1
|
Kwan SH, Esteves F, Davis E, Gonzalez de Mejia E. Chemical characterization and DPP IV inhibitory capacity of purified adzuki bean β-vignin digest in comparison to soybean β-conglycinin and in vitro effect of β-vignin on diabetic-related outcomes. Food Chem 2024; 467:142285. [PMID: 39644661 DOI: 10.1016/j.foodchem.2024.142285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Adzuki bean (AB) is a legume with a low glycemic index and is traditionally used in Asian cultures to modulate type 2 diabetes (T2D). Our objectives were to characterize the functional peptides from purified AB β-vignin after simulated gastrointestinal digestion in comparison to soybean β-conglycinin, to evaluate their DPP IV inhibitory capacity, and to determine in vitro the effect of digested AB β-vignin on diabetic-related outcomes using HepG2 cells in healthy and insulin-resistant states. Five peptides (215-742 Da) from AB β-vignin and five peptides (215-447 Da) from β-conglycinin were identified to exhibit bioactivity as DPP IV inhibitors. Molecular docking demonstrated peptides could bind to DPP IV at the same binding site as a diabetic medication, linagliptin. Digested AB β-vignin significantly increased (p < 0.05) hepatic glucose uptake (> 290 %) via DPP IV inhibition (> 40 %) in healthy and insulin-resistant states. IRS-1, Akt-1, and Glut 2 increased after treating cells with digested AB β-vignin in healthy and insulin-resistant states.
Collapse
Affiliation(s)
- Shu Hang Kwan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Frida Esteves
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA; Tecnologico de Monterrey, Monterrey, Mexico
| | - Emily Davis
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Elvira Gonzalez de Mejia
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| |
Collapse
|
2
|
Zhao L, Gao P, Zhang Y, Wang X, Lu S, Yue C, Bai C, Wu W, Zhang Y, Zhao Z. Measurement of degree of hydrolysis and molecular weight distribution of protein hydrolysates by liquid chromatography-mass spectrometry. Talanta 2024; 268:125347. [PMID: 37913595 DOI: 10.1016/j.talanta.2023.125347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Enzymatic hydrolysis of milk protein is an effective way to improve protein digestibility, to reduce their allergenicity and to produce peptides with better functionalities. Among the process, the degree of hydrolysis (DH) and molecular weight distribution (MWD) of protein hydrolysates are two important parameters that need to be monitored. In this work, a new method based on liquid chromatography-mass spectrometry (LC-MS) was developed for the first time to accurately detect the DH and the MWD of proteolytic peptides. With LC-MS, the content of free amine groups released during hydrolysis was acquired by direct analysis of free trinitrobenzene sulfonic acid (TNBS) for DH assay, overcoming the disadvantage of TNBS-based spectral method. Based on this method, the DH% values of five protein hydrolysis samples were determined and consistent with file specification values. Compared to the size-exclusion high-performance liquid chromatography (SE-HPLC) method, LC-MS was capable of measuring MWD (similar results with file specification values) while additionally providing precise molecular weight and amino acid sequence information for each proteolytic peptide. This method was characterized by its simplicity, accuracy, and reproducibility, making it a valuable technology for monitoring proteolysis and producing peptides with better functionality.
Collapse
Affiliation(s)
- Lingyu Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Mass Spectrum Center, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China; Graduate School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Gao
- Heilongjiang Feihe Dairy Co., Ltd, Beijing, 100016, China.
| | - Yuanyuan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Mass Spectrum Center, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangxin Wang
- Heilongjiang Feihe Dairy Co., Ltd, Beijing, 100016, China
| | - Siyu Lu
- Heilongjiang Feihe Dairy Co., Ltd, Beijing, 100016, China
| | - Chunlin Yue
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Mass Spectrum Center, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China; Graduate School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengling Bai
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Mass Spectrum Center, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China; Graduate School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjing Wu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Mass Spectrum Center, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China; Graduate School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangyang Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Mass Spectrum Center, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China; Graduate School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing Mass Spectrum Center, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China; Graduate School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Jiang S, Wang X, Yu M, Tian J, Chang P, Zhu S. Bitter Peptides in Fermented Soybean Foods - A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01077-3. [PMID: 37410257 DOI: 10.1007/s11130-023-01077-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Fermented soybean foods with a long history are popular worldwide because of rich nutrition. However, many traditional fermented soybean foods have unacceptable bitterness, which mostly comes from the bitter peptides produced from the hydrolysis of soybean proteins. In this review, the bitter peptides in fermented soybean foods is briefly reviewed. The structural properties of bitter receptors and bitter peptides were reviewed. Bitterness is perceived through the binding between bitter compounds and specific sites of bitter receptors (25 hTAS2Rs), which further activate the downstream signal pathway mediated by G-protein. And it converts chemical signals into electrical signals, and transmit them to the brain. In addition, the influencing factors of bitter peptides in fermented soybean foods were summarized. The bitterness of fermented soybean foods primarily results from the raw materials, microbial metabolism during fermentation, unique techniques, and interactions of various flavor compounds. Moreover, the structure-bitterness relationship of bitter peptides was also discussed in this review. The bitterness degree of the bitter peptide is related to the polypeptide hydrophobicity, amino acids in the peptide, peptide molecular weight and polypeptide spatial structure. Studying the bitter peptides and their bitter characteristics in fermented soybean foods is beneficial for improving the sensory quality of fermented soybean foods and prompting more consumers accept them.
Collapse
Affiliation(s)
- Shaoping Jiang
- College of Food Science and Engineering, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin, 130062, China
| | - Xiaodan Wang
- College of Food Science and Engineering, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin, 130062, China.
| | - Maosong Yu
- Tianjin haigang steel coil Co.,Ltd, Tianjin, 301600, China
| | - Jiaxue Tian
- College of Food Science and Engineering, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin, 130062, China
| | - Ping Chang
- College of Food Science and Engineering, Jilin University, No. 5333, Xi'an Road, Changchun, Jilin, 130062, China
| | - Shijie Zhu
- Changchun ZhuLaoLiu Food Co., Ltd, Changchun, 130507, China
| |
Collapse
|
4
|
Li S, Feng X, Hao X, Zhu Y, Zou L, Chen X, Yao Y. A comprehensive review of mung bean proteins: Extraction, characterization, biological potential, techno-functional properties, modifications, and applications. Compr Rev Food Sci Food Saf 2023; 22:3292-3327. [PMID: 37282814 DOI: 10.1111/1541-4337.13183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023]
Abstract
The popularity of plant-based proteins has increased, and mung bean protein (MBP) has gained immense attention due to its high yield, nutritional value, and health benefits. MBP is rich in lysine and has a highly digestible indispensable amino acid score. Dry and wet extractions are used to extract MBP flours and concentrates/isolates, respectively. To enhance the quality of commercial MBP flours, further research is needed to refine the purity of MBPs using dry extraction methods. Furthermore, MBP possesses various biological potential and techno-functional properties, but its use in food systems is limited by some poor functionalities, such as solubility. Physical, biological, and chemical technologies have been used to improve the techno-functional properties of MBP, which has expanded its applications in traditional foods and novel fields, such as microencapsulation, three-dimensional printing, meat analogs, and protein-based films. However, study on each modification technique remains inadequate. Future research should prioritize exploring the impact of these modifications on the biological potential of MBP and its internal mechanisms of action. This review aims to provide ideas and references for future research and the development of MBP processing technology.
