1
|
Okarvi SM. Preparation, Radiolabeling with 68Ga/ 177Lu and Preclinical Evaluation of Novel Angiotensin Peptide Analog: A New Class of Peptides for Breast Cancer Targeting. Pharmaceuticals (Basel) 2023; 16:1550. [PMID: 38004416 PMCID: PMC10675340 DOI: 10.3390/ph16111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 11/26/2023] Open
Abstract
AIM Angiotensin II (AngII) is known to play a significant part in the development of breast cancer by triggering cell propagation of breast cancer, tumor angiogenesis, and regulating tumor invasion and cell migration. AngII arbitrates its action via two G-protein-coupled receptors, AngII type 1 receptor (AT1) and AngII type 2 receptor (AT2). Overexpression of the AT1 receptor in breast cancer cells seems to promote tumor growth and angiogenesis, thus targeting the AT1 receptor using AngII peptide would facilitate the detection of breast carcinoma. We developed an AngII peptide intending to assess whether the peptide of the renin-angiotensin system holds the ability to target AT1 receptor-overexpressing breast cancer in vivo. METHODS DOTA-coupled AngII peptide was synthesized by conventional solid-phase peptide synthesis according to Fmoc/HATU chemistry. 68Ga/177Lu labeled AngII peptide was evaluated for its binding with TNBC MDA-MB-231 and ER+ MCF7 cell lines. Pharmacokinetics was studied in healthy balb/c mice and in vivo tumor targeting in nude mice with MDA-MB-231 tumors xenografts. RESULTS DOTA-AngII peptide was labeled efficiently with 68Ga/177Lu with high labeling efficiency (≥90%). The stability of the radiopeptide in human plasma was found to be high. The AngII peptide analog showed nanomolar (<40 nM) AT1 receptor-specific binding affinity. The radioactivity internalized into MDA-MBA-231 and MCF7 cells were 14.97% and 11.75%, respectively. In vivo, biodistribution in balb/c mice exhibited efficient clearance of 68Ga/177Lu-DOTA-AngII peptide from the blood and elimination predominantly by the renal system due to its hydrophilic nature. A low amount of radioactivity was seen in the major organs including lungs, liver, stomach, spleen, and intestines (<3% ID/g) except the kidneys. A high renal-urinary excretion was observed for the radiotracer. In the TNBC MDA-MB-231 xenografts model, radiolabeled AngII peptide exhibited specific and effective AT1-based targeting in vivo. A rapid and efficient tumor targeting (2.18% ID/g at 45 min p.i.) together with fast renal excretion (~67% ID) highlights the tumor-targeting potential of the radiotracer. The AT1 receptor specificity of the radiotracer was validated by blocking assays. Furthermore, PET imaging provided sufficient visualization of MDA-MB-231 tumors in nude mice. CONCLUSION Our findings suggest that 68Ga/177Lu-DOTA-AngII peptide can be useful for the theranostic application of breast carcinomas. This study suggests the potential of this innovative class of peptides for rapid and efficient targeting of tumors and warrants further evaluation.
Collapse
Affiliation(s)
- Subhani M Okarvi
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, MBC-03, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
2
|
Nassour H, Iddir M, Chatenet D. Towards Targeting the Urotensinergic System: Overview and Challenges. Trends Pharmacol Sci 2019; 40:725-734. [DOI: 10.1016/j.tips.2019.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022]
|
3
|
Natural and synthetic peptides in the cardiovascular diseases: An update on diagnostic and therapeutic potentials. Arch Biochem Biophys 2018; 662:15-32. [PMID: 30481494 DOI: 10.1016/j.abb.2018.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
Abstract
Several peptides play an important role in physiological and pathological conditions into the cardiovascular system. In addition to well-known vasoactive agents such as angiotensin II, endothelin, serotonin or natriuretic peptides, the vasoconstrictor Urotensin-II (Uro-II) and the vasodilators Urocortins (UCNs) and Adrenomedullin (AM) have been implicated in the control of vascular tone and blood pressure as well as in cardiovascular disease states including congestive heart failure, atherosclerosis, coronary artery disease, and pulmonary and systemic hypertension. Therefore these peptides, together with their receptors, become important therapeutic targets in cardiovascular diseases (CVDs). Circulating levels of these agents in the blood are markedly modified in patients with specific CVDs compared with those in healthy patients, becoming also potential biomarkers for these pathologies. This review will provide an overview of current knowledge about the physiological roles of Uro-II, UCN and AM in the cardiovascular system and their implications in cardiovascular diseases. It will further focus on the structural modifications carried out on original peptide sequences in the search of analogues with improved physiochemical properties as well as in the delivery methods. Finally, we have overviewed the possible application of these peptides and/or their precursors as biomarkers of CVDs.
