Chemistry, University of Oslo, Sem Sælands vei 26, 0371 Oslo, Norway; (J.E.N.); (R.L.)
| | - Peter W. Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark;
| | - Rasmus N. Klitgaard
- Department of Biology, Section for functional Genomics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark; (R.N.K.); (A.L.-O.)
| | - Anders Løbner-Olesen
- Department of Biology, Section for functional Genomics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark; (R.N.K.); (A.L.-O.)
| | - Reidar Lund
- Department of Chemistry, University of Oslo, Sem Sælands vei 26, 0371 Oslo, Norway; (J.E.N.); (R.L.)
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark;
| | - Paul R. Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark;
| |
Collapse
|
17
|
Short tryptophan- and arginine-rich peptide shows efficacy against clinical methicillin-resistant Staphylococcus aureus strains isolated from skin and soft tissue infections. Sci Rep 2019; 9:17176. [PMID: 31748670 PMCID: PMC6868180 DOI: 10.1038/s41598-019-53926-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/07/2019] [Indexed: 11/28/2022] Open
Abstract
In recent years methicillin-resistant Staphylococcus aureus has posed a challenge in treating skin and soft tissue infections. Finding new antimicrobial agents has therefore become imperative. We evaluated the in vitro antimicrobial activity of a synthetic peptide, P6, against multidrug resistant clinical strains of Staphylococcus aureus isolated from skin and soft tissue infections. The P6 antimicrobial effect was evaluated in vitro by determining MIC/MBC, the ratio of live/dead cells and the effects induced at membrane level. The therapeutic efficiency was determined against human skin cells. P6 inhibited growth for all strains between 8 and 16 mg/L and killed all bacterial strains at 16 mg/L. The therapeutic potential was found to be 30 and 15 in the presence of BSA. We showed that P6 localizes at membrane level, where it acts slowly, by depolarizing it and affecting its integrity. P6 can be considered a good candidate for use as an antimicrobial agent in topical applications.
Collapse
|
18
|
Starr CG, Maderdrut JL, He J, Coy DH, Wimley WC. Pituitary adenylate cyclase-activating polypeptide is a potent broad-spectrum antimicrobial peptide: Structure-activity relationships. Peptides 2018; 104:35-40. [PMID: 29654809 PMCID: PMC5982112 DOI: 10.1016/j.peptides.2018.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/29/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a naturally occurring cationic peptide with potent immunosuppressant and cytoprotective activities. We now show that full length PACAP38 and to a lesser extent, the truncated form PACAP27, and the closely related vasoactive intestinal peptide (VIP) and secretin had antimicrobial activity against the Gram-negative bacteria Escherichia coli in the radial diffusion assay. PACAP38 was more potent than either the bovine neutrophil antimicrobial peptide indolicidin or the synthetic antimicrobial peptide ARVA against E. coli. PACAP38 also had activity against the Gram-positive bacteria Staphylococcus aureus in the same assay with comparable potency to indolicidin and ARVA. In the more stringent broth dilution assay, PACAP38 had moderate sterilizing activity against E. coli, and potent sterilizing activity against the Gram-negative bacteria Pseudomonas aeruginosa. PACAP27, VIP and secretin were much less active than PACAP38 in this assay. PACAP38 also had some activity against the Gram-positive bacteria Bacillus cereus in the broth dilution assay. Many exopeptidase-resistant analogs of PACAP38, including both receptor agonists and antagonists, had antimicrobial activities equal to, or better than PACAP38, in both assays. PACAP38 made the membranes of E. coli permeable to SYTOX Green, suggesting a classical membrane lytic mechanism. These data suggest that analogs of PACPAP38 with a wide range of useful biological activities can be made by judicious substitutions in the sequence.
Collapse
Affiliation(s)
- Charles G Starr
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jerome L Maderdrut
- Peptide Research Laboratory, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jing He
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - David H Coy
- Peptide Research Laboratory, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States.
| |
Collapse
|
19
|
Improving the Activity of Trp-Rich Antimicrobial Peptides by Arg/Lys Substitutions and Changing the Length of Cationic Residues. Biomolecules 2018; 8:biom8020019. [PMID: 29671805 PMCID: PMC6023086 DOI: 10.3390/biom8020019] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 01/13/2023] Open
Abstract
Antimicrobial peptides (AMPs) constitute a promising alternative for the development of new antibiotics that could potentially counteract the growing number of antibiotic-resistant bacteria. However, the AMP structure⁻function relationships remain unclear and detailed studies are still necessary. The positively charged amino acid residues (Arg and Lys) play a crucial role in the activity of most AMPs due to the promotion of electrostatic interactions between the peptides and bacterial membranes. In this work we have analyzed the antimicrobial and structural properties of several Trp-rich AMPs containing exclusively either Arg or Lys as the positively charged residues. Their antimicrobial activity and mechanism of action were investigated, showing that Lys residues give rise to a reduced antimicrobial potency for most peptides, which was correlated, in turn, with a decrease in their ability to permeabilize the cytoplasmic membrane of Escherichia coli. Additionally, the presence of Arg and Lys renders the peptides susceptible to degradation by proteases, such as trypsin, limiting their therapeutic use. Therefore, modifications of the side chain length of Arg and Lys were investigated in an attempt to improve the protease resistance of AMPs. This approach resulted in enhanced stability to trypsin digestion, and in several cases, shorter sidechains conserved or even improved the antimicrobial activity. All together, these results suggest that Arg-to-Lys substitutions, coupled with side chain length modifications, can be extremely useful for improving the activity and stability of AMPs.