Collapse
Affiliation(s)
- Shiyu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xuewei Feng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, P. R. China
| | - Xiyu Hao
- Heilongjiang Feihe Dairy Co., Ltd., Beijing, P. R. China
| | - Yingying Zhu
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, P. R. China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, P. R. China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, P. R. China
| | - Yang Yao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
5
|
Potential Role of Bioactive Proteins and Peptides Derived from Legumes towards Metabolic Syndrome. Nutrients 2022; 14:nu14245271. [PMID: 36558429 PMCID: PMC9782127 DOI: 10.3390/nu14245271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Legumes have been widely consumed and used to isolate bioactive compounds, mainly proteins. The aim of this study was to review the beneficial actions of different legumes proteins and peptides updating the main findings that correlate legumes consumption and the effects on non-transmissible chronic diseases, specifically metabolic syndrome. An exhaustive revision of five relevant bioactivities (antioxidant, anti-inflammatory, antihypertensive, hypocholesterolemic -all of them linked to metabolic syndrome- and antitumoral) of proteins and peptides from legumes focused on isolation and purification, enzymatic hydrolysis and in vitro gastrointestinal digestion was carried out. The promising potential of bioactive hydrolysates and peptides from pulses has been demonstrated by in vitro tests. However, only a few studies validated these biological activities using animal models. No clinical trials have been carried out yet; so further research is required to elucidate their effective health implications.
Collapse
|
6
|
Calcium-chelating improved zein peptide stability, cellular uptake, and bioactivity by influencing the structural characterization. Food Res Int 2022; 162:112033. [DOI: 10.1016/j.foodres.2022.112033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/19/2022]
|
7
|
Comparative study on structural, biological and functional activities of hydrolysates from Adzuki bean (Vigna angularis) and mung bean (Vigna radiata) protein concentrates using Alcalase and Flavourzyme. Food Res Int 2022; 161:111797. [DOI: 10.1016/j.foodres.2022.111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
|
8
|
Karami Z, Duangmal K. Health Promoting and Functional Activities of Peptides from Vigna Bean and Common Bean Hydrolysates: Process to Increase Activities and Challenges. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Zohreh Karami
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Kiattisak Duangmal
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Emerging Processes for Food Functionality Design Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Abd-Talib N, Yaji ELA, Wahab NSA, Razali N, Len KYT, Roslan J, Saari N, Pa’ee KF. Bioactive Peptides and Its Alternative Processes: A Review. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0160-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Health Benefits of Cereal Grain- and Pulse-Derived Proteins. Molecules 2022; 27:molecules27123746. [PMID: 35744874 PMCID: PMC9229611 DOI: 10.3390/molecules27123746] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/19/2022] Open
Abstract
Pulses and whole grains are considered staple foods that provide a significant amount of calories, fibre and protein, making them key food sources in a nutritionally balanced diet. Additionally, pulses and whole grains contain many bioactive compounds such as dietary fibre, resistant starch, phenolic compounds and mono- and polyunsaturated fatty acids that are known to combat chronic disease. Notably, recent research has demonstrated that protein derived from pulse and whole grain sources contains bioactive peptides that also possess disease-fighting properties. Mechanisms of action include inhibition or alteration of enzyme activities, vasodilatation, modulation of lipid metabolism and gut microbiome and oxidative stress reduction. Consumer demand for plant-based proteins has skyrocketed primarily based on the perceived health benefits and lower carbon footprint of consuming foods from plant sources versus animal. Therefore, more research should be invested in discovering the health-promoting effects that pulse and whole grain proteins have to offer.
Collapse
|
11
|
Red seaweed: A promising alternative protein source for global food sustainability. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Ghosal S, Bhattacharyya D, Bhowal J. Production, characterization, and storage stability of nutritionally enriched flaxseed‐based spread. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saheli Ghosal
- School of Community Science and Technology Indian Institute of Engineering Science and Technology Shibpur Howrah ‐711103 West Bengal India
| | - D.K. Bhattacharyya
- School of Community Science and Technology Indian Institute of Engineering Science and Technology Shibpur Howrah ‐711103 West Bengal India
| | - Jayati Bhowal
- School of Community Science and Technology Indian Institute of Engineering Science and Technology Shibpur Howrah ‐711103 West Bengal India
| |
Collapse
|
13
|
Jogi N, Yathisha UG, Bhat I, Mamatha BS. Antihypertensive activity of orally consumed ACE-I inhibitory peptides. Crit Rev Food Sci Nutr 2022; 62:8986-8999. [PMID: 34213991 DOI: 10.1080/10408398.2021.1938508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Food proteins are sources for ACE-I inhibitory peptides that can be extracted by enzymatic hydrolysis exhibiting anti-hypertensive activity. However, these peptides are prone to further degradation by gastrointestinal enzymes during oral consumption. Bio-activity of these peptides is dependent on the resultant peptide post gastrointestinal digestion. To exhibit the bio-activity, they need to be absorbed in intact form. Although studies suggest di and tri-peptides show better ACE-I inhibitory activity, few peptides show altered IC50 values under simulated gastrointestinal digestion. Moreover, ACE-I inhibitory peptides with low IC50 values have not shown effective anti-hypertensive activity in spontaneously hypertensive rats when administered orally. Few ACE-I inhibitory peptides have reported effective reduction in systolic blood-pressure when administered through intravenously. During oral consumption of such peptides, the actual peptide sequence responsible for reducing blood-pressure is a result of breakdown in gastrointestinal tract. The fate of targeted peptides during digestion depends on amino acid sequence of the protein containing the specific site for cleavage where the action of digestive enzymes takes place. Therefore, this review attempts to explain the factors that affect the anti-hypertensive activity of ACE-I inhibitory peptides during oral consumption. It also highlights subsequent absorption of ACE-I inhibitory peptides after gastrointestinal digestion.
Collapse
Affiliation(s)
- Nishithkumar Jogi
- Nitte (Deemed to be University), Nitte University Center for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka, India
| | - Undiganalu Gangadharappa Yathisha
- Nitte (Deemed to be University), Nitte University Center for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka, India
| | - Ishani Bhat
- Nitte (Deemed to be University), Nitte University Center for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka, India
| | - Bangera Sheshappa Mamatha
- Nitte (Deemed to be University), Nitte University Center for Science Education and Research (NUCSER), Deralakatte, Mangaluru, Karnataka, India
| |
Collapse
|
14
|
Tak Y, Kaur M, Amarowicz R, Bhatia S, Gautam C. Pulse Derived Bioactive Peptides as Novel Nutraceuticals: A Review. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10234-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Abstract
Legumes are an essential food source worldwide. Their high-quality proteins, complex carbohydrates, dietary fiber, and relatively low-fat content make these an important functional food. Known to possess a multitude of health benefits, legume consumption is associated with the prevention and treatment of cardiovascular diseases (CVD). Legume crude protein isolates and purified peptides possess many cardiopreventive properties. Here, we review selected economically valued legumes, their taxonomy and distribution, biochemical composition, and their protein components and the mechanism(s) of action associated with cardiovascular health. Most of the legume protein studies had shown upregulation of low-density lipoprotein (LDL) receptor leading to increased binding and uptake, in effect significantly reducing total lipid levels in the blood serum and liver. This is followed by decreased biosynthesis of cholesterol and fatty acids. To understand the relationship of identified genes from legume studies, we performed gene network analysis, pathway, and gene ontology (GO) enrichment. Results showed that the genes were functionally interrelated while enrichment and pathway analysis revealed involvement in lipid transport, fatty acid and triglyceride metabolic processes, and regulatory processes. This review is the first attempt to collate all known mechanisms of action of legume proteins associated with cardiovascular health. This also provides a snapshot of possible targets leading to systems-level approaches to further investigate the cardiometabolic potentials of legumes.
