1
|
Reis DQP, Pereira S, Ramos AP, Pereira PM, Morgado L, Calvário J, Henriques AO, Serrano M, Pina AS. Catalytic peptide-based coacervates for enhanced function through structural organization and substrate specificity. Nat Commun 2024; 15:9368. [PMID: 39477955 PMCID: PMC11525812 DOI: 10.1038/s41467-024-53699-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) in living cells provides innovative pathways for synthetic compartmentalized catalytic systems. While LLPS has been explored for enhancing enzyme catalysis, its potential application to catalytic peptides remains unexplored. Here, we demonstrate the use of coacervation, a key LLPS feature, to constrain the conformational flexibility of catalytic peptides, resulting in structured domains that enhance peptide catalysis. Using the flexible catalytic peptide P7 as a model, we induce reversible biomolecular coacervates with structured peptide domains proficient in hydrolyzing phosphate ester molecules and selectively sequestering phosphorylated proteins. Remarkably, these coacervate-based microreactors exhibit a 15,000-fold increase in catalytic efficiency compared to soluble peptides. Our findings highlight the potential of a single peptide to induce coacervate formation, selectively recruit substrates, and mediate catalysis, enabling a simple design for low-complexity, single peptide-based compartments with broad implications. Moreover, LLPS emerges as a fundamental mechanism in the evolution of chemical functions, effectively managing conformational heterogeneity in short peptides and providing valuable insights into the evolution of enzyme activity and catalysis in prebiotic chemistry.
Collapse
Grants
- D.Q.P.R., S.P., A.P.R., J.C., P.M.P., A. S. P. acknowledge support from Fundação para a Ciência e Tecnologia (FCT), through MOSTMICRO-ITQB R&D Unit (UIDB/04612/2020, UIDP/04612/2020), LS4FUTURE Associated Laboratory (LA/P/0087/2020), 2021.01283.CEECIND/CP1657/CT0004 for A.S.P., UI/BD/154577/2022 for J.C. and PRT/BD/154753/2023 for D.Q.P.R. This work was partially supported by PPBI - Portuguese Platform of BioImaging (PPBI-POCI-01-0145-FEDER-022122) co-funded by national funds from OE - “Orçamento de Estado” and by european funds from FEDER - “Fundo Europeu de Desenvolvimento Regional. P.M.P acknowledges support from FCT project grant (PTDC/BIA MIC/2422/2020), a La Caixa Junior Leader Fellowship (LCF/BQ/PI20/11760012) financed by ” la Caixa” Foundation (ID 100010434) and by European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 847648, and a Maratona da Saúde award. L.M. acknowledge the support from FCT in the scope of 2021.02185.CEECIND/CP1657/CT0008 and the projects (i) UIDP/04378/2020 and UIDB/04378/2020 (Research Unit on Applied Molecular Biosciences – UCIBIO) and (ii) LA/P/0140/2020 (Associate Laboratory Institute for Health and Bioeconomy – i4HB). The NMR spectrometers at CERMAX, ITQB-NOVA, Oeiras are funded by FCT through project AAC 01/SAICT/2016, while those from FCT-NOVA are part of the National NMR Network and are supported by FCT (ROTEIRO/0031/2013 and PINFRA/22161/2016) cofounded by FEDER through COMPETE 2020, POCI, PORL and FCT through PIDDAC.
Collapse
Affiliation(s)
- David Q P Reis
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Sara Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Ana P Ramos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Pedro M Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Leonor Morgado
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Joana Calvário
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Ana S Pina
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
2
|
Ghosh M, Gupta PK, Behera LM, Rana S. Structure of Designer Antibody-like Peptides Binding to the Human C5a with Potential to Modulate the C5a Receptor Signaling. J Med Chem 2024; 67:14110-14124. [PMID: 39051153 DOI: 10.1021/acs.jmedchem.4c00961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
C5a is an integral glycoprotein of the complement system that plays an important role in inflammation and immunity. The physiological concentration of C5a is observed to be elevated under various immunoinflammatory pathophysiological conditions in humans. The pathophysiology of C5a is linked to the "two-site" protein-protein interactions (PPIs) with two genomically related receptors, such as C5aR1 and C5aR2. Therefore, pharmacophores that can potentially block the PPIs between C5a-C5aR1 and C5a-C5aR2 have tremendous potential for development as future therapeutics. Notably, the FDA has already approved antibodies that target the precursors of C5a (Eculizumab, 148 kDa) and C5a (Vilobelimab, 149 kDa) for marketing as complement-targeted therapeutics. In this context, the current study reports the structural characterization of a pair of synthetic designer antibody-like peptides (DePA and DePA1; ≤3.8 kDa) that bind to hotspot regions on C5a and also demonstrates potential traits to neutralize the function of C5a under pathophysiological conditions.
Collapse
Affiliation(s)
- Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 752050, India
| | - Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 752050, India
| | - Lalita Mohan Behera
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 752050, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
3
|
Nazeer N, Kooner N, Ghimire A, Rainey JK, Lubell WD, Meneksedag-Erol D, Ahmed M. Secondary Structure Stabilization of Macrocyclic Antimicrobial Peptides via Cross-Link Swapping. J Med Chem 2024; 67:8693-8707. [PMID: 38771638 DOI: 10.1021/acs.jmedchem.4c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Lactam cross-links have been employed to stabilize the helical secondary structure and enhance the activity and physiological stability of antimicrobial peptides; however, stabilization of β-sheets via lactamization has not been observed. In the present study, lactams between the side chains of C- and N-terminal residues have been used to stabilize the β-sheet conformation in a short ten-residue analogue of chicken angiogenin-4. Designed using a combination of molecular dynamics simulations and Markov state models, the lactam cross-linked peptides are shown to adopt stabilized β-sheet conformations consistent with simulated structures. Replacement of the peptide side-chain Cys-Cys disulfide by a lactam cross-link enhanced the broad-spectrum antibacterial activity compared to the parent peptide and exhibited greater propensity to induce proinflammatory activity in macrophages. The combination of molecular simulations and conformational and biological analyses of the synthetic peptides provides a useful paradigm for the rational design of therapeutically active peptides with constrained β-sheet structures.
Collapse
Affiliation(s)
- Nauman Nazeer
- Department of Chemistry, University of Prince Edward Island, Charlottetown C1A 4P3, Prince Edward Island, Canada
| | - Navjote Kooner
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Quebec, Canada
| | - Anupama Ghimire
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
- Department of Chemistry, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - William D Lubell
- Département de Chimie, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal H2 V 0B3, Québec, Canada
| | - Deniz Meneksedag-Erol
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Quebec, Canada
- Department of Chemical and Materials Engineering, Concordia University, Montreal H4B 1R6, Quebec, Canada
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown C1A 4P3, Prince Edward Island, Canada
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown C1A 4P3, Prince Edward Island, Canada
| |
Collapse
|
4
|
van Haaren C, Byrne B, Kazarian SG. Study of Monoclonal Antibody Aggregation at the Air-Liquid Interface under Flow by ATR-FTIR Spectroscopic Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5858-5868. [PMID: 38445553 PMCID: PMC10956494 DOI: 10.1021/acs.langmuir.3c03730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Throughout bioprocessing, transportation, and storage, therapeutic monoclonal antibodies (mAbs) experience stress conditions that may cause protein unfolding and/or chemical modifications. Such structural changes may lead to the formation of aggregates, which reduce mAb potency and may cause harmful immunogenic responses in patients. Therefore, aggregates need to be detected and removed or ideally prevented from forming. Air-liquid interfaces, which arise during various stages of bioprocessing, are one of the stress factors causing mAb aggregation. In this study, the behavior of an immunoglobulin G (IgG) at the air-liquid interface was investigated under flow using macro attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic imaging. This chemically specific imaging technique allows observation of adsorption of IgG to the air-liquid interface and detection of associated secondary structural changes. Chemical images revealed that IgG rapidly accumulated around an injected air bubble under flow at 45 °C; however, no such increase was observed at 25 °C. Analysis of the second derivative spectra of IgG at the air-liquid interface revealed changes in the protein secondary structure associated with increased intermolecular β-sheet content, indicative of aggregated IgG. The addition of 0.01% w/v polysorbate 80 (PS80) reduced the amount of IgG at the air-liquid interface in a static setup at 30 °C; however, this protective effect was lost at 45 °C. These results suggest that the presence of air-liquid interfaces under flow may be detrimental to mAb stability at elevated temperatures and demonstrate the power of ATR-FTIR spectroscopic imaging for studying the structural integrity of mAbs under bioprocessing conditions.