Collapse
|
4
|
Douchez A, Billard E, Hébert TE, Chatenet D, Lubell WD. Design, Synthesis, and Biological Assessment of Biased Allosteric Modulation of the Urotensin II Receptor Using Achiral 1,3,4-Benzotriazepin-2-one Turn Mimics. J Med Chem 2017; 60:9838-9859. [DOI: 10.1021/acs.jmedchem.7b01525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Antoine Douchez
- Département
de Chimie, Université de Montréal, CP 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada
- INRS—Institut
Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides
et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7V 1B7, Canada
| | - Etienne Billard
- INRS—Institut
Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides
et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7V 1B7, Canada
| | - Terence E. Hébert
- Department
of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - David Chatenet
- INRS—Institut
Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides
et en Pharmacothérapie (GRIPP), Université du Québec, Ville de Laval, Québec H7V 1B7, Canada
| | - William D. Lubell
- Département
de Chimie, Université de Montréal, CP 6128, Station Centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
5
|
Billard E, Létourneau M, Hébert TE, Chatenet D. Insight into the role of urotensin II-related peptide tyrosine residue in UT activation. Biochem Pharmacol 2017; 144:100-107. [DOI: 10.1016/j.bcp.2017.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/03/2017] [Indexed: 12/16/2022]
|
6
|
Vaudry H, Leprince J, Chatenet D, Fournier A, Lambert DG, Le Mével JC, Ohlstein EH, Schwertani A, Tostivint H, Vaudry D. International Union of Basic and Clinical Pharmacology. XCII. Urotensin II, urotensin II-related peptide, and their receptor: from structure to function. Pharmacol Rev 2015; 67:214-58. [PMID: 25535277 DOI: 10.1124/pr.114.009480] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Urotensin II (UII) is a cyclic neuropeptide that was first isolated from the urophysis of teleost fish on the basis of its ability to contract the hindgut. Subsequently, UII was characterized in tetrapods including humans. Phylogenetic studies and synteny analysis indicate that UII and its paralogous peptide urotensin II-related peptide (URP) belong to the somatostatin/cortistatin superfamily. In mammals, the UII and URP genes are primarily expressed in cholinergic neurons of the brainstem and spinal cord. UII and URP mRNAs are also present in various organs notably in the cardiovascular, renal, and endocrine systems. UII and URP activate a common G protein-coupled receptor, called UT, that exhibits relatively high sequence identity with somatostatin, opioid, and galanin receptors. The UT gene is widely expressed in the central nervous system (CNS) and in peripheral tissues including the retina, heart, vascular bed, lung, kidney, adrenal medulla, and skeletal muscle. Structure-activity relationship studies and NMR conformational analysis have led to the rational design of a number of peptidic and nonpeptidic UT agonists and antagonists. Consistent with the wide distribution of UT, UII has now been shown to exert a large array of biologic activities, in particular in the CNS, the cardiovascular system, and the kidney. Here, we review the current knowledge concerning the pleiotropic actions of UII and discusses the possible use of antagonists for future therapeutic applications.
Collapse
Affiliation(s)
- Hubert Vaudry
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Jérôme Leprince
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David Chatenet
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Alain Fournier
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David G Lambert
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Jean-Claude Le Mével
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Eliot H Ohlstein
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Adel Schwertani
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - Hervé Tostivint
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| | - David Vaudry
- Institut National de la Santé et de la Recherche Médicale, U982, Institute for Research and Innovation in Biomedicine, Mont-Saint-Aignan, France (H.V., J.L., D.V.), University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.V.); Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Québec, Canada (D.C., A.F.); International Associated Laboratory Samuel de Champlain, University of Rouen, Mont-Saint-Aignan, France (H.V., J.L., D.C., A.F., D.V.); Department of Cardiovascular Sciences, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom (D.G.L.); Institut National de la Santé et de la Recherche Médicale, U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, Université Européenne de Bretagne, Brest, France (J.-C.L.M.); AltheRx Pharmaceuticals, Malvern, Pennsylvania (E.H.O.); Division of Cardiology, Montreal General Hospital, McGill University Health Center, Montreal, Québec, Canada (A.S.); and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7221, Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France (H.T.)
| |
Collapse
|
7
|
Brulé C, Perzo N, Joubert JE, Sainsily X, Leduc R, Castel H, Prézeau L. Biased signaling regulates the pleiotropic effects of the urotensin II receptor to modulate its cellular behaviors. FASEB J 2014; 28:5148-62. [PMID: 25183668 DOI: 10.1096/fj.14-249771] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Biased agonism by G-protein-coupled receptor ligands has opened up strategies for targeted physiological or therapeutic actions. We hypothesized that urotensin II (UII)-derived peptides displayed unexpected physiological effects because of such biased signaling on the UII human urotensin (hUT) receptor. We determined the coupling to G proteins and β-arrestins of the UII-activated hUT receptor expressed in HEK293 using bioluminescence resonance energy transfer (BRET) biosensors, as well as the production of IP1-3 and cAMP using homogenous time-resolved Forster resonance energy transfer (FRET) (HTRF)-based assays. The activated receptor coupled to Gi1, GoA, Gq, and G13, excluding Gs, and recruited β-arrestins 1 and 2. Integration of these pathways led to a 2-phase kinetic phosphorylation of ERK1/2 kinases. The tested peptides induced three different profiles: UII, urotensin-related peptide (URP), and UII4-11 displayed the full profile; [Orn(8)]UII and [Orn(5)]URP activated G proteins, although with pEC50s 5-10× higher, and did not or barely recruited β-arrestin; urantide also failed to recruit β-arrestin but displayed a reversed rank order for Gi and Gq vs. Go pEC50s (-8.79±0.20, -8.43±0.21, and -7.86±0.36, respectively, for urantide, -7.87±0.10, -7.23±0.27, and -8.55±0.19, respectively, for [Orn(5)]URP) and was a partial agonist of all G-protein pathways. Interestingly, the peptides differently modulated cell survival but similarly induced cell migration and adhesion. Thus, we demonstrate biased signaling between β-arrestin and G proteins, and between G-protein subtypes, which dictates the receptor's cellular responses.