Collapse
|
16
|
Mahgoub S, Alagawany M, Nader M, Omar SM, Abd El-Hack ME, Swelum A, Elnesr SS, Khafaga AF, Taha AE, Farag MR, Tiwari R, Marappan G, El-Sayed AS, Patel SK, Pathak M, Michalak I, Al-Ghamdi ES, Dhama K. Recent Development in Bioactive Peptides from Plant and Animal Products and Their Impact on the Human Health. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1923027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Samir Mahgoub
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig Egypt
| | - Maha Nader
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Safaa M. Omar
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Ayman Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina’ Egypt
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina’ Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig’ Egypt
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Up Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - Gopi Marappan
- Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Ashraf S. El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Shailesh K. Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly- Uttar Pradesh, India
| | - Mamta Pathak
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly- Uttar Pradesh, India
| | - Izabela Michalak
- Department of Advanced Material Technologies,Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław’, Poland
| | - Etab S. Al-Ghamdi
- Department of Food and Nutrition, College of Human Sciences and Design, King Abdualziz University, Jeddah, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly- Uttar Pradesh, India
| |
Collapse
|
17
|
Mekkara Nikarthil Sudhakaran S, Bukkan DS. A review on nutritional composition, antinutritional components and health benefits of green gram (Vigna radiata (L.) Wilczek). J Food Biochem 2021; 45:e13743. [PMID: 33934386 DOI: 10.1111/jfbc.13743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022]
Abstract
Green gram is rich in proteins, carbohydrate, dietary fiber, vitamins, and minerals and contains a low amount of fat. Since it is rich in protein, it can be considered as the meat alternative for vegetarians. Besides being a nutritious food, green gram possesses potential health benefits such as antioxidant, anticancerous, anti-inflammatory and hypolipidemic activities. Green gram has prebiotic and nutraceutical properties. It contains an appreciable amount of galactooligosaccharides that are capable of enhancing the growth of beneficial gut microbiota. Different researchers already developed functional foods such as mung bean milk and non-diary probiotic drinks from green gram. It can also be used as a carrier material to deliver probiotic bacteria to the gut. Apart from these applications, green gram is used in cosmetics, land reclamation and incorporated into different foods such as jams, jellies, noodles, etc. Green gram is also a major ingredient used in China's traditional health foods. PRACTICAL APPLICATIONS: Green gram is rich in proteins, carbohydrate, dietary fiber, vitamins, and minerals and contains a low amount of fat. Since it is rich in protein, it can be considered as the meat alternative for vegetarians. Besides being a nutritious food, green gram possesses potential health benefits such as antioxidant, anticancerous, antioxidant, anti-inflammatory and hypolipidemic activities. Green gram has prebiotic and nutraceutical properties. It contains an appreciable amount of oligosaccharides that are capable of enhancing the growth of beneficial gut microbiota. Different researchers already developed functional foods such as mung bean milk and non-diary probiotic drinks from green gram. It can also be used as a carrier material to deliver probiotic bacteria to the gut. Apart from these applications, green gram is used in cosmetics and land reclamation and incorporated into different foods such as jams, jellies, noodles, etc. Green gram is also a major ingredient used in China's traditional health foods.
Collapse
|
18
|
Peighambardoust SH, Karami Z, Pateiro M, Lorenzo JM. A Review on Health-Promoting, Biological, and Functional Aspects of Bioactive Peptides in Food Applications. Biomolecules 2021; 11:631. [PMID: 33922830 PMCID: PMC8145060 DOI: 10.3390/biom11050631] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Food-derived bioactive peptides are being used as important functional ingredients for health-promoting foods and nutraceuticals in recent times in order to prevent and manage several diseases thanks to their biological activities. Bioactive peptides are specific protein fractions, which show broad applications in cosmetics, food additives, nutraceuticals, and pharmaceuticals as antimicrobial, antioxidant, antithrombotic, and angiotensin-I-converting enzyme (ACE)-inhibitory ingredients. These peptides can preserve consumer health by retarding chronic diseases owing to modulation or improvement of the physiological functions of human body. They can also affect functional characteristics of different foods such as dairy products, fermented beverages, and plant and marine proteins. This manuscript reviews different aspects of bioactive peptides concerning their biological (antihypertensive, antioxidative, antiobesity, and hypocholesterolemic) and functional (water holding capacity, solubility, emulsifying, and foaming) properties. Moreover, the properties of several bioactive peptides extracted from different foods as potential ingredients to formulate health promoting foods are described. Thus, multifunctional properties of bioactive peptides provide the possibility to formulate or develop novel healthy food products.
Collapse
Affiliation(s)
| | - Zohreh Karami
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
19
|
Saeting O, Chandarajoti K, Phongphisutthinan A, Hongsprabhas P, Sae-tan S. Water Extract of Mungbean ( Vigna radiata L.) Inhibits Protein Tyrosine Phosphatase-1B in Insulin-Resistant HepG2 Cells. Molecules 2021; 26:molecules26051452. [PMID: 33800074 PMCID: PMC7962124 DOI: 10.3390/molecules26051452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/27/2022] Open
Abstract
The present study aimed to investigate the effects of mungbean water extract (MWE) on insulin downstream signaling in insulin-resistant HepG2 cells. Whole seed mungbean was extracted using boiling water, mimicking a traditional cooking method. Vitexin and isovitexin were identified in MWE. The results showed that MWE inhibited protein tyrosine phosphatase (PTP)-1B (IC50 = 10 μg/mL), a negative regulator of insulin signaling. MWE enhanced cellular glucose uptake and altered expression of genes involved in glucose metabolism, including forkhead box O1 (FOXO1), phosphoenolpyruvate carboxykinase (PEPCK), and glycogen synthase kinase (GSK)-3β in the insulin-resistant HepG2 cells. In addition, MWE inhibited both α-amylase (IC50 = 36.65 mg/mL) and α-glucosidase (IC50 = 3.07 mg/mL). MWE also inhibited the formation of advanced glycation end products (AGEs) (IC50 = 2.28 mg/mL). This is the first study to show that mungbean water extract increased cellular glucose uptake and improved insulin sensitivity of insulin-resistant HepG2 cells through PTP-1B inhibition and modulating the expression of genes related to glucose metabolism. This suggests that mungbean water extract has the potential to be a functional ingredient for diabetes.
Collapse
Affiliation(s)
- Orathai Saeting
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; (O.S.); (P.H.)
| | - Kasemsiri Chandarajoti
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand;
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Angsuma Phongphisutthinan
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Rangsit Center, Pathumthani 12121, Thailand;
| | - Parichat Hongsprabhas
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; (O.S.); (P.H.)
| | - Sudathip Sae-tan
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; (O.S.); (P.H.)
- Correspondence: ; Tel.: +66-2562-5037
| |
Collapse
|
20
|
Zhang Y, Ding X, Li M. Preparation, characterization and in vitro stability of iron-chelating peptides from mung beans. Food Chem 2021; 349:129101. [PMID: 33540219 DOI: 10.1016/j.foodchem.2021.129101] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/24/2020] [Accepted: 01/10/2021] [Indexed: 01/20/2023]
Abstract
Mung bean protein was enzymatically hydrolyzed with either alcalase, neutral protease, or papain. The mung bean protein hydrolysates (MPH) showed good ability to chelate ferrous ions, and the chelates had high stability in vitro. The hydrolysates prepared by alcalase showed the highest degree of hydrolysis and the highest ferrous chelating rate. Single factor tests showed that the pH and the material ratio had significant effects on ferrous chelating rates. The optimal MPH to FeCl2·4H2O material ratio was 8:1 (w/w) and the optimal pH of the reaction was 7.0, which yielded a chelating rate of 96.19 ± 0.94%. The fraction 3 with the highest ferrous chelating activity up to 61.25 ± 1.02 μg/mg was obtained from MPH by affinity chromatography. Meanwhile, the MPH-Fe complex had higher digestive stability than just MPH in both in vitro and acid-alkali tolerance assays. The characterization results showed that ferrous ions mainly combined with the amino, carboxyl, imidazole and other chelating active groups in mung bean peptides to form peptide-iron chelates. Scanning electron microscopy (SEM) analysis showed that mung bean peptide chelated ferrous ions to form polymer particles. These results provided insight into ways to develop functional foods such as iron-fortified cereals.