Collapse
Affiliation(s)
- Céline van Haaren
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Bernadette Byrne
- Department
of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Sergei G. Kazarian
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| |
Collapse
|
5
|
Jitaru SC, Enache AC, Cojocaru C, Drochioiu G, Petre BA, Gradinaru VR. Self-Assembly of a Novel Pentapeptide into Hydrogelated Dendritic Architecture: Synthesis, Properties, Molecular Docking and Prospective Applications. Gels 2024; 10:86. [PMID: 38391416 PMCID: PMC10887771 DOI: 10.3390/gels10020086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Currently, ultrashort oligopeptides consisting of fewer than eight amino acids represent a cutting-edge frontier in materials science, particularly in the realm of hydrogel formation. By employing solid-phase synthesis with the Fmoc/tBu approach, a novel pentapeptide, FEYNF-NH2, was designed, inspired by a previously studied sequence chosen from hen egg-white lysozyme (FESNF-NH2). Qualitative peptide analysis was based on reverse-phase high performance liquid chromatography (RP-HPLC), while further purification was accomplished using solid-phase extraction (SPE). Exact molecular ion confirmation was achieved by matrix-assisted laser desorption-ionization mass spectrometry (MALDI-ToF MS) using two different matrices (HCCA and DHB). Additionally, the molecular ion of interest was subjected to tandem mass spectrometry (MS/MS) employing collision-induced dissociation (CID) to confirm the synthesized peptide structure. A combination of research techniques, including Fourier-transform infrared spectroscopy (FTIR), fluorescence analysis, transmission electron microscopy, polarized light microscopy, and Congo red staining assay, were carefully employed to glean valuable insights into the self-assembly phenomena and gelation process of the modified FEYNF-NH2 peptide. Furthermore, molecular docking simulations were conducted to deepen our understanding of the mechanisms underlying the pentapeptide's supramolecular assembly formation and intermolecular interactions. Our study provides potential insights into amyloid research and proposes a novel peptide for advancements in materials science. In this regard, in silico studies were performed to explore the FEYNF peptide's ability to form polyplexes.
Collapse
Affiliation(s)
- Stefania-Claudia Jitaru
- Faculty of Chemistry, "Alexandru Ioan Cuza" University, 11 Carol I Bd., 700506 Iasi, Romania
| | - Andra-Cristina Enache
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Corneliu Cojocaru
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Gabi Drochioiu
- Faculty of Chemistry, "Alexandru Ioan Cuza" University, 11 Carol I Bd., 700506 Iasi, Romania
| | - Brindusa-Alina Petre
- Faculty of Chemistry, "Alexandru Ioan Cuza" University, 11 Carol I Bd., 700506 Iasi, Romania
- TRANSCEND-Regional Institute of Oncology, 700483 Iasi, Romania
| | - Vasile-Robert Gradinaru
- Faculty of Chemistry, "Alexandru Ioan Cuza" University, 11 Carol I Bd., 700506 Iasi, Romania
| |
Collapse
|
6
|
Szefczyk M, Szulc N, Gąsior-Głogowska M, Bystranowska D, Żak A, Sikora A, Polańska O, Ożyhar A, Berlicki Ł. The application of the hierarchical approach for the construction of foldameric peptide self-assembled nanostructures. SOFT MATTER 2023; 19:3828-3840. [PMID: 37191235 DOI: 10.1039/d3sm00005b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this paper, we show that a hierarchical approach for the construction of nanofibrils based on α,β-peptide foldamers is a rational method for the design of novel self-assembled nanomaterials based on peptides. Incorporation of a trans-(1S,2S)-2-aminocyclopentanecarboxylic acid residue into the outer positions of the model coiled-coil peptide led to the formation of helical foldamers, which was determined by circular dichroism (CD) and vibrational spectroscopy. The oligomerization state of the obtained peptides in water was established by analytical ultracentrifugation (AUC). The thioflavin T assay and Congo red methods showed that the obtained α,β-peptides possess a strong tendency to aggregate, leading to the formation of self-assembled nanostructures, which were assessed by microscopic techniques. The location of the β-amino acid in the heptad repeat of the coiled-coil structure proved to have an influence on the secondary structure of the obtained peptides and on the morphology of the self-assembled nanostructures.
Collapse
Affiliation(s)
- Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Natalia Szulc
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Andrzej Żak
- Electron Microscopy Laboratory, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Andrzej Sikora
- Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Oliwia Polańska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
7
|
Chawla V, Sharma S, Singh Y. Yttrium Oxide Nanoparticle-Loaded, Self-Assembled Peptide Gel with Antibacterial, Anti-Inflammatory, and Proangiogenic Properties for Wound Healing. ACS Biomater Sci Eng 2023; 9:2647-2662. [PMID: 37097124 DOI: 10.1021/acsbiomaterials.3c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Chronic wounds are a major healthcare challenge owing to their complex healing mechanism and number of impediments to the healing process, like infections, unregulated inflammation, impaired cellular functions, poor angiogenesis, and enhanced protease activity. Current topical care strategies, such as surgical debridement, absorption of exudates, drug-loaded hydrogels for infection and inflammation management, and exogenous supply of growth factors for angiogenesis and cell proliferation, slow the progression of wounds and reduce patient suffering but suffer from low overall cure rates. Therefore, we have developed a proteolytically stable, multifunctional nanoparticle loaded-peptide gel with inherent anti-inflammatory, antibacterial, and pro-angiogenic properties to provide a favorable wound healing milieu by restoring impaired cellular functions. We have fabricated a self-assembled, lauric acid-peptide conjugate gel, LA-LLys-DPhe-LLys-NH2, loaded with yttrium oxide (Y2O3) nanoparticles (NLG). Gel formed a nanofibrous structure, and nanoparticles were passively entrapped within the network. The surface morphology, stability, viscoelastic, and self-healing characteristics of gels were characterized. It showed a high stability against degradation by proteolytic enzymes and highly potent antibacterial activities against E. coli and S. aureus due to the presence of positively charged side chains of lysine in the peptide chain. It also exhibited an excellent antioxidant activity as well as ability to stimulate cell proliferation in murine fibroblast (L929) cells and human umbilical vein endothelial cells (HUVECs). The incorporation of nanoparticles promoted angiogenesis by upregulating pro-angiogenic genes, vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF2), and epidermal growth factor (EGFR), and the gel caused complete wound closure in cells. In summary, the Y2O3 nanoparticle-loaded lauric acid-peptide conjugate gel is able to elicit the desired tissue regeneration responses and, therefore, has a strong potential as a matrix for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Vatan Chawla
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Sakshi Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
8
|
Sivagnanam S, Das K, Pan I, Barik A, Stewart A, Maity B, Das P. Functionalized Fluorescent Nanostructures Generated from Self-Assembly of a Cationic Tripeptide Direct Cell-Selective Chemotherapeutic Drug Delivery. ACS APPLIED BIO MATERIALS 2023; 6:836-847. [PMID: 36757106 DOI: 10.1021/acsabm.2c00996] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Nanodrug delivery systems (NDDs) capable of conveying chemotherapeutics directly into malignant cells without harming healthy ones are of significant interest in the field of cancer therapy. However, the development of nanostructures with the requisite biocompatibility, inherent optical properties, cellular penetration ability, encapsulation capability, and target selectivity has remained elusive. In an effort to develop cell-selective NDDs, we have synthesized a cationic tripeptide Boc-Arg-Trp-Phe-OMe (PA1), which self-assembles into well-ordered spheres in 100% aqueous medium. The inherent fluorescence properties of the peptide PA1 were shifted from the ultraviolet to the visible region by the self-assembly. These fluorescent nanostructures are proteolytically stable, photostable, and biocompatible, with characteristic blue fluorescence signals that permit us to monitor their intracellular entry in real time. We also demonstrate that these tripeptide spherical structures (TPSS) have the capacity to entrap the chemotherapeutic drug doxorubicin (Dox), shuttle the encapsulated drug within cancerous cells, and initiate the DNA damage signaling cascade, which culminates in apoptosis. Next, we functionalized the TPSS with an epithelial-cell-specific epithelial cell adhesion molecule aptamer. Aptamer-conjugated PA1 (PA1-Apt) facilitated efficient Dox delivery into the breast cancer epithelial cell line MCF7, resulting in cell death. However, cells of the human cardiomyocyte cell line AC16 were resistant to the cell killing actions of PA1-Apt. Together, these data demonstrate that not only can the self-assembly of cationic tripeptides like PA1 be exploited for efficient drug encapsulation and delivery but their unique chemistry also allows for functional modifications, which can improve the selectivity of these versatile NDDs.
Collapse
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur 603203, Tamil Nadu, India
| | - Kiran Das
- Department of Systems Biology, Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Ieshita Pan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
| | - Atanu Barik
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, Maharashtra, India
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Biswanath Maity
- Department of Systems Biology, Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
9
|
Dauer K, Werner C, Lindenblatt D, Wagner KG. Impact of process stress on protein stability in highly-loaded solid protein/PEG formulations from small-scale melt extrusion. Int J Pharm X 2022; 5:100154. [PMID: 36632069 PMCID: PMC9826855 DOI: 10.1016/j.ijpx.2022.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
As protein-based therapeutics often exhibit a limited stability in liquid formulations, there is a growing interest in the development of solid protein formulations due to improved protein stability in the solid state. We used small-scale (<3 g) ram and twin-screw extrusion for the solid stabilization of proteins (Lysozyme, BSA, and human insulin) in PEG-matrices. Protein stability after extrusion was systematically investigated using ss-DSC, ss-FTIR, CD spectroscopy, SEM-EDX, SEC, RP-HPLC, and in case of Lysozyme an activity assay. The applied analytical methods offered an accurate assessment of protein stability in extrudates, enabling the comparison of different melt extrusion formulations and process parameters (e.g., shear stress levels, screw configurations, residence times). Lysozyme was implemented as a model protein and was completely recovered in its active form after extrusion. Differences seen between Lysozyme- and BSA- or human insulin-loaded extrudates indicated that melt extrusion could have an impact on the conformational stability. In particular, BSA and human insulin were more susceptible to heat exposure and shear stress compared to Lysozyme, where shear stress was the dominant parameter. Consequently, ram extrusion led to less conformational changes compared to TSE. Ram extrusion showed good protein particle distribution resulting in the preferred method to prepare highly-loaded solid protein formulations.