Collapse
Affiliation(s)
- Cédric Brulé
- Department of Pharmacology, Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U661, Montpellier, France; UMR 5203, Universités de Montpellier 1 and 2, Montpellier, France
| | - Nicolas Perzo
- Department of Pharmacology, Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; INSERM, U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation (DC2N), Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), Pôles de Recherche et d'Enseignement Supérieur (PRES) Normandy, Peptide Research Network of Excellence (PERENE), University of Rouen, Mont-Saint-Aignan, France
| | - Jane-Eileen Joubert
- INSERM, U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation (DC2N), Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), Pôles de Recherche et d'Enseignement Supérieur (PRES) Normandy, Peptide Research Network of Excellence (PERENE), University of Rouen, Mont-Saint-Aignan, France
| | - Xavier Sainsily
- Department of Pharmacology, Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Richard Leduc
- Department of Pharmacology, Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Hélène Castel
- INSERM, U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation (DC2N), Astrocyte and Vascular Niche, Biomedical Research Institute (IRIB), Pôles de Recherche et d'Enseignement Supérieur (PRES) Normandy, Peptide Research Network of Excellence (PERENE), University of Rouen, Mont-Saint-Aignan, France
| | - Laurent Prézeau
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U661, Montpellier, France; UMR 5203, Universités de Montpellier 1 and 2, Montpellier, France;
| |
Collapse
|
8
|
Carotenuto A, Auriemma L, Merlino F, Yousif AM, Marasco D, Limatola A, Campiglia P, Gomez-Monterrey I, Santicioli P, Meini S, Maggi CA, Novellino E, Grieco P. Lead Optimization of P5U and Urantide: Discovery of Novel Potent Ligands at the Urotensin-II Receptor. J Med Chem 2014; 57:5965-74. [DOI: 10.1021/jm500218x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alfonso Carotenuto
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Luigia Auriemma
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Francesco Merlino
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Ali Munaim Yousif
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Daniela Marasco
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
- CIRPEB:
Centro Interuniversitario di Ricerca sui Peptidi Bioattivi , University of Naples “Federico II”, DFM-Scarl, Institute of Biostructures and Bioimaging-CNR, 80134, Naples, Italy
| | - Antonio Limatola
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Pietro Campiglia
- Department
of Pharmacy, University of Salerno, I-84084 Fisciano, Salerno Italy
| | | | - Paolo Santicioli
- Department
of Pharmacology, Menarini Ricerche, Via Rismondo 12/A, I-50131, Florence, Italy
| | - Stefania Meini
- Department
of Pharmacology, Menarini Ricerche, Via Rismondo 12/A, I-50131, Florence, Italy
| | - Carlo A. Maggi
- Department
of Pharmacology, Menarini Ricerche, Via Rismondo 12/A, I-50131, Florence, Italy
| | - Ettore Novellino
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Paolo Grieco
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
- CIRPEB:
Centro Interuniversitario di Ricerca sui Peptidi Bioattivi , University of Naples “Federico II”, DFM-Scarl, Institute of Biostructures and Bioimaging-CNR, 80134, Naples, Italy
| |
Collapse
|
9
|
Chatenet D, Folch B, Feytens D, Létourneau M, Tourwé D, Doucet N, Fournier A. Development and Pharmacological Characterization of Conformationally Constrained Urotensin II-Related Peptide Agonists. J Med Chem 2013; 56:9612-22. [DOI: 10.1021/jm401153j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David Chatenet
- INRS-Institut
Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, Ville de Laval, Québec, QC H7V 1B7, Canada
- Laboratoire International
Associé Samuel de Champlain, INSERM-INRS-Université
de Rouen
| | - Benjamin Folch
- INRS-Institut
Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, Ville de Laval, Québec, QC H7V 1B7, Canada
| | - Debby Feytens
- Department
of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Myriam Létourneau
- INRS-Institut
Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, Ville de Laval, Québec, QC H7V 1B7, Canada
- Laboratoire International
Associé Samuel de Champlain, INSERM-INRS-Université
de Rouen
| | - Dirk Tourwé
- Department
of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Nicolas Doucet
- INRS-Institut
Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, Ville de Laval, Québec, QC H7V 1B7, Canada
- Regroupement
Québécois de Recherche sur la Fonction, la Structure
et l’Ingénierie des Protéines, PROTEO, Québec, QC G1V 0A6, Canada
- GRASP,
Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Bellini Pavillion, Room 453, 3649 Promenade Sir William Osler, Montréal, QC H3G 0B1, Canada
| | - Alain Fournier
- INRS-Institut
Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, Ville de Laval, Québec, QC H7V 1B7, Canada
- Laboratoire International
Associé Samuel de Champlain, INSERM-INRS-Université
de Rouen
| |
Collapse
|
10
|
Urotensin-II Ligands: An Overview from Peptide to Nonpeptide Structures. JOURNAL OF AMINO ACIDS 2013; 2013:979016. [PMID: 23533711 PMCID: PMC3596952 DOI: 10.1155/2013/979016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/14/2013] [Indexed: 02/07/2023]
Abstract
Urotensin-II was originally isolated from the goby urophysis in the 1960s as a vasoactive peptide with a prominent role in cardiovascular homeostasis. The identification of human isoform of urotensin-II and its specific UT receptor by Ames et al. in 1999 led to investigating the putative role of the interaction U-II/UT receptor in multiple pathophysiological effects in humans. Since urotensin-II is widely expressed in several peripheral tissues including cardiovascular system, the design and development of novel urotensin-II analogues can improve knowledge about structure-activity relationships (SAR). In particular, since the modulation of the U-II system offers a great potential for therapeutic strategies related to the treatment of several diseases, like cardiovascular diseases, the research of selective and potent ligands at UT receptor is more fascinating. In this paper, we review the developments of peptide and nonpeptide U-II structures so far developed in order to contribute also to a more rational and detectable design and synthesis of new molecules with high affinity at the UT receptor.