Collapse
Affiliation(s)
- Yijun Zhang
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center of Functional Food for Plant Active Peptides, Hefei 230036, Anhui, China
| | - Xiangjun Ding
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center of Functional Food for Plant Active Peptides, Hefei 230036, Anhui, China; College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Meiqing Li
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, China; Anhui Engineering Research Center of Functional Food for Plant Active Peptides, Hefei 230036, Anhui, China; College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
21
|
Yu W, Zhang G, Wang W, Jiang C, Cao L. Identification and comparison of proteomic and peptide profiles of mung bean seeds and sprouts. BMC Chem 2020; 14:46. [PMID: 32760914 PMCID: PMC7391586 DOI: 10.1186/s13065-020-00700-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/21/2020] [Indexed: 11/10/2022] Open
Abstract
The objectives of this study were to analyze and compare the proteomic and peptide profiles of mung bean (Vigna radiata) seeds and sprouts. Label-free proteomics and peptidomics technologies allowed the identification and relative quantification of proteins and peptides. There were 1918 and 1955 proteins identified in mung bean seeds and sprouts, respectively. The most common biological process of proteins in these two samples was the metabolic process, followed by cellular process and single-organism process. Their dominant molecular functions were catalytic activity, binding, and structural molecule activity, and the majority of them were the cell, cell part, and organelle proteins. These proteins were primarily involved in metabolic pathways, biosynthesis of secondary metabolites, and ribosome. PCA and HCA results indicated the proteomic profile varied significantly during mung bean germination. A total of 260 differential proteins between mung bean seeds and sprouts were selected based on their relative abundance, which were associated with the specific metabolism during seed germination. There were 2364 peptides identified and 76 potential bioactive peptides screened based on the in silico analysis. Both the types and concentration of the peptides in mung bean sprouts were higher than those in seeds, and the content of bioactive peptides in mung bean sprouts was deduced to be higher.
Collapse
Affiliation(s)
- Wei Yu
- Heilongjiang Bayi Agricultural University National Coarse Cereals Engineering Research Center, Daqing, 163319 Heilongjiang China
| | - Guifang Zhang
- Heilongjiang Bayi Agricultural University National Coarse Cereals Engineering Research Center, Daqing, 163319 Heilongjiang China
| | - Weihao Wang
- Heilongjiang Bayi Agricultural University National Coarse Cereals Engineering Research Center, Daqing, 163319 Heilongjiang China
| | - Caixia Jiang
- Heilongjiang Bayi Agricultural University National Coarse Cereals Engineering Research Center, Daqing, 163319 Heilongjiang China
| | - Longkui Cao
- Heilongjiang Bayi Agricultural University National Coarse Cereals Engineering Research Center, Daqing, 163319 Heilongjiang China
| |
Collapse
|
22
|
Chunkao S, Youravong W, Yupanqui CT, Alashi AM, Aluko RE. Structure and Function of Mung Bean Protein-Derived Iron-Binding Antioxidant Peptides. Foods 2020; 9:foods9101406. [PMID: 33022976 PMCID: PMC7600763 DOI: 10.3390/foods9101406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
An iron-binding mung bean protein hydrolysate (MBPH) was prepared using a continuous enzymatic membrane reactor followed by peptide separation on anion-exchange (AEC) and reverse-phase HPLC (RP-HPLC) columns. Amino acid sequences of peptides present in the RP-HPLC fraction with the strongest iron-binding capacity were identified using mass spectrometry, and ten peptides of 5-8 amino acids synthesized for antioxidant characterization. Five fractions (AF1- AF5) with higher iron-binding capacity (88.86 ± 6.43 to 153.59 ± 2.18 mg/g peptide) when compared to the MBPH (36.81 ± 0.93 mg/g peptide) were obtained from AEC. PAIDL had the significantly (p < 0.05) highest iron-binding capacity, but LLLLG and LLGIL showed the strongest metal chelating activity. However, PAIDL (46.63%) and LLGIL (81.27%) had significantly (p < 0.05) better DPPH radical scavenging activity than the other peptides. PAIDL and LLGIL were also the most effective (p < 0.05) hydroxyl radical neutralizers with an effective concentration that scavenged 50% (EC50) values of 0.09 and 0.37 mM, respectively. PAIDL and AIVIL showed the lowest EC50 values of 0.07 mM each for superoxide radical scavenging activity. We conclude that short chain length in combination with leucine as the C-terminal amino acid residue contributed to the strong antioxidant properties of peptides in this study.
Collapse
Affiliation(s)
- Siriporn Chunkao
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
- Membrane Science and Technology Research Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Wirote Youravong
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
- Membrane Science and Technology Research Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Correspondence: (W.Y.); (R.E.A.); Tel.: +1-204-474-9555 (R.E.A.)
| | - Chutha T. Yupanqui
- Centre of Excellence in Functional Foods and Nutraceuticals, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Adeola M. Alashi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Correspondence: (W.Y.); (R.E.A.); Tel.: +1-204-474-9555 (R.E.A.)
| |
Collapse
|
23
|
de Fátima Garcia B, de Barros M, de Souza Rocha T. Bioactive peptides from beans with the potential to decrease the risk of developing noncommunicable chronic diseases. Crit Rev Food Sci Nutr 2020; 61:2003-2021. [PMID: 32478570 DOI: 10.1080/10408398.2020.1768047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Several studies have demonstrated that peptides obtained from the proteins of different bean species have the potential to act on therapeutic targets of noncommunicable chronic diseases or NCDs. However, peptides with great structural diversity can be obtained from the hydrolysis of proteins present in foods. Therefore, the present review had the objective of identifying, in silico, the possibility of obtaining peptides with potential biological activity from the storage globulin proteins of the bean species Phaseolus vulgaris (L.), Vigna angularis (Willd.), Vigna radiata (L.) and Vigna unguiculata (L.) Walp., using the UniProtKB, BIOPEP and PeptideRanker databases, as well as reviewing available research reports that showed evidence bioactive properties of peptides obtained from beans via in vitro assays. For all the species studied, the highest frequency of the occurrence of bioactive fragments was found for the inhibition of dipeptidyl peptidase-IV, followed by the inhibition of the angiotensin-converting enzyme and by antioxidant activity. The inhibition of the two enzymes is the therapeutic target of drugs used for type 2 diabetes mellitus (T2DM) and for hypertension, respectively, while the antioxidant activity can prevent the development of several chronic diseases related to oxidative stress.