Collapse
Key Words
- BSA, bovine serum albumin
- BSE, backscattered electron
- CD, circular dichroism
- DSC, Differential Scanning Calorimetry
- EDX, energy-dispersive X-ray detector
- EVA, Ethylene-vinyl acetate
- FTIR, Fourier transformation infrared spectroscopy
- HME, hot-melt extrusion
- HMWS, high molecular weight species
- Hot-melt extrusion
- PEG, polyethylene glycol
- PEO, polyethylene oxide
- PLGA, Poly Lactic-co-Glycolic Acid
- Protein stability
- SEM, scanning electron microscopy
- Small-scale
- Solid-state characterization
- TSE, twin-screw extrusion
- ss, solid-state
Collapse
Affiliation(s)
- Katharina Dauer
- University of Bonn, Department of Pharmaceutics, Institute of Pharmacy, Bonn, Germany
| | - Christian Werner
- University of Cologne, Department of Chemistry, Institute of Biochemistry, Cologne, Germany
| | - Dirk Lindenblatt
- University of Cologne, Department of Chemistry, Institute of Biochemistry, Cologne, Germany
| | - Karl Gerhard Wagner
- University of Bonn, Department of Pharmaceutics, Institute of Pharmacy, Bonn, Germany
- Corresponding author at: University of Bonn, Department of Pharmaceutics, 53121 Bonn, Germany.
| |
Collapse
|
10
|
Yu H, Song J, Zhang X, Jiang K, Fan H, Li Y, Zhao Y, Liu S, Hao D, Li G. Hydroxyapatite-Tethered Peptide Hydrogel Promotes Osteogenesis. Gels 2022; 8:gels8120804. [PMID: 36547328 PMCID: PMC9777555 DOI: 10.3390/gels8120804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Hydroxyapatite (HAp) as natural bone composition is highly osteoinductive. To harvest its osteoinductivity in bone regenerative engineering, the HAp-supporting hydrogel is urgently needed to minimize inhomogeneous aggregation of HAp. Here, we developed a HAp-stabilizing hydrogel based on peptide self-assembly. FmocFFRR was efficient for HAp-capping due to arginine-phosphate interaction. Tethering FmocFFRR on the HAp surface facilitated self-assembly to form FmocFFRR/HAp hybrid hydrogel, enabling stable dispersion of HAp in it. The molecular interactions between FmocFFRR and HAp particles were studied using microscopic and spectral characterizations. FmocFFRR/HAp hydrogel exhibited more enhanced mechanical properties than FmocFFRR. The biocompatibility of FmocFFRR/HAp hydrogel was verified using an ATP assay and live-dead staining assay. More importantly, FmocFFRR/HAp hydrogel not only enabled cell attachment on its surface, but also supported 3D cell culturing inside the hydrogel. Further, 3D culturing of MC3T3-E1 preosteoblasts inside FmocFFRR/HAp hydrogel significantly enhanced the expressions of osteogenesis markers, including alkaline phosphate (ALP), type-I collagen (COL1), and osteocalcin (OCN), demonstrating the promoting effect of osteoblast differentiation. These findings inspire its potential application in bone regenerative engineering.
Collapse
Affiliation(s)
- Hongwen Yu
- The Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang 712046, China
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jiaqi Song
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xianpeng Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
| | - Kuo Jiang
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Hong Fan
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Yibing Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Yuanting Zhao
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Shichang Liu
- The Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang 712046, China
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
- Correspondence: (S.L.); (D.H.); (G.L.)
| | - Dingjun Hao
- The Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang 712046, China
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
- Correspondence: (S.L.); (D.H.); (G.L.)
| | - Guanying Li
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
- Correspondence: (S.L.); (D.H.); (G.L.)
| |
Collapse
|
11
|
Munteanu IG, Grădinaru VR, Apetrei C. Sensitive Detection of Rosmarinic Acid Using Peptide-Modified Graphene Oxide Screen-Printed Carbon Electrode. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193292. [PMID: 36234420 PMCID: PMC9565883 DOI: 10.3390/nano12193292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 05/15/2023]
Abstract
Peptides have been used as components in biological analysis and fabrication of novel sensors due to several reasons, including well-known synthesis protocols, diverse structures, and acting as highly selective substrates for enzymes. Bio-conjugation strategies can provide a simple and efficient way to convert peptide-analyte interaction information into a measurable signal, which can be further used for the manufacture of new peptide-based biosensors. This paper describes the sensitive properties of a peptide-modified graphene oxide screen-printed carbon electrode for accurate and sensitive detection of a natural polyphenol antioxidant compound, namely rosmarinic acid. Glutaraldehyde was chosen as the cross-linking agent because it is able to bind nonspecifically to the peptide. We demonstrated that the strong interaction between the immobilized peptide on the surface of the sensor and rosmarinic acid favors the addition of rosmarinic acid on the surface of the electrode, leading to an efficient preconcentration that determines a high sensitivity of the sensor for the detection of rosmarinic acid. The experimental conditions were optimized using different pH values and different amounts of peptide to modify the sensor surface, so that its analytical performances were optimal for rosmarinic acid detection. By using cyclic voltammetry (CV) as a detection method, a very low detection limit (0.0966 μM) and a vast linearity domain, ranging from 0.1 µM to 3.20 µM, were obtained. The novelty of this work is the development of a novel peptide-based sensor with improved performance characteristics for the quantification of rosmarinic acid in cosmetic products of complex composition. The FTIR method was used to validate the voltammetric method results.
Collapse
Affiliation(s)
- Irina Georgiana Munteanu
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domneasca Street, 800008 Galaţi, Romania
| | | | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domneasca Street, 800008 Galaţi, Romania
- Correspondence: ; Tel.: +40-727-580-914
| |
Collapse
|
12
|
Maurya SK, Pathak SS, Panchakarla LS, Singh HB. Synthesis and Self‐Assembly of Amphiphilic Ferrocene‐Selenopeptide Conjugates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Harkesh B. Singh
- Indian Institute of Technology Department of Chemistry Powai 400076 Bombay INDIA
| |
Collapse
|
13
|
Liu S, Zhang Q, Shy AN, Yi M, He H, Lu S, Xu B. Enzymatically Forming Intranuclear Peptide Assemblies for Selectively Killing Human Induced Pluripotent Stem Cells. J Am Chem Soc 2021; 143:15852-15862. [PMID: 34528792 DOI: 10.1021/jacs.1c07923] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tumorigenic risk of undifferentiated human induced pluripotent stem cells (iPSCs), being a major obstacle for clinical application of iPSCs, requires novel approaches for selectively eliminating undifferentiated iPSCs. Here, we show that an l-phosphopentapeptide, upon the dephosphorylation catalyzed by alkaline phosphatase (ALP) overexpressed by iPSCs, rapidly forms intranuclear peptide assemblies made of α-helices to selectively kill iPSCs. The phosphopentapeptide, consisting of four l-leucine residues and a C-terminal l-phosphotyrosine, self-assembles to form micelles/nanoparticles, which transform into peptide nanofibers/nanoribbons after enzymatic dephosphorylation removes the phosphate group from the l-phosphotyrosine. The concentration of ALP and incubation time dictates the morphology of the peptide assemblies. Circular dichroism and FTIR indicate that the l-pentapeptide in the assemblies contains a mixture of an α-helix and aggregated strands. Incubating the l-phosphopentapeptide with human iPSCs results in rapid killing of the iPSCs (=<2 h) due to the significant accumulation of the peptide assemblies in the nuclei of iPSCs. The phosphopentapeptide is innocuous to normal cells (e.g., HEK293 and hematopoietic progenitor cell (HPC)) because normal cells hardly overexpress ALP. Inhibiting ALP, mutating the l-phosphotyrosine from the C-terminal to the middle of the phosphopentapeptides, or replacing l-leucine to d-leucine in the phosphopentapeptide abolishes the intranuclear assemblies of the pentapeptides. Treating the l-phosphopentapeptide with cell lysate of normal cells (e.g., HS-5) confirms the proteolysis of the l-pentapeptide. This work, as the first case of intranuclear assemblies of peptides, not only illustrates the application of enzymatic noncovalent synthesis for selectively targeting nuclei of cells but also may lead to a new way to eliminate other pathological cells that express a high level of certain enzymes.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States.,School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China
| | - Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Adrianna N Shy
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Shijiang Lu
- HebeCell, 21 Strathmore Road, Natick, Massachusetts 01760, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
14
|
He L, Ying L, Jingting X, Chen C, Shuntang G. Changes in the secondary structures and zeta potential of soybean peptide and its calcium complexes in different solution environments. Food Funct 2021; 12:5967-5974. [PMID: 34032239 DOI: 10.1039/d0fo03478a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To illustrate the relationship between environment hydrophobicity and soybean peptide and its calcium complexes when they are absorbed transmembrane, different solution environments (HBS buffer, TFE hydrophobic solution and cell suspension) were used to simulate hydrophilic and hydrophobic environments. In this study, soybean peptides (10-30 kDa) with a high calcium binding capacity were prepared by enzymatic hydrolysis and ultrafiltration. The results of cell experiments showed that the peptide could transport calcium into cells for absorption. Secondary structure changes of the peptide and its calcium complexes in different solution environments showed that the secondary structure of the peptide changed during the transmembrane absorption, and the contents of α-helix and β-sheet structures increased. Besides, the β-sheet structures in the peptide-calcium complexes were further converted to an α-helix structure. This conversion may be induced by the hydrophobicity of peptide solutions. In addition, when the conformation changes, the positively charged peptides in the sample will be exposed and then interact with cells, which is beneficial for the transmembrane of peptide-calcium complexes.