Collapse
|
20
|
Tseng TS, Tsai KC, Chen C. Characterizing the structure-function relationship reveals the mode of action of a novel antimicrobial peptide, P1, from jumper ant Myrmecia pilosula. MOLECULAR BIOSYSTEMS 2017; 13:1193-1201. [PMID: 28470277 DOI: 10.1039/c6mb00810k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microbial infections of antibiotic-resistant strains cause serious diseases and have a significant impact on public health worldwide, so novel antimicrobial drugs are urgently needed. Insect venoms, a rich source of bioactive components containing antimicrobial peptides (AMPs), are attractive candidates for new therapeutic agents against microbes. Recently, a novel peptide, P1, identified from the venom of the Australian jumper ant Myrmecia pilosula, showed potent antimicrobial activities against both Gram-negative and Gram-positive bacteria, but its structure-function relationship is unknown. Here, we used biochemical and biophysical techniques coupled with computational simulations to explore the mode of action of P1 interaction with dodecylphosphocholine (DPC) micelles as a model membrane system. Our circular dichroism (CD) and NMR studies revealed an amphipathic α-helical structure for P1 upon interaction with DPC micelles. A paramagnetic relaxation enhancement approach revealed that P1 orients its α-helix segment (F6-G14) into DPC micelles. In addition, the α-helix segment could be essential for membrane permeabilization and antimicrobial activity. Moreover, the arginine residues R8, R11, and R15 significantly contribute to helix formation and membrane-binding affinity. The lysine residue K19 of the C-terminus functionally guides P1 to interact with DPC micelles in the early interaction stage. Our study provides insights into the mode of action of P1, which is valuable in modifying and developing potent AMPs as antibiotic drugs.
Collapse
Affiliation(s)
- Tien-Sheng Tseng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan and The Ph.D. Program for Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chinpan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
21
|
Bacalum M, Janosi L, Zorila F, Tepes AM, Ionescu C, Bogdan E, Hadade N, Craciun L, Grosu I, Turcu I, Radu M. Modulating short tryptophan- and arginine-rich peptides activity by substitution with histidine. Biochim Biophys Acta Gen Subj 2017; 1861:1844-1854. [PMID: 28372989 DOI: 10.1016/j.bbagen.2017.03.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/06/2017] [Accepted: 03/31/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND High antimicrobial efficacy of short tryptophan-and arginine-rich peptides makes them good candidates in the fight against pathogens. Substitution of tryptophan and arginine by histidine could be used to modulate the peptides efficacy by optimizing their structures. METHODS The peptide (RRWWRWWRR), reported to showed good antimicrobial efficacy, was used as template, seven new analogs being designed substituting tryptophan or arginine with histidine. The peptides' efficacy was tested against E. coli, B. subtilis and S. aureus. The cytotoxicity and hemolytic effect were evaluated and the therapeutic index was inferred for each peptide. Atomic force microscopy and molecular simulation were used to analyze the effects of peptides on bacterial membrane. RESULTS The substitution of tryptophan by histidine proved to strongly modulate the antimicrobial activity, mainly by changing the peptide-to-membrane binding energy. The substitution of arginine has low effect on the antimicrobial efficacy. The presence of histidine residue reduced the cytotoxic and hemolytic activity of the peptides in some cases maintaining the same efficacy against bacteria. The peptides' antimicrobial activity was correlated to the 3D-hydrophobic moment and to a simple structure-based packing parameter. CONCLUSION The results show that some of these peptides have the potential to become good candidates to fight against bacteria. The substitution by histidine proved to fine tune the therapeutic index allowing the optimization of the peptide structure mainly by changing its binding energy and 3D-hydrophobic moment. GENERAL SIGNIFICANCE The short tryptophan reach peptides therapeutic index can be maximized using the histidine substitution to optimize their structure.
Collapse
Affiliation(s)
- Mihaela Bacalum
- Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului 30, PO Box MG-6, Măgurele 077125, Romania
| | - Lorant Janosi
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293 Cluj-Napoca, Romania
| | - Florina Zorila
- Multipurpose Irradiation Facility Center, Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului 30, PO Box MG-6, Măgurele 077125, Romania
| | - Ana-Maria Tepes
- Babeş-Bolyai University, Supramolecular Organic and Organometallic Chemistry Center (SOOMCC), Cluj-Napoca, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
| | - Cristina Ionescu
- Applied Nuclear Physics Department, Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului 30, PO Box MG-6, Măgurele 077125, Romania
| | - Elena Bogdan
- Babeş-Bolyai University, Supramolecular Organic and Organometallic Chemistry Center (SOOMCC), Cluj-Napoca, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
| | - Niculina Hadade
- Babeş-Bolyai University, Supramolecular Organic and Organometallic Chemistry Center (SOOMCC), Cluj-Napoca, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
| | - Liviu Craciun
- Applied Nuclear Physics Department, Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului 30, PO Box MG-6, Măgurele 077125, Romania
| | - Ion Grosu
- Babeş-Bolyai University, Supramolecular Organic and Organometallic Chemistry Center (SOOMCC), Cluj-Napoca, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania
| | - Ioan Turcu
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293 Cluj-Napoca, Romania.
| | - Mihai Radu
- Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului 30, PO Box MG-6, Măgurele 077125, Romania.
| |
Collapse
|
22
|
Abstract
For antimicrobial peptides to be interesting for systemic applications, they must show low toxicity against erythrocytes. In this chapter, we describe a protocol for measuring the ability of AMPs to lyse human red blood cells, using melittin as positive control.