Collapse
Affiliation(s)
- Bianca de Fátima Garcia
- Department of Food Science and Technology, State University of Londrina - UEL, Londrina, PR, Brazil
| | - Márcio de Barros
- Department of Food Science and Technology, State University of Londrina - UEL, Londrina, PR, Brazil
| | - Thaís de Souza Rocha
- Department of Food Science and Technology, State University of Londrina - UEL, Londrina, PR, Brazil
| |
Collapse
|
24
|
Sae-Tan S, Kumrungsee T, Yanaka N. Mungbean seed coat water extract inhibits inflammation in LPS-induced acute liver injury mice and LPS-stimulated RAW 246.7 macrophages via the inhibition of TAK1/IκBα/NF-κB. Journal of Food Science and Technology 2020; 57:2659-2668. [PMID: 32549616 DOI: 10.1007/s13197-020-04302-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/24/2019] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
Abstract
Inflammation plays an important role in pathogenesis and progression of many chronic diseases. Although, anti-inflammatory activities of mungbean have been suggested, the underlying mechanism have not been fully understood. The present study aimed to reveal the anti-inflammatory effects of mungbean seed coat water extract (MSWE) in lipopolysaccharide (LPS)-stimulated inflammation in RAW 246.7 macrophages and LPS-induced acute liver injury mice. MSWE pretreatment downregulated the elevated expression of inflammatory markers induced by LPS in the transcriptional and protein level. MSWE inhibited NF-κB activation through the suppression of phosphorylated p65 subunit, IκBα degradation, and transforming growth factor-β-activated kinases 1 (TAK1) phosphorylation in LPS-stimulated RAW 246.7 cells. Vitexin, the major flavonoid in MSWE showed similar effects. In in vivo experiments, we found that oral administration of MSWE downregulated iNOS expression in LPS-induced acute liver injury mice. The mRNA expression of inflammatory markers and macrophage infiltration was also decreased in the livers. Collectively, MSWE exerts anti-inflammatory role, in part possibly through its active compound vitexin, by inhibiting NF-κB activation via inhibition of TAK1 phosphorylation and IκBα degradation. This suggests that MSWE is beneficial to combat various inflammatory diseases.
Collapse
Affiliation(s)
- Sudathip Sae-Tan
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngamwongwan Rd. Ladyao, Chatuchak, Bangkok, Thailand
| | - Thanutchaporn Kumrungsee
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima Japan
| | - Noriyuki Yanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima Japan
| |
Collapse
|
25
|
Zhang P, Chang C, Liu H, Li B, Yan Q, Jiang Z. Identification of novel angiotensin I-converting enzyme (ACE) inhibitory peptides from wheat gluten hydrolysate by the protease of Pseudomonas aeruginosa. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103751] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
26
|
Xie J, Ye H, Du M, Yu Q, Chen Y, Shen M. Mung Bean Protein Hydrolysates Protect Mouse Liver Cell Line Nctc-1469 Cell from Hydrogen Peroxide-Induced Cell Injury. Foods 2019; 9:foods9010014. [PMID: 31877918 PMCID: PMC7023459 DOI: 10.3390/foods9010014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 11/24/2022] Open
Abstract
Mung bean is nutritious and rich in protein (19.5%–33.1%). However, there are few studies on mung bean protein active peptides so the mung bean protein hydrolysates (MBPHs) were investigated for evaluating their ability to clear intracellular reactive oxygen species (ROS) and regulating the ability of antioxidant enzymes on NCTC-1469 cells. Results showed that MBPHs, MBPHs-I (molecular weight < 3 kDa), MBPHs-II (molecular weight between 3 and 10 kDa), and MBPHs-III (molecular weight > 10 kDa) could all improve the survival rate of cells compared with the model group. MBPHs, MBPHs-I, and MBPHs-II could significantly decrease the content of lactate dehydrogenase (LDH) and reduce the generation of malonaldehyde (MDA) at a concentration of 0.4 mg/mL. Regarding the intracellular ROS, the result showed that MBPHs-I significantly reduced the production of ROS (from 58.3% to 26.6%) and had a dose-dependent relationship. In addition, the amino acid analysis showed that MBPHs-I had a balanced amino acid composition. MBPHs-I is rich in lysine but was deficient in cereals. Therefore, the hydrophobic and aromatic amino acids in MBPHs-I were high, which could improve its antioxidant activity. According to the results, MBPHs-I was the best and most potent natural antioxidant and it can contribute to drug development and medical application.
Collapse
|
27
|
Finding and isolation of novel peptides with anti-proliferation ability of hepatocellular carcinoma cells from mung bean protein hydrolysates. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103557] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
28
|
Abachi S, Bazinet L, Beaulieu L. Antihypertensive and Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from Fish as Potential Cardioprotective Compounds. Mar Drugs 2019; 17:E613. [PMID: 31671730 PMCID: PMC6891548 DOI: 10.3390/md17110613] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
The term metabolic/cardiometabolic/insulin resistance syndrome could generally be defined as the co-occurrence of several risk factors inclusive of systemic arterial hypertension. Not only that organizations, such as the world health organization (WHO) have identified high blood pressure as one of the main risk factors of the cardiometabolic syndrome, but there is also a link between the occurrence of insulin resistance/impaired glucose tolerance and hypertension that would consequently lead to type-2 diabetes (T2D). Hypertension is medicated by various classes of synthetic drugs; however, severe or mild adverse effects have been repeatedly reported. To avoid and reduce these adverse effects, natural alternatives, such as bioactive peptides derived from different sources have drawn the attention of researchers. Among all types of biologically active peptides inclusive of marine-derived ones, this paper's focus would solely be on fish and fishery by-processes' extracted peptides and products. Isolation and fractionation processes of these products alongside their structural, compositional and digestion stability characteristics have likewise been briefly discussed to better address the structure-activity relationship, expanding the reader's knowledge on research and discovery trend of fish antihypertensive biopeptides. Furthermore, drug-likeness of selected biopeptides was predicted by Lipinski's rules to differentiate a drug-like biopeptide from nondrug-like one.
Collapse
Affiliation(s)
- Soheila Abachi
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada.
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, QC G1V 0A6, Canada.
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada.
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, QC G1V 0A6, Canada.
| | - Lucie Beaulieu
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada.
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, QC G1V 0A6, Canada.
| |
Collapse
|
29
|
Protective Effects of Novel Antioxidant Peptide Purified from Alcalase Hydrolysate of Velvet Antler Against Oxidative Stress in Chang Liver Cells in Vitro and in a Zebrafish Model In Vivo. Int J Mol Sci 2019; 20:ijms20205187. [PMID: 31635129 PMCID: PMC6834189 DOI: 10.3390/ijms20205187] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/12/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022] Open
Abstract
Velvet antler has a long history in traditional medicine. It is also an important healthy ingredient in food as it is rich in protein. However, there has been no report about antioxidant peptides extracted from velvet antler by enzymatic hydrolysis. Thus, the objective of this study was to hydrolyze velvet antler using different commercial proteases (Acalase, Neutrase, trypsin, pepsin, and α-chymotrypsin). Antioxidant activities of different hydrolysates were investigated using peroxyl radical scavenging assay by electron spin resonance spectrometry. Among all enzymatic hydrolysates, Alcalase hydrolysate exhibited the highest peroxyl radical scavenging activity. Alcalase hydrolysate was then purified using ultrafiltration, gel filtration, and reverse-phase high performance liquid chromatography. The purified peptide was identified to be Trp-Asp-Val-Lys (tetrapeptide) with molecular weight of 547.29 Da by Q-TOF ESI mass spectroscopy. This purified peptide exhibited strong scavenging activity against peroxyl radical (IC50 value, 0.028 mg/mL). In addition, this tetrapeptide showed significant protection ability against AAPH-induced oxidative stress by inhibiting of reactive oxygen species (ROS) generation in Chang liver cells in vitro and in a zebrafish model in vivo. This research suggests that the tetrapeptide derived from Alcalase-proteolytic hydrolysate of velvet antler are excellent antioxidants and could be effectively applied as functional food ingredients and pharmaceuticals.