Collapse
Affiliation(s)
- Liu He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China. and Yunnan Urban Agricultural Engineering and Technological Research Center, College of Agriculture and Life Sciences, Kunming University, Kunming, 650214, China
| | - Lv Ying
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China. and Department of Food Science, Beijing University of Agriculture, Beijing, 102206, China
| | - Xu Jingting
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Chen Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Guo Shuntang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
15
|
Kim SH, Lahlali R, Karunakaran C, Vujanovic V. Specific Mycoparasite- Fusarium Graminearum Molecular Signatures in Germinating Seeds Disabled Fusarium Head Blight Pathogen's Infection. Int J Mol Sci 2021; 22:ijms22052461. [PMID: 33671098 PMCID: PMC7957488 DOI: 10.3390/ijms22052461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 01/04/2023] Open
Abstract
Advances in Infrared (IR) spectroscopies have entered a new era of research with applications in phytobiome, plant microbiome and health. Fusarium graminearum 3-ADON is the most aggressive mycotoxigenic chemotype causing Fusarium head blight (FHB) in cereals; while Sphaerodes mycoparasitica is the specific Fusarium mycoparasite with biotrophic lifestyle discovered in cereal seeds and roots. Fourier transform infrared (FTIR) spectroscopy analyses depicted shifts in the spectral peaks related to mycoparasitism mainly within the region of proteins, lipids, also indicating a link between carbohydrates and protein regions, involving potential phenolic compounds. Especially, S. mycoparasitica contributes to significant changes in lipid region 3050–2800 cm−1, while in the protein region, an increasing trend was observed for the peaks 1655–1638 cm−1 (amide I) and 1549–1548 cm−1 (amide II) with changes in indicative protein secondary structures. Besides, the peak extending on the region 1520–1500 cm−1 insinuates a presence of aromatic compounds in presence of mycoparasite on the F. graminearum root sample. Monitoring shift in improved seed germination, fungus-fungus interface through scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), and FTIR molecular signatures combined with principal component analysis (PCA) proved useful tools to detect an early mycoparasitism as a vital asset of the preventive biocontrol strategy against plant pathogens.
Collapse
Affiliation(s)
- Seon Hwa Kim
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| | - Rachid Lahlali
- Canadian Light Source, 44 Innovation Blvd, Saskatoon, SK S7N 2V3, Canada; (R.L.); (C.K.)
- Department of Plant Protection, Phytopathology Unit, Ecole Nationale d’Agriculture de Meknès, BP/S 40, Meknès 50001, Morocco
| | - Chithra Karunakaran
- Canadian Light Source, 44 Innovation Blvd, Saskatoon, SK S7N 2V3, Canada; (R.L.); (C.K.)
| | - Vladimir Vujanovic
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
- Correspondence:
| |
Collapse
|
16
|
Chu B, He JM, Liu LL, Wu CX, You LL, Li XL, Wang S, Chen CS, Tu M. Proangiogenic Peptide Nanofiber Hydrogels for Wound Healing. ACS Biomater Sci Eng 2021; 7:1100-1110. [PMID: 33512985 DOI: 10.1021/acsbiomaterials.0c01264] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rapid vascularization is vital for dermal regeneration, nutrient and nutrition transfer, metabolic waste removal, and prevention of infection. This study reports on a series of proangiogenic peptides designed to undergo self-assembly and promote angiogenesis and hence skin regeneration. The proangiogenic peptides comprised an angiogenic peptide segment, GEETEVTVEGLEPG, and a β-sheet structural peptide sequence. These peptides dissolved easily in ultrapure water and rapidly self-assembled into hydrogels in a pH-dependent manner, creating three-dimensional fibril network structures and nanofibers as revealed by a scanning microscope and a transmission electron microscope. In vitro experiments showed that the peptide hydrogels favored adhesion and proliferation of mouse fibroblasts (L929) and human umbilical vein endothelial cells (HUVECs). In particular, many connected tubes were formed in the HUVECs after 8 h of culture on the peptide hydrogels. In vivo experiments demonstrated that new blood vessels grew into the proangiogenic peptide hydrogels within 2 weeks after subcutaneous implantation in mice. Moreover, the proangiogenic-combined hydrogels exhibited faster repair cycles and better healing of skin defects. Collectively, the results indicate that the proangiogenic peptide hydrogels are a promising therapeutic option for skin regeneration.
Collapse
Affiliation(s)
- Bin Chu
- Department of Biomedical Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.,Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Jin-Mei He
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Lan-Lan Liu
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Chao-Xi Wu
- Department of Biomedical Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Ling-Ling You
- Department of Biomedical Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Xiao-Li Li
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Song Wang
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Chang-Sheng Chen
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Mei Tu
- Department of Biomedical Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
17
|
Park MH, Park J, Lee HJ, Jeong B. Alpha-beta transition induced by C18-conjugation of polyalanine and its implication in aqueous solution behavior of poly(ethylene glycol)-polyalanine block copolymers. Biomater Res 2020; 24:23. [PMID: 33334374 PMCID: PMC7745361 DOI: 10.1186/s40824-020-00200-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aqueous solution behavior of thermosensitive PEG-PA block copolymers as well as secondary structure of PA is expected to significantly change through modification of the hydrophobic PA by long chain alkyl (C18) groups with different configurations. METHOD Oleoyl and stearoyl (C18) groups were conjugated to poly(ethylene glycol)-poly(L-alanine) (PEG-PA; EG45A16) diblock copolymers to compare their conjugation effect on nano-assemblies and corresponding aqueous solution behavior of the polymers. RESULTS Due to the nature of a hydrophilic PEG block and a hydrophobic PA or C18-modified PA, PEG-PA, oleoyl group-conjugated PEG-PA (PEG-PAO), and stearoyl group-conjugated PEG-PA (PEG-PAS) block copolymers form micelles in water. Compared with PEG-PA, the micelle size of PEG-PAO and PEG-PAS increased. Circular dichroism and FTIR spectra of aqueous polymer solutions showed that β sheet content increased, whereas α helix content decreased by C18 modification of PEG-PA. PEG-PAS showed better performance in ice crystallization inhibition than PEG-PAO. The sol-to-gel transition temperatures of aqueous PEG-PAO solutions were 25-37 °C higher than those of aqueous PEG-PA solutions, whereas aqueous PEG-PAS solutions remained as gels in the temperature range of 0-80 °C. 1H-NMR spectra indicated that the oleoyl groups increased core mobility, whereas stearoyl groups decreased the core mobility of the micelles in water. The difference in micromobility between PAO and PAS interfered or promoted gelation of the aqueous polymer solutions, respectively. CONCLUSIONS This study suggests that a hydrophobic C18-modification of polypeptide induces α helix-to-β sheet transition of the polypeptide; however, aqueous solution behaviors including ice recrystallization inhibition and gelation are significantly affected by the nature of the hydrophobic molecule.
Collapse
Affiliation(s)
- Min Hee Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, South Korea
| | - Jinkyung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, South Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, South Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, South Korea.
| |
Collapse
|
18
|
Taylor EA, Donnelly E. Raman and Fourier transform infrared imaging for characterization of bone material properties. Bone 2020; 139:115490. [PMID: 32569874 DOI: 10.1016/j.bone.2020.115490] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
As the application of Raman spectroscopy to study bone has grown over the past decade, making it a peer technology to FTIR spectroscopy, it has become critical to understand their complimentary roles. Recent technological advancements have allowed these techniques to collect grids of spectra in a spatially resolved fashion to generate compositional images. The advantage of imaging with these techniques is that it allows the heterogenous bone tissue composition to be resolved and quantified. In this review we compare, for non-experts in the field of vibrational spectroscopy, the instrumentation and underlying physical principles of FTIR imaging (FTIRI) and Raman imaging. Additionally, we discuss the strengths and limitations of FTIR and Raman spectroscopy, address sample preparation, and discuss outcomes to provide researchers insight into which techniques are best suited for a given research question. We then briefly discuss previous applications of FTIRI and Raman imaging to characterize bone tissue composition and relationships of compositional outcomes with mechanical performance. Finally, we discuss emerging technical developments in FTIRI and Raman imaging which provide new opportunities to identify changes in bone tissue composition with disease, age, and drug treatment.