Collapse
Affiliation(s)
- Alberto Oddo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Paul R Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
23
|
Omardien S, Brul S, Zaat SAJ. Antimicrobial Activity of Cationic Antimicrobial Peptides against Gram-Positives: Current Progress Made in Understanding the Mode of Action and the Response of Bacteria. Front Cell Dev Biol 2016; 4:111. [PMID: 27790614 PMCID: PMC5063857 DOI: 10.3389/fcell.2016.00111] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 09/21/2016] [Indexed: 01/11/2023] Open
Abstract
Antimicrobial peptides (AMPs) have been proposed as a novel class of antimicrobials that could aid the fight against antibiotic resistant bacteria. The mode of action of AMPs as acting on the bacterial cytoplasmic membrane has often been presented as an enigma and there are doubts whether the membrane is the sole target of AMPs. Progress has been made in clarifying the possible targets of these peptides, which is reported in this review with as focus gram-positive vegetative cells and spores. Numerical estimates are discussed to evaluate the possibility that targets, other than the membrane, could play a role in susceptibility to AMPs. Concerns about possible resistance that bacteria might develop to AMPs are addressed. Proteomics, transcriptomics, and other molecular techniques are reviewed in the context of explaining the response of bacteria to the presence of AMPs and to predict what resistance strategies might be. Emergent mechanisms are cell envelope stress responses as well as enzymes able to degrade and/or specifically bind (and thus inactivate) AMPs. Further studies are needed to address the broadness of the AMP resistance and stress responses observed.
Collapse
Affiliation(s)
- Soraya Omardien
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Sebastian A J Zaat
- Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
24
|
Tseng TS, Wang SH, Chang TW, Wei HM, Wang YJ, Tsai KC, Liao YD, Chen C. Sarkosyl-Induced Helical Structure of an Antimicrobial Peptide GW-Q6 Plays an Essential Role in the Binding of Surface Receptor OprI in Pseudomonas aeruginosa. PLoS One 2016; 11:e0164597. [PMID: 27727309 PMCID: PMC5058510 DOI: 10.1371/journal.pone.0164597] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/27/2016] [Indexed: 12/27/2022] Open
Abstract
The emergence of antibiotic-resistant microbial strains has become a public health issue and there is an urgent need to develop new anti-infective molecules. Although natural antimicrobial peptides (AMPs) can exert bactericidal activities, they have not shown clinical efficacy. The limitations of native peptides may be overcome with rational design and synthesis. Here, we provide evidence that the bactericidal activity of a synthetic peptide, GW-Q6, against Pseudomonas aeruginosa is mediated through outer membrane protein OprI. Hyperpolarization/depolarization of membrane potential and increase of membrane permeability were observed after GW-Q6 treatment. Helical structure as well as hydrophobicity was induced by an amphipathic surfactant, sarkosyl, for binding to OprI and possible to membrane. NMR studies demonstrated GW-Q6 is an amphipathic α-helical structure in DPC micelles. The paramagnetic relaxation enhancement (PRE) approach revealed that GW-Q6 orients its α-helix segment (K7-K17) into DPC micelles. Additionally, this α-helix segment is critical for membrane permeabilization and antimicrobial activity. Moreover, residues K3, K7, and K14 could be critical for helical formation and membrane binding while residues Y19 and W20 for directing the C-terminus of the peptide to the surface of micelle. Taken together, our study provides mechanistic insights into the mode of action of the GW-Q6 peptide and suggests its applicability in modifying and developing potent AMPs as therapeutic agents.
Collapse
Affiliation(s)
- Tien-Sheng Tseng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shih-Han Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting-Wei Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hung-Mu Wei
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-June Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
- The Ph.D. Program for Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - You-Di Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- * E-mail: (YDL); (CC)
| | - Chinpan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- * E-mail: (YDL); (CC)
| |
Collapse
|
25
|
Arias M, Nguyen LT, Kuczynski AM, Lejon T, Vogel HJ. Position-Dependent Influence of the Three Trp Residues on the Membrane Activity of the Antimicrobial Peptide, Tritrpticin. Antibiotics (Basel) 2014; 3:595-616. [PMID: 27025758 PMCID: PMC4790384 DOI: 10.3390/antibiotics3040595] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 01/30/2023] Open
Abstract
Antimicrobial peptides (AMPs) constitute promising candidates for the development of new antibiotics. Among the ever-expanding family of AMPs, tritrpticin has strong antimicrobial activity against a broad range of pathogens. This 13-residue peptide has an unusual amino acid sequence that is almost symmetrical and features three central Trp residues with two Arg residues near each end of the peptide. In this work, the role of the three sequential Trp residues in tritrpticin was studied in a systematic fashion by making a series of synthetic peptides with single-, double- and triple-Trp substitutions to Tyr or Ala. 1H NMR and fluorescence spectroscopy demonstrated the ability of all of the tritrpticin-analog peptides to interact with negatively-charged membranes. Consequently, most tritrpticin analogs exhibited the ability to permeabilize synthetic ePC:ePG (egg-yolk phosphatidylcholine (ePC), egg-yolk phosphatidylglycerol (ePG)) vesicles and live Escherichia coli bacteria. The membrane perturbation characteristics were highly dependent on the location of the Trp residue substitution, with Trp6 being the most important residue and Trp8 the least. The membrane permeabilization activity of the peptides in synthetic and biological membranes was directly correlated with the antimicrobial potency of the peptides against E. coli. These results contribute to the understanding of the role of each of the three Trp residues to the antimicrobial activity of tritrpticin.
Collapse
Affiliation(s)
- Mauricio Arias
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| | - Leonard T Nguyen
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| | - Andrea M Kuczynski
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| | - Tore Lejon
- Department of Chemistry, Faculty of Science, UiT-The Artic University of Norway, Tromsø N-9037, Norway.