Collapse
|
30
|
Hou D, Yousaf L, Xue Y, Hu J, Wu J, Hu X, Feng N, Shen Q. Mung Bean ( Vigna radiata L.): Bioactive Polyphenols, Polysaccharides, Peptides, and Health Benefits. Nutrients 2019; 11:E1238. [PMID: 31159173 PMCID: PMC6627095 DOI: 10.3390/nu11061238] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023] Open
Abstract
Mung bean (Vigna radiata L.) is an important pulse consumed all over the world, especially in Asian countries, and has a long history of usage as traditional medicine. It has been known to be an excellent source of protein, dietary fiber, minerals, vitamins, and significant amounts of bioactive compounds, including polyphenols, polysaccharides, and peptides, therefore, becoming a popular functional food in promoting good health. The mung bean has been documented to ameliorate hyperglycemia, hyperlipemia, and hypertension, and prevent cancer and melanogenesis, as well as possess hepatoprotective and immunomodulatory activities. These health benefits derive primarily from the concentration and properties of those active compounds present in the mung bean. Vitexin and isovitexin are identified as the major polyphenols, and peptides containing hydrophobic amino acid residues with small molecular weight show higher bioactivity in the mung bean. Considering the recent surge in interest in the use of grain legumes, we hope this review will provide a blueprint to better utilize the mung bean in food products to improve human nutrition and further encourage advancement in this field.
Collapse
Affiliation(s)
- Dianzhi Hou
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Laraib Yousaf
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yong Xue
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Jinrong Hu
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Jihong Wu
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Xiaosong Hu
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Naihong Feng
- Institute of Economic Crops, Shanxi Academy of Agricultural Sciences, Fenyang 032200, China.
| | - Qun Shen
- Key Laboratory of Plant Protein and Grain Processing, National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
31
|
Li M, Xia S, Zhang Y, Li X. Optimization of ACE inhibitory peptides from black soybean by microwave-assisted enzymatic method and study on its stability. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.08.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Budseekoad S, Takahashi Yupanqui C, Alashi AM, Aluko RE, Youravong W. Anti-allergic activity of mung bean (Vigna radiata (L.) Wilczek) protein hydrolysates produced by enzymatic hydrolysis using non-gastrointestinal and gastrointestinal enzymes. J Food Biochem 2018; 43:e12674. [PMID: 31353487 DOI: 10.1111/jfbc.12674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 02/01/2023]
Abstract
Mung bean seed is a well-known plant protein consumed in Asian countries but the protein is usually retrieved as a waste product during starch production. This study investigated the anti-allergic property of mung bean protein hydrolysates (MBPH) produced by enzymatic hydrolysis using non-gastrointestinal (non-GI), GI and a combination of non-GI+GI enzymes. The hydrolysates were investigated for any anti-allergic property by detecting the amount of β-hexosaminidase released in RBL-2H3 cells, and complemented with the MTT assay to show cell viability. It was found that MBPH hydrolyzed by a combination of flavourzyme (non-GI enzyme) and pancreatin (GI enzyme) exhibited the highest anti-allergic activity (135.61%), followed by those produced with alcalase, a non-GI enzyme (121.74%) and 80.32% for pancreatin (GI enzyme). Minimal toxicity (<30%) of all hydrolysates on RBL-2H3 cells line was observed. The results suggest that MBPH can potentially serve as a hypoallergenic food ingredient or supplement. PRACTICAL APPLICATIONS: Mung bean (Vigna radiata L. (Wilczek)) is also known as "green gram" and it is an excellent source of protein. The major mung bean storage proteins are the globulin, albumin and legumin, which are also referred to as legume allergens. Our study showed that mung bean peptides obtained after enzymatic hydrolysis influenced β-hexosaminidase inhibition without any toxic effect on RBL-2H3 cells. This indicates that mung bean allergenicity can be reduced after enzymatic hydrolysis and the protein hydrolysates could be as a hypoallergic food, ingredient, supplement and/or protein substitute in the formulation of food products.
Collapse
Affiliation(s)
- Siriporn Budseekoad
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand.,Center of Excellence in Membrane Science and Technology, Prince of Songkla University, Hat Yai, Thailand
| | - Chutha Takahashi Yupanqui
- Interdisciplinary Graduate School of Nutraceutical and Functional Food, Learning Resources Center, Prince of Songkla University, Hat Yai, Thailand
| | - Adeola M Alashi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Wirote Youravong
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand.,Center of Excellence in Membrane Science and Technology, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
33
|
Choe J, Seol KH, Kim HJ, Hwang JT, Lee M, Jo C. Isolation and identification of angiotensin I-converting enzyme inhibitory peptides derived from thermolysin-injected beef M. longissimus. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 32:430-436. [PMID: 30145878 PMCID: PMC6409468 DOI: 10.5713/ajas.18.0455] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/23/2018] [Indexed: 11/27/2022]
Abstract
Objective This study identified angiotensin I-converting enzyme (ACE) inhibitory peptides in beef M. longissimus injected with thermolysin (80 ppm) and stored for 3 days at 5°C. Methods Crude peptides (molecular weight <3 kDa) were obtained from the thermolysin hydrolysate and separated into seven fractions. Fraction V showing the highest ACE inhibitory activity was further fractionated, yielding subfractions V-15, V-m1, and V-m2, and selected for superior ACE inhibitory activity. Finally, twelve peptides were identified from the three peak fractions and the ACE inhibitory activity (IC50) of each peptide was evaluated. Results The Leu-Ser-Trp, Phe-Gly-Tyr, and Tyr-Arg-Gln peptides exhibited the strongest ACE inhibitory activity (IC50 values of 0.89, 2.69, and 3.09 mM, respectively) and had higher concentrations (6.63, 10.60, and 29.91 pg/g; p<0.05) relative to the other peptides tested. Conclusion These results suggest that the thermolysin injection process is beneficial to the generation of bioactive peptides with strong ACE inhibitory activity.
Collapse
Affiliation(s)
- Juhui Choe
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Kuk-Hwan Seol
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Hyun-Jin Kim
- Department of Food Science and Technology, Gyeongsang National University, Jinju 52828, Korea
| | | | - Mooha Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
34
|
Sonklin C, Laohakunjit N, Kerdchoechuen O. Assessment of antioxidant properties of membrane ultrafiltration peptides from mungbean meal protein hydrolysates. PeerJ 2018; 6:e5337. [PMID: 30065890 PMCID: PMC6065462 DOI: 10.7717/peerj.5337] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/08/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Bioactive peptides can prevent damage associated with oxidative stress in humans when consumed regularly. Recently, peptides have attracted immense interest because of their beneficial functional properties, safety and little or no side effects when used at high concentration. Most antioxidant peptides are small in size, less than 1 kDa, and contains a high proportion of hydrophobic amino acid. Particularly, tyrosine, leucine, alanine, isoleucine, valine, lysine, phenyalanine, cysteine, methionine and histidine in peptide chain exhibited high antioxidant activity. Mungbean meal protein (MMP) is highly abundant in hydrophobic amino acids. It indicated that MMP might be a good source of antioxidants. Therefore, the objectives were to optimize the conditions used to generate mungbean meal protein hydrolysate (MMPH) with antioxidant activity from bromelain and to investigate the antioxidant activities of different molecular weight (MW) peptide fraction. METHODS Response Surface Methodology (RSM) was used for screening of the optimal conditions to produce MMPH. After that MMPH was fractionated using ultrafiltration membranes with different MW distributions. Crude-MMPH and four fractions were investigated for five antioxidant activities: 2,2,1-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, superoxide, ferric reducing antioxidant power (FRAP) and metal ion chelation activity. RESULTS The optimal condition to produce the MMPH was 15% (w/w) of bromelain and hydrolysis time for 12 h which showed the greatest DPPH and ABTS radical scavenging activity. After mungbean protein from optimal condition was separated based on different molecular weight, the DPPH radical scavenging activity was the highest for the F4 (less than 1 kDa) peptide fraction. Metal ion chelating activity was generally weak, except for the F4 that had a value of 43.94% at a protein concentration of 5 mg/mL. The F4 also exhibited high hydroxyl and superoxide activities (54 and 65.1%), but moderate activity for ferric reducing antioxidant power (0.102 mmole Fe2+/g protein) compared to other peptide fractions and crude-MMPH. Molecular weight and amino acid were the main factors that determined the antioxidant activities of these peptide fractions. Results indicated that F4 had strong antioxidant potentials. DISCUSSION The lowest MW fraction (less than 1 kDa) contributed to the highest DPPH, superoxide, hydroxyl and metal chelation activity because influence of low MW and high content of hydrophobic amino acid in peptide chain. Results from this study indicated that MMPH peptides donate protons to free radicals because they had significantly high DPPH value compared to superoxide, hydroxyl and FRAP, which reactions were electron donation. Moreover, MMPH peptides had the ability to inhibit transition metal ions because of highly abundant glutamic acid and aspartic acid in peptide chain.