Collapse
|
11
|
Hunt BD, Ng LL, Lambert DG. In vitro siRNA-mediated knockdown of the UT receptor: implications of density on the efficacy of a range of UT ligands. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:651-6. [PMID: 22315015 DOI: 10.1007/s00210-012-0728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 01/09/2012] [Indexed: 11/29/2022]
Abstract
Urotensin-II (U-II) is the peptide agonist for the U-II receptor (UT). Putative UT antagonists, urantide and UFP-803, have been found to have variable efficacy in a range of assays. We have used siRNA-mediated RNA interference to probe the efficacy of these ligands compared to U-II. Knockdown of human UT occurs in the same cellular background with the same coupling machinery allowing relative efficacy to be probed. CHO cells stably expressing 1,110 fmol/mg protein of human UT (CHOhUT) were transfected with s194454, s194455 (UT-targeting), or a negative control siRNA using siPORT amine transfection reagent. After 48 h,silencing was assessed using quantitative PCR in a duplex assay format. Functional consequences of silencing were assessed by measuring [Ca2+]i in Fura-2 loaded cells using the NOVOstar plate reader. Silencing with s194455 was greater than that with s194454 (93.5±2.8% and 73.0±2.5%knockdown of UT mRNA respectively at 10−7 M, p00.006).Both s194455 and s194454 knocked down UT mRNA expression with equal potency (EC50 1.38 and 0.45 nM). The negative control did not affect UT mRNA expression. U-II(10−6M) increased [Ca2+]i 630±69, 402±49 and 190±14nM,urantide (10−6 M) increased [Ca2+]i 408±55, 191±40, and 131±10 nM and UFP-803 (10−6 M) increased [Ca2+]i 134±23, 83±11 and 53±3nM for negative control siRNA, s194454 and s194455, respectively.We have demonstrated silencing of UT mRNA and a reduction of absolute efficacy of three UT ligands. However, we were unable to resolve any changes in relative efficacy for urantide and UFP-803. This is likely to result from a high starting expression and retention of a receptor/coupling reserve.
Collapse
Affiliation(s)
- Benjamin D Hunt
- University Department of Cardiovascular Sciences (Pharmacology and Therapeutics Group) and Leicester NIHR Cardiovascular Biomedical Research Unit, Division of Anaesthesia, Critical Care and Pain Management,University of Leicester, Leicester Royal Infirmary, Leicester, UK
| | | | | |
Collapse
|
12
|
Lehmann F, Currier EA, Olsson R, Ma JN, Burstein ES, Hacksell U, Luthman K. Optimization of isochromanone based urotensin II receptor agonists. Bioorg Med Chem 2010; 18:4844-54. [DOI: 10.1016/j.bmc.2010.04.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 04/08/2010] [Accepted: 04/16/2010] [Indexed: 11/24/2022]
|
13
|
Odagami T, Tsuda Y, Kogami Y, Kouji H, Okada Y. Identification of new agonists of urotensin-II from a cyclic peptide library. Bioorg Med Chem 2009; 17:6742-7. [DOI: 10.1016/j.bmc.2009.07.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Revised: 07/17/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
|
14
|
Batuwangala M, Camarda V, McDonald J, Marzola E, Lambert DG, Ng LL, Calo' G, Regoli D, Trapella C, Guerrini R, Salvadori S. Structure-activity relationship study on Tyr9 of urotensin-II(4-11): identification of a partial agonist of the UT receptor. Peptides 2009; 30:1130-6. [PMID: 19463746 DOI: 10.1016/j.peptides.2009.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/04/2009] [Accepted: 02/05/2009] [Indexed: 11/29/2022]
Abstract
Urotensin-II (U-II) activates the U-II receptor (UT) to modulate a range of biological responses at both central and peripheral sites. Previous studies have demonstrated that the sequence Trp(7)-Lys(8)-Tyr(9) of the cyclic portion of the peptide is crucial for biological activity. Here, we describe a focused structure-activity study of Tyr(9) which has been replaced with a series of non-coded amino acids in the U-II(4-11) template. Thirteen analogs were synthesized and pharmacologically tested for intracellular calcium mobilization in HEK293 cells stably expressing the rat UT receptor. The results of this study demonstrated the following Tyr(9) structure-activity features: (i) the position of the OH group of the side chain is not important for biological activity, (ii) the distance of the phenol moiety from the peptide backbone and its conformational freedom are crucial for UT receptor recognition, (iii) this position is important not only for receptor occupation but also for its activation since the 3,5-diiodoTyr(9) chemical modification generated a potent partial agonist. This pharmacological activity of [3,5-diiodoTyr(9)]U-II(4-11) was confirmed in bioassay experiments performed using the rat thoracic aorta as a U-II sensitive preparation.