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
26
|
Midura-Nowaczek K, Markowska A. Antimicrobial peptides and their analogs: searching for new potential therapeutics. PERSPECTIVES IN MEDICINAL CHEMISTRY 2014; 6:73-80. [PMID: 25374459 PMCID: PMC4213192 DOI: 10.4137/pmc.s13215] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/28/2014] [Accepted: 09/05/2014] [Indexed: 12/14/2022]
Abstract
Antimicrobial peptides (AMPs) are an essential part of innate immunity. These compounds have been considered as potential therapeutics because of their broad-spectrum activities and proven ability to avoid antimicrobial resistance, but their clinical and commercial developments have some limitations, such as susceptibility to proteases and a high cost of peptide production. To overcome these problems, many researchers have tried to develop short active peptides, their modifications and mimics with better properties while retaining their basic features of natural AMPs such as cationic charge and the amphipathic structure.
Collapse
Affiliation(s)
| | - Agnieszka Markowska
- Department of Organic Chemistry, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
27
|
Bacalum M, Radu M. Cationic Antimicrobial Peptides Cytotoxicity on Mammalian Cells: An Analysis Using Therapeutic Index Integrative Concept. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9430-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
28
|
Wood SJ, Park YA, Kanneganti NP, Mukkisa HR, Crisman LL, Davis SE, Vandenbosch JL, Scaglione JB, Heyl DL. Modified Cysteine-Deleted Tachyplesin (CDT) Analogs as Linear Antimicrobial Peptides: Influence of Chain Length, Positive Charge, and Hydrophobicity on Antimicrobial and Hemolytic Activity. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9419-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Peptide-membrane interactions of arginine-tryptophan peptides probed using quartz crystal microbalance with dissipation monitoring. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:241-53. [PMID: 24743917 PMCID: PMC4053608 DOI: 10.1007/s00249-014-0958-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/20/2014] [Accepted: 03/31/2014] [Indexed: 11/11/2022]
Abstract
Membrane-active peptides include peptides that can cross cellular membranes and deliver macromolecular cargo as well as peptides that inhibit bacterial growth. Some of these peptides can act as both transporters and antibacterial agents. It is desirable to combine the knowledge from these two different fields of membrane-active peptides into design of new peptides with tailored actions, as transporters of cargo or as antibacterial substances, targeting specific membranes. We have previously shown that the position of the amino acid tryptophan in the peptide sequence of three arginine-tryptophan peptides affects their uptake and intracellular localization in live mammalian cells, as well as their ability to inhibit bacterial growth. Here, we use quartz crystal microbalance with dissipation monitoring to assess the induced changes caused by binding of the three peptides to supported model membranes composed of POPC, POPC/POPG, POPC/POPG/cholesterol or POPC/lactosyl PE. Our results indicate that the tryptophan position in the peptide sequence affects the way these peptides interact with the different model membranes and that the presence of cholesterol in particular seems to affect the membrane interaction of the peptide with an even distribution of tryptophans in the peptide sequence. These results give mechanistic insight into the function of these peptides and may aid in the design of membrane-active peptides with specified cellular targets and actions.
Collapse
|
30
|
Munk JK, Uggerhøj LE, Poulsen TJ, Frimodt-Møller N, Wimmer R, Nyberg NT, Hansen PR. Synthetic analogs of anoplin show improved antimicrobial activities. J Pept Sci 2013; 19:669-75. [DOI: 10.1002/psc.2548] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Jens K. Munk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences; University of Copenhagen; DK; 2100; Copenhagen Ø; Denmark
| | - Lars Erik Uggerhøj
- Department of Biotechnology, Chemistry and Environmental Engineering; University of Aalborg; DK; 9000; Aalborg; Denmark
| | - Tanja J. Poulsen
- Department of Biotechnology, Chemistry and Environmental Engineering; University of Aalborg; DK; 9000; Aalborg; Denmark
| | - Niels Frimodt-Møller
- Department of Clinical Microbiology; Hvidovre Hospital; DK; 2650; Hvidovre; Denmark
| | - Reinhard Wimmer
- Department of Biotechnology, Chemistry and Environmental Engineering; University of Aalborg; DK; 9000; Aalborg; Denmark
| | - Nils T. Nyberg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences; University of Copenhagen; DK; 2100; Copenhagen Ø; Denmark
| | - Paul R. Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences; University of Copenhagen; DK; 2100; Copenhagen Ø; Denmark
| |
Collapse
|
31
|
Saravanan R, Li X, Lim K, Mohanram H, Peng L, Mishra B, Basu A, Lee JM, Bhattacharjya S, Leong SSJ. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility. Biotechnol Bioeng 2013; 111:37-49. [PMID: 23860860 DOI: 10.1002/bit.25003] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/30/2013] [Accepted: 07/08/2013] [Indexed: 12/27/2022]
Abstract
Antimicrobial peptides (AMPs) kill microbes by non-specific membrane permeabilization, making them ideal templates for designing novel peptide-based antibiotics that can combat multi-drug resistant pathogens. For maximum efficacy in vivo and in vitro, AMPs must be biocompatible, salt-tolerant and possess broad-spectrum antimicrobial activity. These attributes can be obtained by rational design of peptides guided by good understanding of peptide structure-function. Toward this end, this study investigates the influence of charge and hydrophobicity on the activity of tryptophan and arginine rich decamer peptides engineered from a salt resistant human β-defensin-28 variant. Mechanistic investigations of the decamers with detergents mimicking the composition of bacterial and mammalian membrane, reveal a correlation between improved antibacterial activity and the increase in tryptophan and positive residue content, while keeping hemolysis low. The potent antimicrobial activity and high cell membrane selective behavior of the two most active decamers, D5 and D6, are attributed to an optimum peptide charge to hydrophobic ratio bestowed by systematic arginine and tryptophan substitution. D5 and D6 show surface localization behavior with binding constants of 1.86 × 10(8) and 2.6 × 10(8) M(-1) , respectively, as determined by isothermal calorimetry measurements. NMR derived structures of D5 and D6 in SDS detergent micelles revealed proximity of Trp and Arg residues in an extended structural scaffold. Such potential cation-π interactions may be critical in cell permeabilization of the AMPs. The fundamental characterization of the engineered decamers provided in this study improves the understanding of structure-activity relationship of short arginine tryptophan rich AMPs, which will pave the way for future de novo design of potent AMPs for therapeutic and biomedical applications.