Collapse
Affiliation(s)
- Chanikan Sonklin
- Division of Biochemical Technology/ School of Bioresources and Technology, King Mongkut’s Institute of Technology Thonburi, Bangkok, Thailand
| | - Natta Laohakunjit
- Division of Biochemical Technology/ School of Bioresources and Technology, King Mongkut’s Institute of Technology Thonburi, Bangkok, Thailand
| | - Orapin Kerdchoechuen
- Division of Biochemical Technology/ School of Bioresources and Technology, King Mongkut’s Institute of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
35
|
Yi-Shen Z, Shuai S, FitzGerald R. Mung bean proteins and peptides: nutritional, functional and bioactive properties. Food Nutr Res 2018; 62:1290. [PMID: 29545737 PMCID: PMC5846210 DOI: 10.29219/fnr.v62.1290] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/20/2017] [Accepted: 01/19/2018] [Indexed: 11/20/2022] Open
Abstract
To date, no extensive literature review exists regarding potential uses of mung bean proteins and peptides. As mung bean has long been widely used as a food source, early studies evaluated mung bean nutritional value against the Food and Agriculture Organization of the United Nations (FAO)/the World Health Organization (WHO) amino acids dietary recommendations. The comparison demonstrated mung bean to be a good protein source, except for deficiencies in sulphur-containing amino acids, methionine and cysteine. Methionine and cysteine residues have been introduced into the 8S globulin through protein engineering technology. Subsequently, purified mung bean proteins and peptides have facilitated the study of their structural and functional properties. Two main types of extraction methods have been reported for isolation of proteins and peptides from mung bean flours, permitting sequencing of major proteins present in mung bean, including albumins and globulins (notably 8S globulin). However, the sequence for albumin deposited in the UniProt database differs from other sequences reported in the literature. Meanwhile, a limited number of reports have revealed other useful bioactivities for proteins and hydrolysed peptides, including angiotensin-converting enzyme inhibitory activity, anti-fungal activity and trypsin inhibitory activity. Consequently, several mung bean hydrolysed peptides have served as effective food additives to prevent proteolysis during storage. Ultimately, further research will reveal other nutritional, functional and bioactive properties of mung bean for uses in diverse applications.
Collapse
Affiliation(s)
- Zhu Yi-Shen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Sun Shuai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | | |
Collapse
|
36
|
Improvement of glucose and lipid metabolism via mung bean protein consumption: clinical trials of GLUCODIA™ isolated mung bean protein in the USA and Canada. J Nutr Sci 2018; 7:e2. [PMID: 29372050 PMCID: PMC5773921 DOI: 10.1017/jns.2017.68] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/03/2017] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to confirm the effects of a commercially available mung bean protein isolate (GLUCODIA™) on glucose and lipid metabolism. The main component of GLUCODIA™ is 8S globulin, which constitutes 80 % of the total protein. The overall structure of this protein closely resembles soyabean β-conglycinin, which accounts for 20 % of total soya protein (soya protein isolate; SPI). Many physiological beneficial effects of β-conglycinin have been reported. GLUCODIA™ is expected to produce beneficial effects with fewer intakes than SPI. We conducted two independent double-blind, placebo-controlled clinical studies. In the first (preliminary dose decision trial) study, mung bean protein was shown to exert physiological beneficial effects when 3·0 g were ingested per d. In the second (main clinical trial) study, mung bean protein isolate did not lower plasma glucose levels, although the mean insulin level decreased with consumption of mung bean protein. The homeostatic model assessment of insulin resistance (HOMA-IR) values significantly decreased with mung bean protein. The mean TAG level significantly decreased with consumption of mung bean protein isolate. A significant increase in serum adiponectin levels and improvement in liver function enzymes were observed. These findings suggest that GLUCODIA™ could be useful in the prevention of insulin resistance and visceral fat accumulation, which are known to trigger the metabolic syndrome, and in the prevention of liver function decline.
Collapse
|
37
|
Awika JM, Duodu KG. Bioactive polyphenols and peptides in cowpea ( Vigna unguiculata ) and their health promoting properties: A review. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
38
|
Volatile flavour compounds, sensory characteristics and antioxidant activities of mungbean meal protein hydrolysed by bromelain. Journal of Food Science and Technology 2017; 55:265-277. [PMID: 29358819 DOI: 10.1007/s13197-017-2935-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
Abstract
Enzymatic mungbean meal protein hydrolysate (eb-MPH) is a novel natural flavour/antioxidant source. A 15% bromelain (w/w) concentration with a hydrolysis time of 12 h was the optimum conditions to produce eb-MPH, which showed the greatest antioxidant activities and sensory characteristics. eb-MPH was composed of oligopeptides that had low molecular weight (< 10 kDa) as well as surface hydrophobicity and high content of hydrophobic amino acids. eb-MPH contributed to DPPH (80) and ABTS (95%) scavenging activities and to savoury/sweet flavour volatile compounds (3-methyl-butanal, furfural and benzaldehyde), bouillon odour, sweet odour, chicken odour, meaty odour, moderate bitter taste and umami. In addition, principal component analysis (PCA) showed that 72.87% of the total variance confirmed the correlation between DH, S0, DPPH, ABTS, sensory characteristics and volatile flavour compounds. These results suggested that eb-MPH can be used as a natural food flavouring agent and antioxidant.
Collapse
|
39
|
Proteomics and metabolomics-driven pathway reconstruction of mung bean for nutraceutical evaluation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1057-1066. [PMID: 28502799 DOI: 10.1016/j.bbapap.2017.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/08/2017] [Indexed: 12/17/2022]
Abstract
Mung bean is a legume crop which has a various health-promoting effects. Although rich flavonoids are reported to be responsible for its biological activities, little is known about other nutrients that may potentiate the activities. To obtain information on mung bean nutritional properties, gel-free/label-free proteomic analysis and metabolomic profiling were combined. Pathway reconstruction detected that amino acid metabolism is more active in flesh. Coat contained wider variety of lipids and phenolic acids/flavonoids than flesh. Among the compounds detected in coat, sphingolipids, arachidonic acid, and prostaglandin E2 are compounds which are related to immune response induction. Furthermore, identification of prostaglandin F2α added scientific support to empirical validity of mung bean usage. The abundance of bioactive compounds such as naringenin, which can be metabolized into vitexin, varied among cultivars. These results suggest that lipids together with flavonoids might be potential responsible compounds for biological activity of mung bean coat and flesh.