Collapse
Affiliation(s)
- Madura Batuwangala
- Dept of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Grieco P, Carotenuto A, Campiglia P, Gomez-Monterrey I, Auriemma L, Sala M, Marcozzi C, d’Emmanuele di Villa Bianca R, Brancaccio D, Rovero P, Santicioli P, Meini S, Maggi CA, Novellino E. New Insight into the Binding Mode of Peptide Ligands at Urotensin-II Receptor: Structure−Activity Relationships Study on P5U and Urantide. J Med Chem 2009; 52:3927-40. [DOI: 10.1021/jm900148c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Paolo Grieco
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Alfonso Carotenuto
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Pietro Campiglia
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Isabel Gomez-Monterrey
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Luigia Auriemma
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Marina Sala
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Cristina Marcozzi
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Roberta d’Emmanuele di Villa Bianca
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Diego Brancaccio
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Paolo Rovero
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Paolo Santicioli
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Stefania Meini
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Carlo A. Maggi
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| | - Ettore Novellino
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, Via D. Montesano, I-80131 Naples, Italy, Laboratorio Interdipartimentale di Chimica e Biologia dei Peptidi e Proteine, Department di Scienze Farmaceutiche, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy, Department of Experimental Pharmacology, University of Naples “Federico II”, I-80131 Naples, Italy, Department of Pharmacology, Menarini Ricerche, Via Rismpondo 12/A, I-50131 Florence, Italy,
| |
Collapse
|
16
|
Pakala R. Role of urotensin II in atherosclerotic cardiovascular diseases. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2008; 9:166-78. [DOI: 10.1016/j.carrev.2008.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 01/24/2008] [Accepted: 02/05/2008] [Indexed: 02/07/2023]
|
17
|
Leprince J, Chatenet D, Dubessy C, Fournier A, Pfeiffer B, Scalbert E, Renard P, Pacaud P, Oulyadi H, Ségalas-Milazzo I, Guilhaudis L, Davoust D, Tonon MC, Vaudry H. Structure-activity relationships of urotensin II and URP. Peptides 2008; 29:658-73. [PMID: 17931747 DOI: 10.1016/j.peptides.2007.08.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/14/2007] [Accepted: 08/16/2007] [Indexed: 02/07/2023]
Abstract
Urotensin II (U-II) and urotensin II-related peptide (URP) are the endogenous ligands for the orphan G-protein-coupled receptor GPR14 now renamed UT. At the periphery, U-II and/or URP exert a wide range of biological effects on cardiovascular tissues, airway smooth muscles, kidney and endocrine glands, while central administration of U-II elicits various behavioral and cardiovascular responses. There is also evidence that U-II and/or URP may be involved in a number of pathological conditions including heart failure, atherosclerosis, renal dysfunction and diabetes. Because of the potential involvement of the urotensinergic system in various physiopathological processes, there is need for the rational design of potent and selective ligands for the UT receptor. Structure-activity relationship studies have shown that the minimal sequence required to retain full biological activity is the conserved U-II(4-11) domain, in particular the Cys5 and Cys10 residues involved in the disulfide bridge, and the Phe6, Lys8 and Tyr9 residues. Free alpha-amino group and C-terminal COOH group are not necessary for the biological activity, and modifications of these radicals may even increase the stability of the analogs. Punctual substitution of native amino acids, notably Phe6 and Trp7, by particular residues generates analogs with antagonistic properties. These studies, which provide crucial information regarding the structural and conformational requirements for ligand-receptor interactions, will be of considerable importance for the design of novel UT ligands with increased selectivity, potency and stability, that may eventually lead to the development of innovative drugs.
Collapse
Affiliation(s)
- Jérôme Leprince
- Inserm U413, Laboratory of Cellular and Molecular Neuroendocrinology, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Marzola E, Camarda V, Batuwangala M, Lambert DG, Calo' G, Guerrini R, Trapella C, Regoli D, Tomatis R, Salvadori S. Structure-activity relationship study of position 4 in the urotensin-II receptor ligand U-II(4-11). Peptides 2008; 29:674-9. [PMID: 17822806 DOI: 10.1016/j.peptides.2007.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 07/18/2007] [Accepted: 07/20/2007] [Indexed: 12/01/2022]
Abstract
In the present study we describe the synthesis and biological evaluation of 24 analogues of the urotensin II (U-II) fragment U-II(4-11) substituted in position 4 with coded and non-coded aromatic amino acids. All of the new analogues behaved as full U-II receptor (UT) agonists. Our results indicated that aromaticity is well tolerated, size, length and chirality of the side chain are not important, while substituents with a nitrogen atom are preferred. Thus acylation of U-II(5-11) with small groups bearing nitrogen atoms could be instrumental in future studies for the identification of novel potent UT receptor ligands.
Collapse
Affiliation(s)
- Erika Marzola
- Department of Pharmaceutical Sciences and Biotechnology Center, Section of Pharmacology, University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Three-dimensional model of the human urotensin-II receptor: Docking of human urotensin-II and nonpeptide antagonists in the binding site and comparison with an antagonist pharmacophore model. Proteins 2008; 73:173-84. [DOI: 10.1002/prot.22050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Giachini FRC, Callera GE, Carneiro FS, Tostes RC, Webb RC. Therapeutic targets in hypertension: is there a place for antagonists of the most potent vasoconstrictors? Expert Opin Ther Targets 2008; 12:327-39. [DOI: 10.1517/14728222.12.3.327] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Kitayama M, McDonald J, Barnes TA, Calo' G, Guerrini R, Rowbotham DJ, Lambert DG. In vitro pharmacological characterisation of a novel cyclic nociceptin/orphanin FQ analogue c[Cys(7,10)]N/OFQ(1-13)NH (2). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2007; 375:369-76. [PMID: 17598088 DOI: 10.1007/s00210-007-0170-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
Nociceptin/orphanin FQ (N/OFQ) is the endogenous 17 amino acid peptide ligand for the G(i)-protein-coupled N/OFQ receptor (NOP). In an attempt to improve the metabolic stability of N/OFQ, we have produced a truncated cyclic analogue with cysteine residues at positions 7 and 10, c[Cys(7,10)]N/OFQ(1-13)NH(2) (c[Cys(7,10)]). c[Cys(7,10)], the template N/OFQ(1-13)NH(2) and N/OFQ displaced the binding of [(3)H]N/OFQ to Chinese hamster ovary cells expressing recombinant human NOP (CHO(hNOP)) with pK ( i ) values of 9.98, 9.83 and 9.18, respectively. In addition, c[Cys(7,10)], N/OFQ(1-13)NH(2) and N/OFQ stimulated the binding of guanosine triphosphate gamma [(35)S] to CHO(hNOP) cells with pEC(50)/E (max) (stimulation factor) of 9.16/5.5, 9.11/4.9 and 8.35/5.5, respectively. c[Cys(7,10)], N/OFQ(1-13)NH(2) and N/OFQ inhibited forskolin-stimulated cyclic adenosine monophosphate (cAMP) formation with pEC(50) values of 10.08, 10.11 and 9.78, respectively. All ligands produced complete inhibition of cAMP formation. In both functional assays, c[Cys(7,10)] was a full agonist. In a series of metabolism experiments, incubation of 1 nM c[Cys(7,10)], N/OFQ(1-13)NH(2) and N/OFQ with a rat brain homogenate produced a time-dependent loss of peptide that was greatest for the native peptide N/OFQ. Amidation in N/OFQ(1-13)NH(2) produced some metabolic protection, but this was not significantly improved by further inclusion of c[Cys(7,10)]. In summary, c[Cys(7,10)] is a high-affinity, high-potency full agonist of the NOP receptor. However, we were unable to demonstrate clear metabolic protection.