Collapse
Affiliation(s)
- Rathi Saravanan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore, 637553, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Introduction of a lysine residue promotes aggregation of temporin L in lipopolysaccharides and augmentation of its antiendotoxin property. Antimicrob Agents Chemother 2013; 57:2457-66. [PMID: 23478966 DOI: 10.1128/aac.00169-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Temporin L (TempL) is a 13-residue frog antimicrobial peptide that shows moderate bactericidal activity and antiendotoxin properties in macrophages. We envisioned that, due to its very hydrophobic nature, the peptide might fail to show its desired biological properties. It was predicted by employing the available algorithms that the replacement of a glutamine by lysine at position 3 could appreciably reduce its aggregation propensity in an aqueous environment. In order to investigate the structural, functional, and biological consequences of replacement of glutamine by lysine at its third position, TempL and the corresponding analog, Q3K-TempL, was synthesized and characterized. Introduction of the lysine residue significantly promoted the self-assembly and oligomeric state of TempL in lipopolysaccharide (LPS). Q3K-TempL exhibited augmented binding to LPS and also dissociated LPS aggregates with greater efficacy than TempL. Further, Q3K-TempL inhibited the LPS-induced proinflammatory cytokines in rat primary macrophages in vitro and in vivo in BALB/c mice with greater efficacy than TempL. The results showed that a simple amino acid substitution in a short hydrophobic antimicrobial peptide, TempL, enhanced its antiendotoxin properties and illustrate a plausible correlation between its aggregation properties in LPS and LPS detoxification activity.
Collapse
|
33
|
Muñoz A, Gandía M, Harries E, Carmona L, Read ND, Marcos JF. Understanding the mechanism of action of cell-penetrating antifungal peptides using the rationally designed hexapeptide PAF26 as a model. FUNGAL BIOL REV 2013. [DOI: 10.1016/j.fbr.2012.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Rydberg HA, Carlsson N, Nordén B. Membrane interaction and secondary structure of de novo designed arginine-and tryptophan peptides with dual function. Biochem Biophys Res Commun 2012; 427:261-5. [DOI: 10.1016/j.bbrc.2012.09.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
|
35
|
Tsai CW, Ruaan RC, Liu CI. Adsorption of antimicrobial indolicidin-derived peptides on hydrophobic surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10446-10452. [PMID: 22721449 DOI: 10.1021/la301401v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The hydrophobic interaction between antimicrobial peptides and membrane hydrophobic cores is usually related to their cytotoxicity. In this study, the adsorption mechanism of five plasma membrane-associated peptides, indolicidin (IL) and its four derivatives, with hydrophobic ligands was investigated to understand the relationship between peptide hydrophobicity and bioactivity. The hydrophobic adsorption mechanisms of IL and its derivatives were interpreted thermodynamically and kinetically by reversed-phase chromatography (RPC) analysis and surface plasmon resonance (SPR) measurement, respectively. IL and its derivatives possess a similar random coil structure in both aqueous and organic solvents. Thermodynamic analysis showed that the binding enthalpy of peptides with higher electropositivity was lower than those with lower electropositivity and exhibited unfavorable binding entropy. Higher electropositivity peptides adsorbed to the hydrophobic surface arising from the less bound solvent on the peptide surface. A comparison with the kinetic analysis showed that IL and its derivatives adopt a two-state binding model (i.e., adsorption onto and self-association on the hydrophobic acyl chain) to associate with the hydrophobic surface, and the binding affinity of peptide self-association correlates well with peptide hemolysis. Consequently, this study provided a novel concept for understanding the action of plasma membrane-associated peptides.