Collapse
Affiliation(s)
- Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States of America
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America; Research division, Hospital for Special Surgery, New York, NY, United States of America.
| |
Collapse
|
19
|
Mrdenovic D, Su Z, Kutner W, Lipkowski J, Pieta P. Alzheimer's disease-related amyloid β peptide causes structural disordering of lipids and changes the electric properties of a floating bilayer lipid membrane. NANOSCALE ADVANCES 2020; 2:3467-3480. [PMID: 36134289 PMCID: PMC9417616 DOI: 10.1039/d0na00292e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/27/2020] [Indexed: 05/10/2023]
Abstract
Neurodegeneration in Alzheimer's disease is associated with disruption of the neuronal cell membrane by the amyloid β (Aβ) peptide. However, the disruption mechanism and the resulting changes in membrane properties remain to be elucidated. To address this issue, herein the interaction of amyloid β monomers (AβMs) and amyloid β oligomers (AβOs) with a floating bilayer lipid membrane (fBLM) was studied using electrochemical and IR spectroscopy techniques. IR measurements showed that both Aβ forms interacted similarly with the hydrophobic membrane core (lipid acyl chains), causing conformational and orientational changes of the lipid acyl chains, thus decreasing acyl chain mobility and altering the lipid packing unit cell. In the presence of AβOs, these changes were more significant than those in the presence of AβMs. However, respective interactions of AβMs and AβOs with the membrane hydrophilic exterior (lipid heads) were quite different. AβMs dehydrated lipid heads without affecting their orientation while AβOs changed the orientation of lipid heads keeping their hydration level intact. Electrochemical measurements showed that only AβOs porated the fBLM, thus significantly changing the fBLM electrical properties. The present results provide new molecular-level insight into the mechanism of membrane destruction by AβOs and changes in the membrane properties.
Collapse
Affiliation(s)
- Dusan Mrdenovic
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
- Department of Chemistry, University of Guelph 50 Stone Road East Guelph Ontario N1G 2W1 Canada
| | - Zhangfei Su
- Department of Chemistry, University of Guelph 50 Stone Road East Guelph Ontario N1G 2W1 Canada
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
- Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw Wóycickiego 1/3 01-815 Warsaw Poland
| | - Jacek Lipkowski
- Department of Chemistry, University of Guelph 50 Stone Road East Guelph Ontario N1G 2W1 Canada
| | - Piotr Pieta
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
20
|
Jeyasanta I, Sathish N, Patterson J. Identification of Bioactive Peptides in Mussel Species of Kanyakumari Coast. ACTA ACUST UNITED AC 2020. [DOI: 10.3923/ajbkr.2020.75.86] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Yuan X, Bao X, Feng G, Zhang M, Ma S. Effects of peptide–calcium complexes from sunflower seeds and peanuts on enhancing bone mineral density. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xingyu Yuan
- Department of Food Science and Engineering Inner Mongolia Agricultural University No. 306 Zhaowuda Road, Saihan District Hohhot Inner Mongolia 010018 China
| | - Xiaolan Bao
- Department of Food Science and Engineering Inner Mongolia Agricultural University No. 306 Zhaowuda Road, Saihan District Hohhot Inner Mongolia 010018 China
| | - Guoxue Feng
- Department of Food Science and Engineering Inner Mongolia Agricultural University No. 306 Zhaowuda Road, Saihan District Hohhot Inner Mongolia 010018 China
| | - Meili Zhang
- Department of Food Science and Engineering Inner Mongolia Agricultural University No. 306 Zhaowuda Road, Saihan District Hohhot Inner Mongolia 010018 China
| | - Sarina Ma
- Department of Food Science and Engineering Inner Mongolia Agricultural University No. 306 Zhaowuda Road, Saihan District Hohhot Inner Mongolia 010018 China
| |
Collapse
|
22
|
Magalhães S, Trindade D, Martins T, Martins Rosa I, Delgadillo I, Goodfellow BJ, da Cruz E Silva OAB, Henriques AG, Nunes A. Monitoring plasma protein aggregation during aging using conformation-specific antibodies and FTIR spectroscopy. Clin Chim Acta 2019; 502:25-33. [PMID: 31790700 DOI: 10.1016/j.cca.2019.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 11/29/2022]
Abstract
The loss of proteostasis during aging has been well described using different models, however little is known with respect to protein aggregation levels in biofluids with aging. Therefore, the aim of this study was to assess the pattern of age-related protein aggregation in human plasma using two distinct approaches: analysis with conformation-specific antibodies and FTIR spectroscopy. The latter has been widely used in biomedical research to study protein conformational changes in health and disease. Samples from a primary care based-cohort from the Aveiro region, Portugal, were used for slot-blot analyses followed by immunodetection with conformation-specific antibodies and for the acquisition of FTIR spectra. Immunoblot analyses revealed an age-dependent evolution of the protein conformational profile in human plasma, towards a decrease in prefibrillar oligomers and an increase in fibrillar structures. This finding was also supported by PLS-R multivariate analysis of FTIR data, where a positive correlation between the age of the donors and secondary structure of plasma proteins could be observed. Samples from younger donors are characterized by antiparallel β-sheet-containing structures while intermolecular β-sheets characterized older samples. Exclusion of age-associated co-morbidities improved the correlation between protein conformational profiles and aging. The results reveal structural changes in human plasma proteins from middle to old age, confirming the age-associated changes in protein aggregation, and support the applicability of FTIR as a reliable approach to study proteostasis during aging.
Collapse
Affiliation(s)
- Sandra Magalhães
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | - Dário Trindade
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Tânia Martins
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Ilka Martins Rosa
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | | | - Brian J Goodfellow
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | - Odete A B da Cruz E Silva
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; The Discovery CTR, University of Aveiro Campus, 3810-193 Aveiro, Portugal.
| | - Ana Gabriela Henriques
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Alexandra Nunes
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
23
|
Tinoco A, Gonçalves J, Silva C, Cavaco-Paulo A, Ribeiro A. Crystallin Fusion Proteins Improve the Thermal Properties of Hair. Front Bioeng Biotechnol 2019; 7:298. [PMID: 31709253 PMCID: PMC6823552 DOI: 10.3389/fbioe.2019.00298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 11/21/2022] Open
Abstract
Styling hair with straightening irons is a popular daily hair routine that significantly damage the hair keratin fiber due to the high temperature applied. In this study, we investigate the effect of two fusion proteins based on the human eye γD-crystallin conjugated with a keratin-based peptide (KP-Cryst Wt and KP-Cryst Mut) on hair exposed to thermal damage. The mutant form was designed to improve protein stability and promote interaction with the hair. Through the study, it was demonstrated the protection of Asian and Caucasian virgin hair's structure by the pretreatments with the KP-Cryst fusion proteins. After hair thermal exposure, a higher water content was quantified by TGA on the hair fibers pretreated with the fusion proteins (about 38% for the KP-Cryst Wt and 44% for the KP-Cryst Mut). Also, negligible alterations in hair fibers' stiffness were observed after iron application, demonstrating the proteins capacity to effectively prevent the conversion of keratin α-helix structure into β-sheets. The results proved the capacity of the fusion proteins to bind to hair and protect it against high temperatures', supporting the development of new formulations based on the KP-Cryst proteins.
Collapse
Affiliation(s)
- Ana Tinoco
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - José Gonçalves
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Carla Silva
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | | | - Artur Ribeiro
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
24
|
Näsström T, Andersson PO, Lejon C, Karlsson BCG. Amyloid fibrils prepared using an acetylated and methyl amidated peptide model of the α-Synuclein NAC 71-82 amino acid stretch contain an additional cross-β structure also found in prion proteins. Sci Rep 2019; 9:15949. [PMID: 31685848 PMCID: PMC6828723 DOI: 10.1038/s41598-019-52206-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/15/2019] [Indexed: 11/09/2022] Open
Abstract
The 71-82 fragment of the non-amyloid-β component (NAC) region of the Parkinson's disease (PD) and dementia with Lewy bodies (DLB) related protein α-Synuclein, has been reported to be important during protein misfolding. Although reports have demonstrated the importance of this fragment for the aggregation properties of the full-length protein, its exact role in pre-fibrillar oligomerisation, fibrillar growth and morphology has not yet been fully elucidated. Here, we provide evidence that fibrils prepared from an acetylated and methyl amidated peptide of the NAC 71-82 amino acid stretch of α-Synuclein are amyloid and contain, in addition to the cross-β structure detected in the full-length protein fibrils, a cross-β structure previously observed in prion proteins. These results shed light on the aggregation propensity of the NAC 71-82 amino acid stretch of the full-length protein but also the roles of the N- and C-terminal domains of α-Synuclein in balancing this aggregation propensity. The results also suggest that early aggregated forms of the capped NAC 71-82 peptide generated structures were stabilised by an anti-parallel and twisted β-sheet motif. Due to its expected toxicity, this β-sheet motif may be a promising molecular target for the development of therapeutic strategies for PD and DLB.