Collapse
Affiliation(s)
- M Kitayama
- Department of Cardiovascular Sciences (Pharmacology and Therapeutics Group), Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal Infirmary, University of Leicester, Leicester, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Chatenet D, Dubessy C, Boularan C, Scalbert E, Pfeiffer B, Renard P, Lihrmann I, Pacaud P, Tonon MC, Vaudry H, Leprince J. Structure-activity relationships of a novel series of urotensin II analogues: identification of a urotensin II antagonist. J Med Chem 2007; 49:7234-8. [PMID: 17125276 DOI: 10.1021/jm0602110] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Urotensin II (U-II) is a potent vasoconstrictor peptide which has been identified as the endogenous ligand for the orphan G protein-coupled receptor GPR14 now renamed UT receptor. As the C-terminal cyclic hexapeptide of U-II (U-II(4-11), H-Asp-Cys-Phe-Trp-Lys-Tyr-Cys-Val-OH) possesses full biological activity, we have synthesized a series of U-II(4-11) analogues and measured their binding affinity on hGPR14-transfected CHO cells and their contractile activity on de-endothelialized rat aortic rings. The data indicate that a free amino group and a functionalized side-chain at the N-terminal extremity of the peptide are not required for biological activity. In addition, the minimal chemical requirement at position 9 of U-II(4-11) is the presence of an aromatic moiety. Most importantly, replacement of the Phe6 residue by cyclohexyl-Ala (Cha) led to an analogue, [Cha6]U-II(4-11), that was devoid of agonistic activity but was able to dose-dependently suppress the vasoconstrictor effect of U-II on rat aortic rings. These new pharmacological data, by providing further information regarding the structure-activity relationships of U-II analogues, should prove useful for the rational design of potent and nonpeptidic UT receptor agonists and antagonists.
Collapse
Affiliation(s)
- David Chatenet
- INSERM U413, Laboratory of Cellular & Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP 23), University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Behm DJ, Stankus G, Doe CPA, Willette RN, Sarau HM, Foley JJ, Schmidt DB, Nuthulaganti P, Fornwald JA, Ames RS, Lambert DG, Calo' G, Camarda V, Aiyar NV, Douglas SA. The peptidic urotensin-II receptor ligand GSK248451 possesses less intrinsic activity than the low-efficacy partial agonists SB-710411 and urantide in native mammalian tissues and recombinant cell systems. Br J Pharmacol 2006; 148:173-90. [PMID: 16547525 PMCID: PMC1617064 DOI: 10.1038/sj.bjp.0706716] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Several peptidic urotensin-II (UT) receptor antagonists exert 'paradoxical' agonist activity in recombinant cell- and tissue-based bioassay systems, likely the result of differential urotensin-II receptor (UT receptor) signal transduction/coupling efficiency between assays. The present study has examined this phenomenon in mammalian arteries and recombinant UT-HEK (human embryonic kidney) cells.BacMam-mediated recombinant UT receptor upregulation in HEK cells augmented agonist activity for all four peptidic UT ligands studied. The nominal rank order of relative intrinsic efficacy was U-II>urantide ([Pen(5)-DTrp(7)-Orn(8)]hU-II(4-11))>SB-710411 (Cpa-c[DCys-Pal-DTrp-Lys-Val-Cys]-Cpa-amide)>>GSK248451 (Cin-c[DCys-Pal-DTrp-Orn-Val-Cys]-His-amide) (the relative coupling efficiency of recombinant HEK cells was cat>human>>rat UT receptor). The present study further demonstrated that the use of high signal transduction/coupling efficiency isolated blood vessel assays (primate>cat arteries) is required in order to characterize UT receptor antagonism thoroughly. This cannot be attained simply by using the rat isolated aorta, an artery with low signal transduction/coupling efficiency in which low-efficacy agonists appear to function as antagonists. In contrast to the 'low-efficacy agonists' urantide and SB-710411, GSK248451 functioned as a potent UT receptor antagonist in all native isolated tissues studied (UT receptor selectivity was confirmed in the rat aorta). Further, GSK248451 exhibited an extremely low level of relative intrinsic activity in recombinant HEK cells (4-5-fold less than seen with urantide). Since GSK248451 (1 mg kg(-1), i.v.) blocked the systemic pressor actions of exogenous U-II in the anaesthetized cat, it represents a suitable peptidic tool antagonist for delineating the role of U-II in the aetiology of mammalian cardiometabolic diseases.
Collapse
Affiliation(s)
- David J Behm
- Department of Vascular Biology and Thrombosis, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Song W, McDonald J, Camarda V, Calo G, Guerrini R, Marzola E, Thompson JP, Rowbotham DJ, Lambert DG. Cell and tissue responses of a range of Urotensin II analogs at cloned and native urotensin II receptors. Evidence for coupling promiscuity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2006; 373:148-57. [PMID: 16596397 DOI: 10.1007/s00210-006-0057-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
Urotensin II (U-II) is the peptide ligand for the G-protein-coupled U-II receptor (UT). U-II has been dubbed "the most potent vasoconstrictor identified to date". However, in vivo studies with this system are hampered by the paucity of available ligands. Here, we characterise Chinese hamster ovary (CHO) cells expressing the human UT receptor in the following assays; (1) [(125)I]U-II binding, (2) GTPgamma[(35)S] binding, (3) cAMP formation, and (4) intracellular Ca(2+). We assess activity of 9 U-II analogues using these paradigms and examine their ability to contract isolated rat aorta. CHO(hUT) cells bound [(125)I]U-II with a B (max) and K (d) of 1,110+/-70 fmol/mg protein and 742 pM, respectively. hU-II stimulated GTPgamma[(35)S] binding (pEC(50) 8.38), optimal at low (0.1 muM) GDP concentrations. The hU-II GTPgamma[(35)S] response was partially PTx sensitive and there was a potent (pEC(50) 9.23) low efficacy ( approximately 20% inhibition) coupling to adenylyl cyclase. In CHO(hUT) cells hU-II stimulates calcium release from intracellular stores (pEC(50) 8.80) and calcium influx in a PTx-insensitive manner. In our structure-activity relationship study most ligands acted as full agonists. However, urantide behaved as a partial agonist (pEC(50) 7.67/pK(B) 7.55) in GTPgamma[(35)S] binding, a full agonist (pEC(50) 8.11) for increases in intracellular Ca(2+) and a competitive antagonist in the rat aorta bioassay (pK(B) 8.59). Collectively, these data show promiscuity at high expression and indicate the need for careful multi-assay evaluation of novel U-II analogues. Further modification of urantide, in order to eliminate residual agonist activity and to identify novel ligands for in vivo cardiovascular studies are clearly warranted.