Collapse
Affiliation(s)
- Ching-Wei Tsai
- Department of Chemical and Materials Engineering, National Central University, Jhong-Li, Taiwan
| | | | | |
Collapse
|
36
|
Gopal R, Kim YJ, Seo CH, Hahm KS, Park Y. Reversed sequence enhances antimicrobial activity of a synthetic peptide. J Pept Sci 2011; 17:329-34. [DOI: 10.1002/psc.1369] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 02/07/2011] [Accepted: 02/08/2011] [Indexed: 11/10/2022]
|
37
|
Indolicidin action on membrane permeability: Carrier mechanism versus pore formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:91-7. [DOI: 10.1016/j.bbamem.2010.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 09/07/2010] [Accepted: 09/08/2010] [Indexed: 11/15/2022]
|
38
|
Lomash S, Nagpal S, Salunke DM. An antibody as surrogate receptor reveals determinants of activity of an innate immune peptide antibiotic. J Biol Chem 2010; 285:35750-8. [PMID: 20837490 PMCID: PMC2975199 DOI: 10.1074/jbc.m110.150516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/15/2010] [Indexed: 11/06/2022] Open
Abstract
Drug discovery initiatives often depend critically on knowledge of ligand-receptor interactions. However, the identity or structure of the target receptor may not be known in every instance. The concept of receptor surrogate, a molecular environment mimic of natural receptor, may prove beneficial under such circumstances. Here, we demonstrate the potential of monoclonal antibodies (mAbs) to act as surrogate receptors for a class of innate immune peptide antibiotics, a strategy that can help comprehend their action mechanism and identify chemical entities crucial for activity. A panel of antibody surrogates was raised against indolicidin, a tryptophan-rich cationic broad spectrum antimicrobial peptide of innate immune origin. Employing an elegant combination of thermodynamics, crystallography, and molecular modeling, interactions of the peptide with a high affinity anti-indolicidin monoclonal antibody were analyzed and were used to identify a motif that contained almost the entire antibiotic activity of native indolicidin. The analysis clarified the interaction of the peptide with previously proposed targets such as bacterial cell membrane and DNA and could further be correlated with antimicrobial compounds whose actions involve varied other mechanisms. These features suggest a multipronged assault pathway for indolicidin. Remarkably, the anti-indolicidin mAb surrogate was able to isolate additional independent bactericidal sequences from a random peptide library, providing compelling evidence as to the physiological relevance of surrogate receptor concept and suggesting applications in receptor-based pharmacophore research.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Anti-Infective Agents/immunology
- Anti-Infective Agents/metabolism
- Anti-Infective Agents/pharmacology
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antimicrobial Cationic Peptides/immunology
- Antimicrobial Cationic Peptides/metabolism
- Antimicrobial Cationic Peptides/pharmacology
- Crystallography, X-Ray
- Epitope Mapping
- Epitopes/chemistry
- Epitopes/immunology
- Epitopes/metabolism
- Escherichia coli/drug effects
- Escherichia coli/growth & development
- Immunity, Innate/immunology
- Immunoglobulin Fragments/chemistry
- Immunoglobulin Fragments/immunology
- Immunoglobulin Fragments/metabolism
- Kinetics
- Mice
- Mice, Inbred BALB C
- Models, Molecular
- Peptide Library
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Staphylococcus aureus/drug effects
- Staphylococcus aureus/growth & development
- Thermodynamics
Collapse
Affiliation(s)
- Suvendu Lomash
- From the Structural Biology Unit, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110067 and
| | - Sushma Nagpal
- From the Structural Biology Unit, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110067 and
| | - Dinakar M. Salunke
- From the Structural Biology Unit, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110067 and
- the Regional Centre for Biotechnology, Gurgaon 122016, India
| |
Collapse
|
39
|
Bommineni YR, Achanta M, Alexander J, Sunkara LT, Ritchey JW, Zhang G. A fowlicidin-1 analog protects mice from lethal infections induced by methicillin-resistant Staphylococcus aureus. Peptides 2010; 31:1225-30. [PMID: 20381563 DOI: 10.1016/j.peptides.2010.03.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 03/31/2010] [Accepted: 03/31/2010] [Indexed: 11/25/2022]
Abstract
Fowlicidin-1 is a newly identified alpha-helical cathelicidin host defense peptide. We have shown that fowlicidin-1 possesses potent antibacterial activity, but also displays considerable toxicity toward mammalian cells. To further identify fowlicidin-1 analog(s) with enhanced therapeutic potential, a series of amino-terminal truncation analogs were synthesized and functionally evaluated. Relative to the full-length peptide, fowl-1(6-26), an analog with omission of five amino-terminal amino acid residues, maintained the antibacterial potency against a range of Gram-negative and Gram-positive bacteria including antibiotic-resistant strains. Fowl-1(6-26)-NH(2), a carboxyl-terminal amidated form of fowl-1(6-26), retained the antibacterial activity for a minimum of 2h in the presence of 100% serum. In addition, an intraperitoneal administration of 10mg/kg of fowl-1(6-26)-NH(2) led to a 50% increase in the survival of neutropenic mice over a 7-day period from a lethal dose of methicillin-resistant Staphylococcus aureus (MRSA), concomitant with a reduction in the bacterial titer in both peritoneal fluids and spleens of mice 24h post-infection. Fowl-1(6-26)-NH(2) at 20 microM was further found to suppress lipopolysaccharide-mediated production of TNF-alpha and nitric oxide in macrophages by 77% and 96%, respectively. Therefore, with potent endotoxin-neutralizing and bactericidal activities, fowlicidin-1(6-26)-NH(2), may have strong therapeutic potential for drug-resistant infections and sepsis.