Collapse
Affiliation(s)
- Thomas Näsström
- Neurodegenerative Disorders Unit, Linnæus University, SE-392 31, Kalmar, Sweden.
| | - Per Ola Andersson
- FOI Swedish Defence Research Agency, CBRN Defence & Security, SE-901 82, Umeå, Sweden.,Department of Engineering Sciences: Applied Material Science, Uppsala University, SE-751 21, Uppsala, Sweden
| | - Christian Lejon
- FOI Swedish Defence Research Agency, CBRN Defence & Security, SE-901 82, Umeå, Sweden
| | - Björn C G Karlsson
- Physical Pharmacy Laboratory, Linnæus University Centre for Biomaterials Chemistry, Linnæus University, SE-392 31, Kalmar, Sweden.
| |
Collapse
|
25
|
Fabrication of short peptide cages by interfacial self-assembly on CaCO3 templates. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Nakano K, Horiuchi J, Hirata S, Yamanaka M, Himeno T, Ishimatsu R. Folding and Assembly of Vanilloid Receptor Secondary-Structure Peptide with Hexahistidine Linker at Nickel-Nitrilotriacetic Acid Monolayer for Capsaicin Recognition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2047-2054. [PMID: 30605338 DOI: 10.1021/acs.langmuir.8b03202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herein, we report the self-assembly of a synthetic vanilloid receptor (VR) peptide that selectively binds capsaicin. We synthesized a 26-mer peptide-YSEILFFVQS-HHHHHH-LAMGWTNMLY (S3HS4)-comprising two chemoreceptor domains of transient receptor potential channel (TRPV1) linked by a hexahistidine sequence. High-speed atomic force microscopy (AFM) imaging in water revealed that the peptide structures alternated rapidly between wedge shape and linear forms. Circular dichroism spectroscopy showed that 65% of the amide units in the peptide chain adopted an α-helix structure, which was ascribed to the chemoreceptor domains. S3HS4 developed well-packed monolayers at the Ni-treated thiolated nitrilotriacetic acid self-assembled monolayers by chelation of the hexahistidine segment, as characterized by infrared spectroscopy and AFM, which exhibited statistically constant specific height. Therefore, S3HS4 was expected to fold spontaneously upon chelation, and the resulting helix-turn-helix conformers developed films while uniformly oriented: the tilt angle was 69° from the surface normal to the substrate. According to microgravimetric analysis using a quartz crystal microbalance (QCM), the adsorption was 84 ± 47 pmol cm-2 ( n = 3), which was almost consistent with the saturation adsorption of an α-helix unit. We also used a QCM to investigate the host-guest reactions of S3HS4 and found that the S3HS4-attached QCM-chip-bound capsaicin with an apparent binding constant of (4.2 ± 3.6) × 104 M-1 ( n = 4), whereas there was no evidence of binding to vanillin or acetophenone. Two controls-a blank chip without S3HS4 and a chip modified with a single helical peptide (LAMGWTNMLY-HHHHHH)-produced no capsaicin response. To the best of our knowledge, S3HS4 is the first example of a synthetic VR mimic peptide. We believe that the present surface-directed structure-based design can be used to exploit the α-helix bundle in hexahistidine-linked bishelical peptides.
Collapse
Affiliation(s)
- Koji Nakano
- Department of Applied Chemistry, Faculty of Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Jun Horiuchi
- Department of Applied Chemistry, Faculty of Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Shingo Hirata
- Department of Applied Chemistry, Faculty of Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Makoto Yamanaka
- Department of Applied Chemistry, Faculty of Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Toshiki Himeno
- Department of Applied Chemistry, Faculty of Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Ryoichi Ishimatsu
- Department of Applied Chemistry, Faculty of Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| |
Collapse
|
27
|
Ricard TC, Haycraft C, Iyengar SS. Adaptive, Geometric Networks for Efficient Coarse-Grained Ab Initio Molecular Dynamics with Post-Hartree–Fock Accuracy. J Chem Theory Comput 2018; 14:2852-2866. [DOI: 10.1021/acs.jctc.8b00186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Timothy C. Ricard
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Cody Haycraft
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Srinivasan S. Iyengar
- Department of Chemistry and Department of Physics, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
28
|
Zeeshan F, Tabbassum M, Jorgensen L, Medlicott NJ. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as an Analytical Method to Investigate the Secondary Structure of a Model Protein Embedded in Solid Lipid Matrices. APPLIED SPECTROSCOPY 2018; 72:268-279. [PMID: 29022355 DOI: 10.1177/0003702817739908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Protein drugs may encounter conformational perturbations during the formulation processing of lipid-based solid dosage forms. In aqueous protein solutions, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can investigate these conformational changes following the subtraction of spectral interference of solvent with protein amide I bands. However, in solid dosage forms, the possible spectral contribution of lipid carriers to protein amide I band may be an obstacle to determine conformational alterations. The objective of this study was to develop an ATR FT-IR spectroscopic method for the analysis of protein secondary structure embedded in solid lipid matrices. Bovine serum albumin (BSA) was chosen as a model protein, while Precirol AT05 (glycerol palmitostearate, melting point 58 ℃) was employed as the model lipid matrix. Bovine serum albumin was incorporated into lipid using physical mixing, melting and mixing, or wet granulation mixing methods. Attenuated total reflection FT-IR spectroscopy and size exclusion chromatography (SEC) were performed for the analysis of BSA secondary structure and its dissolution in aqueous media, respectively. The results showed significant interference of Precirol ATO5 with BSA amide I band which was subtracted up to 90% w/w lipid content to analyze BSA secondary structure. In addition, ATR FT-IR spectroscopy also detected thermally denatured BSA solid alone and in the presence of lipid matrix indicating its suitability for the detection of denatured protein solids in lipid matrices. Despite being in the solid state, conformational changes occurred to BSA upon incorporation into solid lipid matrices. However, the extent of these conformational alterations was found to be dependent on the mixing method employed as indicated by area overlap calculations. For instance, the melting and mixing method imparted negligible effect on BSA secondary structure, whereas the wet granulation mixing method promoted more changes. Size exclusion chromatography analysis depicted the complete dissolution of BSA in the aqueous media employed in the wet granulation method. In conclusion, an ATR FT-IR spectroscopic method was successfully developed to investigate BSA secondary structure in solid lipid matrices following the subtraction of lipid spectral interference. The ATR FT-IR spectroscopy could further be applied to investigate the secondary structure perturbations of therapeutic proteins during their formulation development.
Collapse
Affiliation(s)
- Farrukh Zeeshan
- 1 School of Pharmacy, University of Otago, Dunedin, New Zealand
- 2 School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Misbah Tabbassum
- 3 Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Lene Jorgensen
- 4 Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | |
Collapse
|
29
|
Efficient gene delivery by oligochitosan conjugated serum albumin: Facile synthesis, polyplex stability, and transfection. Carbohydr Polym 2017; 183:37-49. [PMID: 29352891 DOI: 10.1016/j.carbpol.2017.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/17/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Abstract
Chitosan and its derivatives have shown to be potential gene carriers with biocompatiblility and safety. However, their practical delivery is far from being ideal because of the low transfection efficiency. The present work describes the potential of a natural protein, bovine serum albumin (BSA), conjugated with a natural oligosaccharide, oligochitosan (OC), as a considerable promising approach for a safe and efficient non-viral gene delivery vector. The FTIR spectra proved the effective conjugation of BSA with OC through covalent bond. The condensation ability of plasmid DNA (pDNA) with a BSA-OC biopolymer was analyzed by gel retardation assay, competition binding assay, and dynamic light scattering used to measure the nanoparticle size. In addition, the BSA-OC biopolymer showed the protection of pDNA from enzymatic degradation by DNase I and showed good stability when exposed to 50% fetal bovine serum. The transfection efficiency was evaluated in the presence of 10% serum-supplemented media or serum-free media on three kinds of mammalian cells. Our results showed that the BSA-OC biopolymer is a good non-viral vehicle for gene delivery. We investigated the parameters such as the pDNA payload, temperature, incubating duration, and biopolymer/pDNA ratio on the transfection efficiency. This hybrid vehicle had the ability to transfect 90% of cells and to maintain 80% of cell viability. The aforementioned results suggest that the facile synthesis of the BSA-OC biopolymer could overcome the cytotoxicity problem and transfection barriers during in vitro gene delivery.
Collapse
|
30
|
Yeh YH(J, Lin CM, Chen TT. Human IGF-I Eb-peptide induces cell attachment and lamellipodia outspread of metastatic breast carcinoma cells (MDA-MB-231). Exp Cell Res 2017; 358:199-208. [DOI: 10.1016/j.yexcr.2017.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/18/2017] [Accepted: 06/22/2017] [Indexed: 11/29/2022]
|
31
|
Goel R, Sharma AK, Gupta A. Self-assembled amphiphilic mixed α/β-tetrapeptoid nanostructures as promising drug delivery vehicles. NEW J CHEM 2017. [DOI: 10.1039/c6nj03281h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tetrapeptoid nanostructures have been prepared and their potential used for delivering hydrophobic drug molecules.
Collapse
Affiliation(s)
- Rahul Goel
- Department of Chemistry
- Dyal Singh College
- University of Delhi
- New Delhi-110003
- India
| | - Ashwani Kumar Sharma
- NAR Laboratory
- CSIR-Institute of Genomics and Integrative Biology
- Delhi-110007
- India
| | - Alka Gupta
- Department of Chemistry
- Dyal Singh College
- University of Delhi
- New Delhi-110003
- India
| |
Collapse
|
32
|
Schwaighofer A, Alcaráz MR, Araman C, Goicoechea H, Lendl B. External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations. Sci Rep 2016; 6:33556. [PMID: 27633337 PMCID: PMC5025714 DOI: 10.1038/srep33556] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/30/2016] [Indexed: 12/19/2022] Open
Abstract
Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy are analytical techniques employed for the analysis of protein secondary structure. The use of CD spectroscopy is limited to low protein concentrations (<2 mg ml(-1)), while FTIR spectroscopy is commonly used in a higher concentration range (>5 mg ml(-1)). Here we introduce a quantum cascade laser (QCL)-based IR transmission setup for analysis of protein and polypeptide secondary structure at concentrations as low as 0.25 mg ml(-1) in deuterated buffer solution. We present dynamic QCL-IR spectra of the temperature-induced α-helix to β-sheet transition of poly-L-lysine. The concentration dependence of the α-β transition temperature between 0.25 and 10 mg ml(-1) was investigated by QCL-IR, FTIR and CD spectroscopy. By using QCL-IR spectroscopy it is possible to perform IR spectroscopic analysis in the same concentration range as CD spectroscopy, thus enabling a combined analysis of biomolecules secondary structure by CD and IR spectroscopy.