Collapse
Affiliation(s)
- Wei Song
- University Department of Cardiovascular Sciences (Pharmacology and Therapeutics Group), Division of Anaesthesia, Critical Care and Pain Management, Leicester Royal Infirmary, Leicester, LE1 5WW, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Foister S, Taylor LL, Feng JJ, Chen WL, Lin A, Cheng FC, Smith AB, Hirschmann R. Design and Synthesis of Potent Cystine-Free Cyclic Hexapeptide Agonists at the Human Urotensin Receptor. Org Lett 2006; 8:1799-802. [PMID: 16623554 DOI: 10.1021/ol060278h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[structure: see text] Cyclic hexapeptides, incorporating a dipeptide unit in place of the disulfide bond found in urotensin, were prepared and screened at the human urotensin receptor. The bridging dipeptide unit was found to influence dramatically the affinity for the urotensin receptor. Alanyl-N-methylalanyl and alanylprolyl dipeptide bridges failed to afford active ligands, while the alanyl-alanyl unit yielded a ligand with submicromolar affinity for the urotensin receptor. Further development led to a hexapeptide agonist with nanomolar affinity (2.8 nM).
Collapse
Affiliation(s)
- Shane Foister
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lehmann F, Pettersen A, Currier EA, Sherbukhin V, Olsson R, Hacksell U, Luthman K. Novel Potent and Efficacious Nonpeptidic Urotensin II Receptor Agonists. J Med Chem 2006; 49:2232-40. [PMID: 16570919 DOI: 10.1021/jm051121i] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Six different series of nonpeptidic urotensin II receptor agonists have been synthesized and evaluated for their agonistic activity in a cell-based assay (R-SAT). The compounds are ring-opened analogues of the isochromanone-based agonist AC-7954 with different functionalities constituting the linker between the two aromatic ring moieties. Several of the compounds are highly potent and efficacious, with N-[1-(4-chlorophenyl)-3-(dimethylamino)-propyl]-4-phenylbenzamide oxalate (5d) being the most potent. The pure enantiomers of 5d were obtained from the corresponding diastereomeric amides. It was shown by a combination of X-ray crystallography and chemical correlation that the activity resides in the S-enantiomer of 5d (pEC(50) 7.49).
Collapse
Affiliation(s)
- Fredrik Lehmann
- Department of Chemistry, Medicinal Chemistry, and Department of Chemistry, Organic Chemistry, Göteborg University, SE-412 96 Göteborg, Sweden, Acadia Pharmaceuticals AB, Medeon Science Park, SE-205 12 Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
28
|
Grieco P, Carotenuto A, Campiglia P, Marinelli L, Lama T, Patacchini R, Santicioli P, Maggi CA, Rovero P, Novellino E. Urotensin-II receptor ligands. From agonist to antagonist activity. J Med Chem 2006; 48:7290-7. [PMID: 16279788 DOI: 10.1021/jm058043j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Urotensin II (U-II) is a disulfide bridged peptide hormone recently identified as the ligand of a G-protein-coupled receptor. Human U-II (H-Glu-Thr-Pro-Asp-cyclo[Cys-Phe-Trp-Lys-Tyr-Cys]-Val-OH) has been described as the most potent vasoconstrictor compound identified to date. We have recently identified both a superagonist of hU-II termed P5U and the compound termed urantide, which is the most potent UT receptor peptide antagonist described to date. Our previous conformational studies showed that hU-II and its analogues with agonist activity adopt a well-defined type II' beta-hairpin structure in anisotropic SDS membrane-like environment. This structural arrangement allows tight contact among the Trp7, Lys8, and Tyr9 side chains, which is fundamental to obtain full agonist activity. Here, we report an extensive SAR study on new analogues with agonist/antagonist activity on UT receptor. We investigated their biological activity and performed a conformational analysis by spectroscopic and computational methods. Our goal is to obtain a structure-based model able to explain the agonist/antagonist functional switching of these ligands.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/physiology
- CHO Cells
- Chromatography, High Pressure Liquid
- Cricetinae
- Cricetulus
- Humans
- In Vitro Techniques
- Magnetic Resonance Spectroscopy
- Male
- Micelles
- Models, Molecular
- Muscle Relaxation/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/pharmacology
- Protein Structure, Secondary
- Radioligand Assay
- Rats
- Rats, Wistar
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Sodium Dodecyl Sulfate
- Structure-Activity Relationship
- Urotensins/chemical synthesis
- Urotensins/chemistry
- Urotensins/pharmacology
Collapse
Affiliation(s)
- Paolo Grieco
- Department of Pharmaceutical and Toxicological Chemistry, University of Naples Federico II, I-80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Camarda V, Spagnol M, Song W, Vergura R, Roth AL, Thompson JP, Rowbotham DJ, Guerrini R, Marzola E, Salvadori S, Cavanni P, Regoli D, Douglas SA, Lambert DG, Calò G. In vitro and in vivo pharmacological characterization of the novel UT receptor ligand [Pen5,DTrp7,Dab8]urotensin II(4-11) (UFP-803). Br J Pharmacol 2006; 147:92-100. [PMID: 16273120 PMCID: PMC1615843 DOI: 10.1038/sj.bjp.0706438] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 09/07/2005] [Accepted: 09/28/2005] [Indexed: 10/25/2022] Open
Abstract