Collapse
Affiliation(s)
- Yugendar R Bommineni
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | |
Collapse
|
40
|
González R, Albericio F, Cascone O, Iannucci NB. Improved antimicrobial activity of h-lysozyme (107-115) by rational Ala substitution. J Pept Sci 2010; 16:424-9. [DOI: 10.1002/psc.1258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Podorieszach AP, Huttunen-Hennelly HEK. The effects of tryptophan and hydrophobicity on the structure and bioactivity of novel indolicidin derivatives with promising pharmaceutical potential. Org Biomol Chem 2010; 8:1679-87. [DOI: 10.1039/b921248e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Nickl CK, Raidas SK, Zhao H, Sausbier M, Ruth P, Tegge W, Brayden JE, Dostmann WR. (D)-Amino acid analogues of DT-2 as highly selective and superior inhibitors of cGMP-dependent protein kinase Ialpha. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:524-32. [PMID: 20018259 DOI: 10.1016/j.bbapap.2009.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 12/01/2009] [Accepted: 12/04/2009] [Indexed: 11/26/2022]
Abstract
The cGMP-dependent protein kinase type I (PKG I) is an essential regulator of cellular function in blood vessels throughout the body. DT-2, a peptidic inhibitor of PKG, has played a central role in determining the molecular mechanisms of vascular control involving PKG and its signaling partners. Here, we report the development of (d)-amino acid DT-2 derivatives, namely the retro-inverso ri-(d)-DT-2 and the all (d)-amino acid analog, (d)-DT-2. Both peptide analogs were potent PKG Ialpha inhibitors with K(i) values of 5.5 nM (ri-(d)-DT-2) and 0.8 nM ((d)-DT-2) as determined using a hyperbolic mixed-type inhibition model. Also, both analogs were proteolytically stable in vivo, showed elevated selectivity, and displayed enhanced membrane translocation properties. Studies on isolated arteries from the resistance vasculature demonstrated that intraluminally perfused (d)-DT-2 significantly inhibited vasodilation induced by 8-Br-cGMP. Furthermore, in vivo application of (d)-DT-2 established a uniform translocation pattern in the resistance vasculature, with exception of the brain. Thus, (d)-DT-2 caused significant increases in mean arterial blood pressure in unrestrained, awake mice. Further, mesenteric arteries isolated from (d)-DT-2 treated animals showed a markedly reduced dilator response to 8-Br-cGMP in vitro. Our results clearly demonstrate that (d)-DT-2 is a superior inhibitor of PKG Ialpha and its application in vivo leads to sustained inhibition of PKG in vascular smooth muscle cells. The discovery of (d)-DT-2 may help our understanding of how blood vessels constrict and dilate and may also aid the development of new strategies and therapeutic agents targeted to the prevention and treatment of vascular disorders such as hypertension, stroke and coronary artery disease.
Collapse
Affiliation(s)
- Christian K Nickl
- Department of Pharmacology, University of Vermont, College of Medicine, HSRF 330, 149 Beaumont Avenue, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. J Mol Biol 2009; 392:837-54. [PMID: 19576903 DOI: 10.1016/j.jmb.2009.06.071] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/08/2009] [Accepted: 06/27/2009] [Indexed: 11/21/2022]
Abstract
Antimicrobial peptides (AMPs) have attracted much interest in recent years because of their potential use as new-generation antibiotics. Indolicidin (IL) is a 13-residue cationic AMP that is effective against a broad spectrum of bacteria, fungi, and even viruses. Unfortunately, its high hemolytic activity retards its clinical applications. In this study, we adopted molecular dynamics (MD) simulations as an aid toward the rational design of IL analogues exhibiting high antimicrobial activity but low hemolysis. We employed long-timescale, multi-trajectory all-atom MD simulations to investigate the interactions of the peptide IL with model membranes. The lipid bilayer formed by the zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was chosen as the model erythrocyte membrane; lipid bilayers formed from a mixture of POPC and the negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol were chosen to model bacterial membranes. MD simulations with a total simulation time of up to 4 micros revealed the mechanisms of the processes of IL adsorption onto and insertion into the membranes. The packing order of these lipid bilayers presumably correlated to the membrane stability upon IL adsorption and insertion. We used the degree of local membrane thinning and the reduction in the order parameter of the acyl chains of the lipids to characterize the membrane stability. The order of the mixed 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol/POPC lipid bilayer reduced significantly upon the adsorption of IL. On the other hand, although the order of the pure-POPC lipid bilayer was perturbed slightly during the adsorption stage, the value was reduced more dramatically upon the insertion of IL into the membrane's hydrophobic region. The results imply that enhancing IL adsorption on the microbial membrane may amplify its antimicrobial activity, while the degree of hemolysis may be reduced through inhibition of IL insertion into the hydrophobic region of the erythrocyte membrane. In addition, through simulations, we identified the amino acids that are most responsible for the adsorption onto or insertion into the two model membranes. Positive charges are critical to the peptide's adsorption, whereas the presence of hydrophobic Trp8 and Trp9 leads to its deeper insertion. Combining the hypothetical relationships between the membrane disordering and the antimicrobial and hemolytical activities with the simulated results, we designed three new IL-analogous peptides: IL-K7 (Pro7-->Lys), IL-F89 (Trp8 and Trp9-->Phe), and IL-K7F89 (Pro7-->Lys; Trp8 and Trp9-->Phe). The hemolytic activity of IL-F89 is considerably lower than that of IL, whereas the antimicrobial activity of IL-K7 is greatly enhanced. In particular, the de novo peptide IL-K7F89 exhibits higher antimicrobial activity against Escherichia coli; its hemolytic activity decreased to only 10% of that of IL. Our simulated and experimental results correlated well. This approach-coupling MD simulations with experimental design-is a useful strategy toward the rational design of AMPs for potential therapeutic use.
Collapse
|
44
|
Analysis of cell membrane characteristics of in vitro-selected daptomycin-resistant strains of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2009; 53:2312-8. [PMID: 19332678 DOI: 10.1128/aac.01682-08] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous studies of clinical daptomycin-resistant (Dap(r)) Staphylococcus aureus strains suggested that resistance is linked to the perturbations of several key cell membrane (CM) characteristics, including the CM order (fluidity), phospholipid content and asymmetry, and relative surface charge. In the present study, we examined the CM profiles of a well-known methicillin-resistant Staphylococcus aureus (MRSA) strain (MW2) after in vitro selection for DAP resistance by a 20-day serial passage in sublethal concentrations of DAP. Compared to levels for the parental strain, Dap(r) strains exhibited (i) decreased CM fluidity, (ii) the increased synthesis of total lysyl-phosphatidylglycerol (LPG), (iii) the increased flipping of LPG to the CM outer bilayer, and (iv) the increased expression of mprF, the gene responsible for the latter two phenotypes. In addition, we found that the expression of the dlt operon, which also increases positive surface charge, was enhanced in the Dap(r) mutants. These phenotypic and genotypic changes correlated with reduced DAP surface binding, mirroring observations made in clinical Dap(r) isolates. In this strain, serial exposure to DAP induced an increase in vancomycin MICs into the vancomycin-intermediate S. aureus (VISA) range (4 microg/ml) in parallel with increasing DAP MICs. Also, this Dap(r) strain exhibited significantly thicker cell walls than the parental strain, potentially correlating with the coevolution of the VISA phenotype and implicating cell wall structure and/or function in the Dap(r) phenotype. Importantly, despite the overexpression of mprF and dlt, the relative net positive surface charge was decreased in the Dap(r) mutants, suggesting that other factors contribute to the surface charge alterations and that a simple charge repulsion mechanism could not entirely explain the Dap(r) phenotype in these strains.