Collapse
Affiliation(s)
- Andreas Schwaighofer
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-UPA, 1060 Vienna, Austria
| | - Mirta R. Alcaráz
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-UPA, 1060 Vienna, Austria
- Laboratorio de Desarrollo Analítico y Quimiometría, FBCB, Universidad Nacional del Litoral-CONICET, Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Can Araman
- Department of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Héctor Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría, FBCB, Universidad Nacional del Litoral-CONICET, Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-UPA, 1060 Vienna, Austria
| |
Collapse
|
33
|
Tribological efficacy and stability of phospholipid-based membrane lubricants in varying pH chemical conditions. Biointerphases 2016; 11:019002. [PMID: 26727914 DOI: 10.1116/1.4939246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, the authors examine the influence of joint chemical environment by measuring changes in the tribological properties (friction coefficient and charge density) of contacting surfaces of normal and degenerated cartilage samples in bath solutions of varying pH (2.0-9.0). Bovine articular cartilage samples (n = 54) were subjected to several surface measurements, including interfacial energy, contact angle, and friction coefficient, at varying pH. The samples were delipidized and then subjected to the same measurement protocols. Our results reveal that the interfacial energy and charge density, which have been shown to be related to friction coefficient, decrease with pH in the acidic range and approach constant values at physiological (or synovial fluid) pH of 7.4 and beyond it, i.e., toward basic pH domain. The authors conclude that this rather complex response explains the long-term efficacy with respect to ageing and associated pH changes, of the phospholipid layers that facilitate the almost frictionless, hydration-lubrication involving contact in the mammalian musculoskeletal system.
Collapse
|
34
|
Lamellar slippage of bilayers--a hypothesis on low friction of natural joints. Biointerphases 2015; 9:041004. [PMID: 25553879 DOI: 10.1116/1.4902805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The cartilage's amphoteric surface behavior is a physical phenomenon in biological lubrication. However, there is a lack of knowledge on amphoteric phospholipids bilayers and in overcoming friction in cartilage joints. In this paper, friction experiments were conducted, and the cartilage's surface was characterized using pH and wettability, while the interfacial energy and coefficients were determined. The lamellar slippage of bilayers and a short-range repulsion between the interfaces of negatively charged (-PO4 (-)) cartilage surfaces resulted in low frictional properties of the joint.
Collapse
|
35
|
Pachahara SK, Nagaraj R. Probing the role of aromatic residues in the self-assembly of Aβ(16-22) in fluorinated alcohols and their aqueous mixtures. Biochem Biophys Rep 2015; 2:1-13. [PMID: 29124140 PMCID: PMC5668628 DOI: 10.1016/j.bbrep.2015.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 11/19/2022] Open
Abstract
The Aβ(16–22) sequence KLVFFAE spans the hydrophobic core of the Aβ peptide and plays an important role in its self-assembly. Apart from forming amyloid fibrils, Aβ(16–22) can self-associate into highly ordered nanotubes and ribbon-like structures depending on the composition of solvent used for dissolution. The Aβ(16–22) sequence which has FF at the 19th and 20th positions would be a good model to investigate peptide self-assembly in the context of aromatic interactions. In this study, self-assembly of Aβ(16–22) and its aromatic analogs obtained by replacement of F19, F20 or both by Y or W was examined after dissolution in fluorinated alcohols and their aqueous mixtures in solvent cluster forming conditions. The results indicate that the presence of aromatic residues Y and W and their position in the sequence plays an important role in self-assembly. We observe the formation of amyloid fibrils and other self-assembled structures such as spheres, rings and beads. Our results indicate that 20% HFIP is more favourable for amyloid fibril formation as compared to 20% TFE, when F is replaced with Y or W. The dissolution of peptides in DMSO followed by evaporation of solvent and dissolution in water appears to greatly influence peptide conformation, morphology and cross-β content of self-assembled structures. Our study shows that positioning of aromatic residues F, Y and W have an important role in directing self-assembly of the peptides. Effect of fluorinated alcohols on the aggregation of Aβ(16–22) and analogs was investigated. Replacement of F by Y and W in the Aβ(16–22) sequence modulates self-assembly. Positions of F, Y, W in Aβ(16–22) plays an important role in self-assembly.
Collapse
|
36
|
Shinde UP, Moon HJ, Ko DY, Jung BK, Jeong B. Control of rhGH Release Profile from PEG–PAF Thermogel. Biomacromolecules 2015; 16:1461-9. [DOI: 10.1021/acs.biomac.5b00325] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Usha Pramod Shinde
- Department of Chemistry and
Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Korea
| | - Hyo Jung Moon
- Department of Chemistry and
Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Korea
| | - Du Young Ko
- Department of Chemistry and
Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Korea
| | - Bo Kyong Jung
- Department of Chemistry and
Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and
Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Korea
| |
Collapse
|
37
|
Park MH, Moon HJ, Park JH, Shinde UP, Ko DY, Jeong B. PEG-Poly(l-alanine) Thermogel As a 3D Scaffold of Bone-Marrow-Derived Mesenchymal Stem Cells. Macromol Biosci 2014; 15:464-72. [DOI: 10.1002/mabi.201400426] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/28/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Min Hee Park
- Department of Chemistry and Nano Science, Ewha Global Top 5 Research Program; Ewha Womans University; 52 Ewhayeodae-gil, Seodaemun-gu Seoul 120-750 Korea
| | - Hyo Jung Moon
- Department of Chemistry and Nano Science, Ewha Global Top 5 Research Program; Ewha Womans University; 52 Ewhayeodae-gil, Seodaemun-gu Seoul 120-750 Korea
| | - Jin Hye Park
- Department of Chemistry and Nano Science, Ewha Global Top 5 Research Program; Ewha Womans University; 52 Ewhayeodae-gil, Seodaemun-gu Seoul 120-750 Korea
| | - Usha Pramod Shinde
- Department of Chemistry and Nano Science, Ewha Global Top 5 Research Program; Ewha Womans University; 52 Ewhayeodae-gil, Seodaemun-gu Seoul 120-750 Korea
| | - Du Young Ko
- Department of Chemistry and Nano Science, Ewha Global Top 5 Research Program; Ewha Womans University; 52 Ewhayeodae-gil, Seodaemun-gu Seoul 120-750 Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nano Science, Ewha Global Top 5 Research Program; Ewha Womans University; 52 Ewhayeodae-gil, Seodaemun-gu Seoul 120-750 Korea
| |
Collapse
|
38
|
Park MH, Yu Y, Moon HJ, Ko DY, Kim HS, Lee H, Ryu KH, Jeong B. 3D culture of tonsil-derived mesenchymal stem cells in poly(ethylene glycol)-poly(L-alanine-co-L-phenyl alanine) thermogel. Adv Healthc Mater 2014; 3:1782-91. [PMID: 24958187 DOI: 10.1002/adhm.201400140] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/01/2014] [Indexed: 01/04/2023]
Abstract
Poly(ethylene glycol)-poly(L-alanine-co-L-phenyl alanine) (PEG-PAF) aqueous solutions undergo sol-to-gel transition as the temperature increases. The transition is driven by the micelle aggregation involving the partial dehydration of the PEG block and the partial increase in β-sheet content of the PAF block. Tonsil-tissue-derived mesenchymal stem cells (TMSCs), a new stem cell resource, are encapsulated through the sol-to-gel transition of the TMSC-suspended PEG-PAF aqueous solutions. The encapsulated TMSCs are in vitro 3D cultured by using induction media supplemented with adipogenic, osteogenic, or chondrogenic factors, where the TMSCs preferentially undergo chondrogenesis with high expressions of type II collagen and sulfated glycosaminoglycan. As a feasibility study of the PEG-PAF thermogel for injectable tissue engineering, the TMSCs encapsulated in hydrogels are implanted in the subcutaneous layer of mice by injecting the TMSC suspended PEG-PAF aqueous solution. The in vivo studies also prove that TMSCs undergo chondrogenesis with high expression of the chondrogenic biomarkers. This study suggests that the TMSCs can be an excellent resource of MSCs, and the thermogelling PEG-PAF is a promising injectable tissue engineering scaffold, particularly for chondrogenic differentiation of the stem cells.