The novel urotensin-II (U-II) receptor (UT) ligand, [Pen(5),DTrp(7),Dab(8)]U-II(4-11) (UFP-803), was pharmacologically evaluated and compared with urantide in in vitro and in vivo assays. In the rat isolated aorta, UFP-803 was inactive alone but, concentration dependently, displaced the contractile response to U-II to the right, revealing a competitive type of antagonism and a pA(2) value of 7.46. In the FLIPR [Ca(2+)](i) assay, performed at room temperature in HEK293(hUT) and HEK293(rUT) cells, U-II increased [Ca(2+)](i) with pEC(50) values of 8.11 and 8.48. Urantide and UFP-803 were inactive as agonists, but antagonized the actions of U-II by reducing, in a concentration-dependent manner, the agonist maximal effects with apparent pK(B) values in the range of 8.45-9.05. In a separate series of experiments performed at 37 degrees C using a cuvette-based [Ca(2+)](i) assay and CHO(hUT) cells, urantide mimicked the [Ca(2+)](i) stimulatory effect of U-II with an intrinsic activity (alpha) of 0.80, while UFP-803 displayed a small (alpha=0.21) but consistent residual agonist activity. When the same experiments were repeated at 22 degrees C (a temperature similar to that in FLIPR experiments), urantide displayed a very small intrinsic activity (alpha=0.11) and UFP-803 was completely inactive as an agonist. In vivo in mice, UFP-803 (10 nmol kg(-1)) antagonized U-II (1 nmol kg(-1))-induced increase in plasma extravasation in various vascular beds, while being inactive alone. In conclusion, UFP-803 is a potent UT receptor ligand which displays competitive/noncompetitive antagonist behavior depending on the assay. While UFP-803 is less potent than urantide, it displayed reduced residual agonist activity and as such may be a useful pharmacological tool.
Collapse
Affiliation(s)
- Valeria Camarda
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Martina Spagnol
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Wei Song
- Department of Cardiovascular Sciences, Pharmacology and Therapeutics Group, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester
| | - Raffaella Vergura
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Adelheid L Roth
- Department of Biology, Center of Excellence for Drug Discovery Psychiatry, GlaxoSmithKline Pharmaceuticals, Verona, Italy
| | - Jonathan P Thompson
- Department of Cardiovascular Sciences, Pharmacology and Therapeutics Group, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester
| | - David J Rowbotham
- Department of Cardiovascular Sciences, Pharmacology and Therapeutics Group, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester
| | - Remo Guerrini
- Department of Pharmaceutical Sciences and Biotechnology Centre, University of Ferrara, 44100 Ferrara, Italy
| | - Erika Marzola
- Department of Pharmaceutical Sciences and Biotechnology Centre, University of Ferrara, 44100 Ferrara, Italy
| | - Severo Salvadori
- Department of Pharmaceutical Sciences and Biotechnology Centre, University of Ferrara, 44100 Ferrara, Italy
| | - Paolo Cavanni
- Department of Biology, Center of Excellence for Drug Discovery Psychiatry, GlaxoSmithKline Pharmaceuticals, Verona, Italy
| | - Domenico Regoli
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Stephen A Douglas
- Cardiovascular and Urogenital Center of Excellence for Drug Discovery, GlaxoSmithKline, King of Prussia, PA, U.S.A
| | - David G Lambert
- Department of Cardiovascular Sciences, Pharmacology and Therapeutics Group, Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester
| | - Girolamo Calò
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
30
|
Vergura R, Camarda V, Rizzi A, Spagnol M, Guerrini R, Calo' G, Salvadori S, Regoli D. Urotensin II stimulates plasma extravasation in mice via UT receptor activation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2004; 370:347-52. [PMID: 15526105 DOI: 10.1007/s00210-004-0991-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Accepted: 09/17/2004] [Indexed: 11/30/2022]
Abstract
The peptide urotensin II (U-II) is the cognate ligand of the G-protein coupled receptor UT (formerly GPR14). A role in the regulation of cardiovascular functions has been proposed for this novel peptide/receptor system. In the present study, we evaluated the ability of U-II to induce plasma extravasation in mice and attempted to characterize the receptor involved using the novel UT receptor ligand, [Orn(8)]U-II. The Evans blue technique was used to quantify plasma extravasation. U-II (0.01, 0.1, 1 and 10 nmol/kg) dose-dependently stimulated plasma extravasation in airways, gastrointestinal and urogenital tract tissues from mice, but not in the skin. In most tissues, the dose/response curves to U-II were bell shaped with the maximal effect induced by 1 nmol/kg. [Orn(8)]U-II at 30 nmol/kg was per se either inactive or produced a non-significant increase in plasma extravasation; in the presence of 30 nmol/kg [Orn(8)]U-II, the effects of 1 nmol/kg U-II were always reduced and, in some tissues, abolished. The present findings demonstrate that U-II promotes plasma extravasation in various mouse vascular regions via activation of UT receptors. The mouse plasma extravasation assay will be a useful tool in future studies aimed at characterizing the pharmacological features of novel UT receptor ligands in vivo.
Collapse
Affiliation(s)
- Raffaella Vergura
- Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 19, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | |
Collapse
|