Collapse
|
45
|
Melo MN, Ferre R, Castanho MARB. Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol 2009; 7:245-50. [PMID: 19219054 DOI: 10.1038/nrmicro2095] [Citation(s) in RCA: 501] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An increasing amount of information on the action of antimicrobial peptides (AMPs) at the molecular level has not yet been translated into a comprehensive understanding of effects in bacteria. Although some biophysical attributes of AMPs have been correlated with macroscopic features, the physiological relevance of other properties has not yet been addressed. Pertinent and surprising conclusions have therefore been left unstated. Strong membrane-binding and micromolar therapeutic concentrations of AMPs indicate that membrane-bound concentrations may be reached that are higher than intuitively expected, triggering disruptive effects on bacteria.
Collapse
Affiliation(s)
- Manuel N Melo
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, Lisbon, Portugal
| | | | | |
Collapse
|
46
|
Swe PM, Cook GM, Tagg JR, Jack RW. Mode of action of dysgalacticin: a large heat-labile bacteriocin. J Antimicrob Chemother 2009; 63:679-86. [DOI: 10.1093/jac/dkn552] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
47
|
Kim SM, Kim JM, Joshi BP, Cho H, Lee KH. Indolicidin-derived antimicrobial peptide analogs with greater bacterial selectivity and requirements for antibacterial and hemolytic activities. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:185-92. [PMID: 19038369 DOI: 10.1016/j.bbapap.2008.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 10/14/2008] [Accepted: 10/23/2008] [Indexed: 11/18/2022]
Abstract
Indolicidin (ILPWKWPWWPWRR-NH(2)) has received attention due to its unique primary structure and biological activities. In this study, amide bonds at various positions in indolicidin were replaced with the reduced amide bonds psi[CH(2)NH] and the effect of the secondary structure on the biological activity was investigated. The circular dichroism spectra revealed that the rigidity and hydrogen bond of the amide bond between Trp(8) and Trp(9) were important for stabilizing the turn structure of indolicidin. A structure-activity study revealed that the turn structure of indolicidin was not required for antimicrobial activity and leakage activity for LUVs with a negatively charged surface. The pseudopeptide containing two reduced amide bonds showed less hemolytic activity as well as improved stability without a decrease in its antimicrobial activity. These results will provide valuable information for designing indolicidin analogs with greater bacterial selectivity and increased stability and for elucidating the role of the secondary structure of membrane-active peptides for antimicrobial and hemolytic activities.
Collapse
Affiliation(s)
- Sung-Min Kim
- Department of Chemistry, Inha University, Inchon-City, 402-751, South Korea
| | | | | | | | | |
Collapse
|
48
|
Liu S, Zhou L, Li J, Suresh A, Verma C, Foo YH, Yap EPH, Tan DTH, Beuerman RW. Linear analogues of human beta-defensin 3: concepts for design of antimicrobial peptides with reduced cytotoxicity to mammalian cells. Chembiochem 2008; 9:964-73. [PMID: 18350527 DOI: 10.1002/cbic.200700560] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A series of engineered linear analogues [coded as F6, W6, Y6, A6, S6 and C(Acm)6] were modeled, designed, synthesized and structurally characterized by mass spectra, circular dichroism, hydrophobicity analysis and molecular modeling. We have screened antimicrobial activity, hemolysis to rabbit erythrocytes, and cytotoxicity to human conjunctival epithelial cells. No significant hemolytic effect was observed for hBD3 or from five of the six analogues [F6, Y6, A6, S6 and C(Acm)6] over the range of 3-100 microg mL(-1). The six linear analogues have reduced cytotoxicity to human conjunctival epithelial cells over the range of 6-100 microg mL(-1) compared to hBD3. By tuning the overall hydrophobicity of linear hBD3 analogues, reduced cytotoxicity and hemolysis were obtained while preserving the antimicrobial properties. The decreased cytotoxicity of the linear analogues is suggested to be structurally related to the removal of disulfide bridges, and the flexible structure of the linear forms, which seem to be associated with loss of secondary structure. These results suggest a new approach for guiding the design of new linear analogues of defensin peptides with strong antibiotic properties and reduced cytotoxicity to mammalian cells.
Collapse
Affiliation(s)
- Shouping Liu
- Singapore Eye Research Institute, 11 Third Hospital Avenue, #06-00, Singapore 16875, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu Z, Young AW, Hu P, Rice AJ, Zhou C, Zhang Y, Kallenbach NR. Tuning the membrane selectivity of antimicrobial peptides by using multivalent design. Chembiochem 2008; 8:2063-5. [PMID: 17924379 DOI: 10.1002/cbic.200700502] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhigang Liu
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Synthesis and biological evaluation of novel 1,3,5-triazine derivatives as antimicrobial agents. Bioorg Med Chem Lett 2008; 18:1308-11. [DOI: 10.1016/j.bmcl.2008.01.031] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/03/2008] [Accepted: 01/08/2008] [Indexed: 11/18/2022]
|