Collapse
Affiliation(s)
- Min Hee Park
- Department of Chemistry and Nano Science; Ewha Womans University; Ewha Global Top 5 Research Program; 52 Ewhayeodae-gil Seodaemun-gu Seoul 120-750 Korea
| | - Yeonsil Yu
- Departments of Molecular Medicine; Otorhinolaryngology - Head and Neck Surgery and Pediatrics; School of Medicine Ewha Womans University; Ewha Global Top 5 Research Program; Seoul Korea
| | - Hyo Jung Moon
- Department of Chemistry and Nano Science; Ewha Womans University; Ewha Global Top 5 Research Program; 52 Ewhayeodae-gil Seodaemun-gu Seoul 120-750 Korea
| | - Du Young Ko
- Department of Chemistry and Nano Science; Ewha Womans University; Ewha Global Top 5 Research Program; 52 Ewhayeodae-gil Seodaemun-gu Seoul 120-750 Korea
| | - Han Su Kim
- Departments of Molecular Medicine; Otorhinolaryngology - Head and Neck Surgery and Pediatrics; School of Medicine Ewha Womans University; Ewha Global Top 5 Research Program; Seoul Korea
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Science; Ewha Womans University; Ewha Global Top 5 Research Program; Seoul Korea
| | - Kyung Ha Ryu
- Departments of Molecular Medicine; Otorhinolaryngology - Head and Neck Surgery and Pediatrics; School of Medicine Ewha Womans University; Ewha Global Top 5 Research Program; Seoul Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nano Science; Ewha Womans University; Ewha Global Top 5 Research Program; 52 Ewhayeodae-gil Seodaemun-gu Seoul 120-750 Korea
| |
Collapse
|
39
|
Ren K, Cheng Y, He C, Xiao C, Li G, Chen X. The effect of alkyl side groups on the secondary structure and crystallization of poly(ethylene glycol)-block-polypeptide copolymers. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.02.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Cheng Y, He C, Xiao C, Ding J, Cui H, Zhuang X, Chen X. Versatile Biofunctionalization of Polypeptide-Based Thermosensitive Hydrogels via Click Chemistry. Biomacromolecules 2013; 14:468-75. [DOI: 10.1021/bm3017059] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yilong Cheng
- Key Laboratory of
Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences,
Changchun 130022, P. R. China
- Graduate University of Chinese Academy of Sciences, Beijing 100039, P. R.
China
| | - Chaoliang He
- Key Laboratory of
Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences,
Changchun 130022, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of
Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences,
Changchun 130022, P. R. China
| | - Jianxun Ding
- Key Laboratory of
Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences,
Changchun 130022, P. R. China
- Graduate University of Chinese Academy of Sciences, Beijing 100039, P. R.
China
| | - Haitao Cui
- Key Laboratory of
Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences,
Changchun 130022, P. R. China
- Graduate University of Chinese Academy of Sciences, Beijing 100039, P. R.
China
| | - Xiuli Zhuang
- Key Laboratory of
Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences,
Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of
Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences,
Changchun 130022, P. R. China
| |
Collapse
|
41
|
Cheng Y, He C, Xiao C, Ding J, Zhuang X, Huang Y, Chen X. Decisive Role of Hydrophobic Side Groups of Polypeptides in Thermosensitive Gelation. Biomacromolecules 2012; 13:2053-9. [DOI: 10.1021/bm3004308] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yilong Cheng
- Key Laboratory
of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People's
Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing 100039, People's
Republic of China
| | - Chaoliang He
- Key Laboratory
of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People's
Republic of China
| | - Chunsheng Xiao
- Key Laboratory
of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People's
Republic of China
| | - Jianxun Ding
- Key Laboratory
of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People's
Republic of China
- Graduate University of Chinese Academy of Sciences, Beijing 100039, People's
Republic of China
| | - Xiuli Zhuang
- Key Laboratory
of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People's
Republic of China
| | - Yubin Huang
- Key Laboratory
of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People's
Republic of China
| | - Xuesi Chen
- Key Laboratory
of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People's
Republic of China
| |
Collapse
|
42
|
Jeong SY, Moon HJ, Park MH, Joo MK, Jeong B. Molecular captain: A light-sensitive linker molecule in poly(ethylene glycol)-poly(L-alanine)-poly(ethylene glycol) triblock copolymer directs molecular nano-assembly, conformation, and sol-gel transition. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Yun EJ, Yon B, Joo MK, Jeong B. Cell Therapy for Skin Wound Using Fibroblast Encapsulated Poly(ethylene glycol)-poly(l-alanine) Thermogel. Biomacromolecules 2012; 13:1106-11. [DOI: 10.1021/bm2018596] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Eun Jung Yun
- Department of Bioinspired
Science and Department of Chemistry and Nano
Science, Ewha Womans University, Seoul, 120-750,
Korea
| | - Bora Yon
- Department of Bioinspired
Science and Department of Chemistry and Nano
Science, Ewha Womans University, Seoul, 120-750,
Korea
| | - Min Kyung Joo
- Department of Bioinspired
Science and Department of Chemistry and Nano
Science, Ewha Womans University, Seoul, 120-750,
Korea
| | - Byeongmoon Jeong
- Department of Bioinspired
Science and Department of Chemistry and Nano
Science, Ewha Womans University, Seoul, 120-750,
Korea
| |
Collapse
|
44
|
Moon HJ, Choi BG, Park MH, Joo MK, Jeong B. Enzymatically Degradable Thermogelling Poly(alanine-co-leucine)-poloxamer-poly(alanine-co-leucine). Biomacromolecules 2011; 12:1234-42. [DOI: 10.1021/bm101518c] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Hyo Jung Moon
- Department of Chemistry and Nano Science, Department of Bioinspired Science (WCU), Ewha Womans University, Daehyun-Dong, Seodaemun-Ku, Seoul, 120-750, Korea
| | - Bo Gyu Choi
- Department of Chemistry and Nano Science, Department of Bioinspired Science (WCU), Ewha Womans University, Daehyun-Dong, Seodaemun-Ku, Seoul, 120-750, Korea
| | - Min Hee Park
- Department of Chemistry and Nano Science, Department of Bioinspired Science (WCU), Ewha Womans University, Daehyun-Dong, Seodaemun-Ku, Seoul, 120-750, Korea
| | - Min Kyung Joo
- Department of Chemistry and Nano Science, Department of Bioinspired Science (WCU), Ewha Womans University, Daehyun-Dong, Seodaemun-Ku, Seoul, 120-750, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nano Science, Department of Bioinspired Science (WCU), Ewha Womans University, Daehyun-Dong, Seodaemun-Ku, Seoul, 120-750, Korea
| |
Collapse
|
45
|
Wang M, Feng Q, Guo X, She Z, Tan R. A dual microsphere based on PLGA and chitosan for delivering the oligopeptide derived from BMP-2. Polym Degrad Stab 2011. [DOI: 10.1016/j.polymdegradstab.2010.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Choi BG, Park MH, Cho SH, Joo MK, Oh HJ, Kim EH, Park K, Han DK, Jeong B. In situ thermal gelling polypeptide for chondrocytes 3D culture. Biomaterials 2010; 31:9266-72. [DOI: 10.1016/j.biomaterials.2010.08.067] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 08/18/2010] [Indexed: 10/19/2022]
|
47
|
Shimada T, Lee S, Bates FS, Hotta A, Tirrell M. Wormlike micelle formation in peptide-lipid conjugates driven by secondary structure transformation of the headgroups. J Phys Chem B 2010; 113:13711-4. [PMID: 19572667 DOI: 10.1021/jp901727q] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Wormlike micelles are assemblies of amphiphilic molecules of intermediate mean curvature between spherical micelles and flat bilayer membranes, which often form in solutions of peptide amphiphiles (hydrophilic peptide modules conjugated to hydrophobic subunits). In an effort to better understand the factors controlling peptide amphiphile (PA) micellar shape, we synthetically linked a short peptide with an alpha-helix-forming tendency to a hexadecyl tail. These molecules initially dissolve as spherical micelles, which can persist for hours or days, followed by transformation to wormlike micelles, which occurs simultaneously with a transition in the secondary structure of the headgroup peptides to beta-sheet. This observation provides evidence that the extended micelle is the thermodynamically favored state sought by PA micelles in the process of forming beta-sheet structures among the head-groups, though they are not the structures formed during the initial kinetics of assembly.
Collapse
Affiliation(s)
- Tomoko Shimada
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | | | | | | | | |
Collapse
|
48
|
Choi YY, Jang JH, Park MH, Choi BG, Chi B, Jeong B. Block length affects secondary structure, nanoassembly and thermosensitivity of poly(ethylene glycol)-poly(l-alanine) block copolymers. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/b922956f] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Murariu M, Dragan ES, Drochioiu G. IR, MS and CD Investigations on Several Conformationally-Different Histidine Peptides. Int J Pept Res Ther 2009. [DOI: 10.1007/s10989-009-9192-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Han JO, Joo MK, Jang JH, Park MH, Jeong B. PVPylated Poly(alanine) as a New Thermogelling Polymer. Macromolecules 2009. [DOI: 10.1021/ma901089s] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jin Ok Han
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Ewha Womans University, Daehyun-Dong, Seodaemun-Ku, Seoul, 120-750, Korea
| | - Min Kyung Joo
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Ewha Womans University, Daehyun-Dong, Seodaemun-Ku, Seoul, 120-750, Korea
| | - Ji Hye Jang
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Ewha Womans University, Daehyun-Dong, Seodaemun-Ku, Seoul, 120-750, Korea
| | - Min Hee Park
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Ewha Womans University, Daehyun-Dong, Seodaemun-Ku, Seoul, 120-750, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Ewha Womans University, Daehyun-Dong, Seodaemun-Ku, Seoul, 120-750, Korea
| |
Collapse
|