Collapse
|
40
|
Nishibori N, Kishibuchi R, Morita K. Soy Pulp Extract Inhibits Angiotensin I-Converting Enzyme (ACE) Activity In Vitro: Evidence for Its Potential Hypertension-Improving Action. J Diet Suppl 2017; 14:241-251. [PMID: 27558170 DOI: 10.1080/19390211.2016.1207744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Soy pulp, called "okara" in Japanese, is known as a by-product of the production of bean curd (tofu), and expected to contain a variety of biologically active substances derived from soybean. However, the biological activities of okara ingredients have not yet been fully understood, and the effectiveness of okara as a functional food seems necessary to be further evaluated. Then the effect of okara extract on angiotensin I-converting enzyme (ACE) activity was examined in vitro, and the extract was shown to cause the inhibition of ACE activity in a manner depending on its concentration. Kinetic analysis indicated that this enzyme inhibition was accompanied by an increase in the Km value without any change in Vmax. Further studies suggested that putative inhibitory substances contained in the extract might be heat stable and dialyzable, and recovered mostly in the peptide fraction obtained by a spin-column separation and a high performance liquid chromatography (HPLC) fractionation. Therefore, the extract was speculated to contain small-size peptides responsible for the inhibitory effect of okara extract on ACE activity, and could be expected to improve the hypertensive conditions by reducing the production of hypertensive peptide.
Collapse
Affiliation(s)
- Naoyoshi Nishibori
- a Department of Food Science and Nutrition , Shikoku Junior College , Ohjin , Tokushima , Japan
- b Life Science Research Group , Shikoku University School of Health Sciences , Ohjin , Tokushima , Japan
| | - Reina Kishibuchi
- b Life Science Research Group , Shikoku University School of Health Sciences , Ohjin , Tokushima , Japan
| | - Kyoji Morita
- b Life Science Research Group , Shikoku University School of Health Sciences , Ohjin , Tokushima , Japan
| |
Collapse
|
41
|
Mamilla RK, Mishra VK. Effect of germination on antioxidant and ACE inhibitory activities of legumes. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.08.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Rizzello CG, Tagliazucchi D, Babini E, Sefora Rutella G, Taneyo Saa DL, Gianotti A. Bioactive peptides from vegetable food matrices: Research trends and novel biotechnologies for synthesis and recovery. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.09.023] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
43
|
Nutritional composition and antioxidant activity of twenty mung bean cultivars in China. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.cj.2016.06.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Maestri E, Marmiroli M, Marmiroli N. Bioactive peptides in plant-derived foodstuffs. J Proteomics 2016; 147:140-155. [DOI: 10.1016/j.jprot.2016.03.048] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/14/2016] [Accepted: 03/29/2016] [Indexed: 01/07/2023]
|
45
|
In vitro angiotensin I converting enzyme inhibition by a peptide isolated from Chiropsalmus quadrigatus Haeckel (box jellyfish) venom hydrolysate. Toxicon 2016; 119:77-83. [PMID: 27163886 DOI: 10.1016/j.toxicon.2016.04.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 11/21/2022]
Abstract
The anti-angiotensin I converting enzyme activity of box jellyfish, Chiropsalmus quadrigatus Haeckel venom hydrolysate was studied. The venom extract was obtained by centrifugation and ultrasonication. Protein concentration of 12.99 μg/mL was determined using Bradford assay. The pepsin and papain hydrolysate was tested for its toxicity by Limit test following the OECD Guideline 425 using 5 female Sprague-Dawley rats. Results showed that the hydrolysate is nontoxic with an LD50 above 2000 mg/kg. In vitro angiotensin I converting enzyme (ACE) inhibitory activity was determined using ACE kit-WST. Isolation of ACE inhibitory peptides using column chromatography with SP-Sephadex G-25 yielded 8 pooled fractions with fraction 3 (86.5%) exhibiting the highest activity. This was followed by reverse phase - high performance liquid chromatography (RP-HPLC) with an octadecyl silica column (Inertsil ODS-3) using methanol:water 15:85 at a flow rate of 1.0 mL/min. Among the 13 fractions separated with the RP-HPLC, fraction 3.5 exhibited the highest ACE inhibitory activity (84.1%). The peptide sequence ACPGPNPGRP (IC50 2.03 μM) from fraction 3.5 was identified using Matrix-assisted laser desorption/ionization with time-of-flight tandem mass spectroscopy analysis (MALDI-TOF/MS).
Collapse
|
46
|
Puchalska P, Marina Alegre ML, García López MC. Isolation and characterization of peptides with antihypertensive activity in foodstuffs. Crit Rev Food Sci Nutr 2016; 55:521-51. [PMID: 24915368 DOI: 10.1080/10408398.2012.664829] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hypertension is one of the main causes of cardiovascular diseases. Synthetic drugs inhibiting ACE activity present high effectiveness in the treatment of hypertension but cause undesirable side effects. Unlike these synthetic drugs, antihypertensive peptides do not show any adverse effect. These peptides are naturally present in some foods and since hypertension is closely related to modern diet habits, the interest for this kind of foods is increasing. Different methods for the purification, isolation, and characterization of antihypertensive peptides in foods have been developed. Nevertheless, there is no revision work summarizing and comparing these strategies. In this review, in vivo and in vitro pathways to obtain antihypertensive peptides have been summarized. The ACE mechanism and the methodologies developed to assay the ACE inhibitory activity have also been described. Moreover, a comprehensive overview on the isolation, purification, and identification techniques focusing on the discovery of new antihypertensive peptides with high activity has been included. Finally, it is worthy to highlight that the quantitation of antihypertensive peptides in foods is a new trend since genotype and processing conditions could affect their presence. Analytical methodologies using mass spectrometry constitute an interesting option for this purpose.
Collapse
Affiliation(s)
- Patrycja Puchalska
- a Department of Analytical Chemistry, Faculty of Chemistry University of Alcalá. Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares , 28871 , (Madrid) , Spain
| | | | | |
Collapse
|
47
|
Betancur-Ancona D, Dávila-Ortiz G, Chel-Guerrero LA, Torruco-Uco JG. ACE-I Inhibitory Activity from Phaseolus lunatus and Phaseolus vulgaris Peptide Fractions Obtained by Ultrafiltration. J Med Food 2015; 18:1247-54. [DOI: 10.1089/jmf.2015.0007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - Gloria Dávila-Ortiz
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, D.F., México
| | | | - Juan Gabriel Torruco-Uco
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México, D.F., México
- Departamento de Ingeniería Química y Bioquímica, Instituto Tecnológico de Tuxtepec, Tuxtepec, México
| |
Collapse
|
48
|
Mung bean (Vigna radiata) as probiotic food through fermentation with Lactobacillus plantarum B1-6. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.03.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Cheung RCF, Ng TB, Wong JH. Marine Peptides: Bioactivities and Applications. Mar Drugs 2015; 13:4006-43. [PMID: 26132844 PMCID: PMC4515606 DOI: 10.3390/md13074006] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022] Open
Abstract
Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant), immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products.
Collapse
Affiliation(s)
- Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
50
|
Chatterjee R, Dey TK, Ghosh M, Dhar P. Enzymatic modification of sesame seed protein, sourced from waste resource for nutraceutical application. FOOD AND BIOPRODUCTS PROCESSING 2015. [DOI: 10.1016/j.fbp.2015.01.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|