1
|
Stocks BB, Bird GH, Walensky LD, Melanson JE. Characterizing Native and Hydrocarbon-Stapled Enfuvirtide Conformations with Ion Mobility Mass Spectrometry and Hydrogen-Deuterium Exchange. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:753-761. [PMID: 33534566 DOI: 10.1021/jasms.0c00453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The number of approved peptide therapeutics, as well as those in development, has been increasing in recent years. Frequently, the biological activity of such peptides is elicited through the adoption of secondary structural elements upon interaction with their cellular target. However, many therapeutic peptides are unstructured in solution and accordingly exhibit a poor bioavailability due to rapid proteolysis in vivo. To combat this degradation, numerous naturally occurring peptides with therapeutic properties contain stabilizing features, such as N-to-C cyclization or disulfide bonds. Recently, hydrocarbon stapling via non-native amino acid substitution followed by ring-closing metathesis has been shown to induce a dramatic stabilization of α-helical peptides. Identifying the ideal staple location along the peptide backbone is a critical developmental step, and methods to streamline this optimization are needed. Mass spectrometry-based methods such as ion mobility (IM) and hydrogen-deuterium exchange (HDX) can detect multiple discrete peptide conformations, a significant advantage over bulk spectroscopic techniques. In this study we use IM-MS and HDX-MS to demonstrate that the native 36-residue enfuvirtide peptide is highly dynamic in solution and the conformational ensemble populated by stabilized constructs depends heavily on the staple location. Further, our measurements yielded results that correlate well with the average α-helical content measured by circular dichroism. The MS-based approaches described herein represent sensitive and potentially high-throughput methods for characterizing and identifying optimally stapled peptides.
Collapse
Affiliation(s)
- Bradley B Stocks
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Gregory H Bird
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Loren D Walensky
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Jeremy E Melanson
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
2
|
Mavioso ICVC, de Andrade VCR, Palace Carvalho AJ, Martins do Canto AMT. Molecular dynamics simulations of T-2410 and T-2429 HIV fusion inhibitors interacting with model membranes: Insight into peptide behavior, structure and dynamics. Biophys Chem 2017; 228:69-80. [PMID: 28711675 DOI: 10.1016/j.bpc.2017.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 11/17/2022]
Abstract
T-2410 and T-2429 are HIV fusion inhibitor peptides (FI) designed to present a higher efficiency even against HIV strains that developed resistance against other FIs. Similar peptides were shown to interact with model membranes both in the liquid disordered phase and in the liquid ordered state. Those results indicated that such interaction is important to function and could be correlated with their effectiveness. Extensive molecular dynamics simulations were carried out to investigate the interactions between both T-2410 and T-2429 with bilayers of pure 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and a mixture of POPC/cholesterol (Chol) (1:1). It was observed that both peptides interact strongly with both membrane systems, especially with the POPC/Chol systems, where these peptides show the highest number of H-bonds observed so far. T-2410 and T-2429 showed higher extent of interaction with bilayers when compared to T-20 or T-1249 in previous studies. This is most notable in POPC/Chol membranes where, although able to form H-bonds with Chol, they do so to a lesser extent than T-1249 does, the latter being the only FI peptide so far that was observed to form H-bonds with Chol. This behavior suggests that interaction of FI peptides with rigid Chol rich membranes may not be as dependent from peptide/Chol H-bond formation as previous results of T-1249 behavior led to believe. As in other similar peptides, the higher ability to interact with membranes shown by T-2410 and T2429 is probably correlated with its higher inhibitory efficiency.
Collapse
Affiliation(s)
- I C V C Mavioso
- Departamento de Química, Escola de Ciências e Tecnologia, Universidade de Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
| | - V C R de Andrade
- Departamento de Química, Escola de Ciências e Tecnologia, Universidade de Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
| | - A J Palace Carvalho
- Departamento de Química, Escola de Ciências e Tecnologia, Universidade de Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal; Centro de Química de Évora, IIFA, Universidade de Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
| | - A M T Martins do Canto
- Departamento de Química, Escola de Ciências e Tecnologia, Universidade de Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal; Centro de Química de Évora, IIFA, Universidade de Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal.
| |
Collapse
|
3
|
Gogineni V, Schinazi RF, Hamann MT. Role of Marine Natural Products in the Genesis of Antiviral Agents. Chem Rev 2015; 115:9655-706. [PMID: 26317854 PMCID: PMC4883660 DOI: 10.1021/cr4006318] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vedanjali Gogineni
- Department of Pharmacognosy, Pharmacology, Chemistry & Biochemistry, University of Mississippi, School of Pharmacy, University, Mississippi 38677, United States
| | - Raymond F. Schinazi
- Center for AIDS Research, Department of Pediatrics, Emory University/Veterans Affairs Medical Center, 1760 Haygood Drive NE, Atlanta, Georgia 30322, United States
| | - Mark T. Hamann
- Department of Pharmacognosy, Pharmacology, Chemistry & Biochemistry, University of Mississippi, School of Pharmacy, University, Mississippi 38677, United States
| |
Collapse
|
4
|
Zhang Y, Sagui C. Secondary structure assignment for conformationally irregular peptides: comparison between DSSP, STRIDE and KAKSI. J Mol Graph Model 2014; 55:72-84. [PMID: 25424660 DOI: 10.1016/j.jmgm.2014.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/08/2014] [Indexed: 11/25/2022]
Abstract
Secondary structure assignment codes were built to explore the regularities associated with the periodic motifs of proteins, such as those in backbone dihedral angles or in hydrogen bonds between backbone atoms. Precise structure assignment is challenging because real-life secondary structures are susceptible to bending, twist, fraying and other deformations that can distance them from their geometrical prototypes. Although results from codes such as DSSP and STRIDE converge in well-ordered structures, the agreement between the secondary structure assignments is known to deteriorate as the conformations become more distorted. Conformationally irregular peptides therefore offer a great opportunity to explore the differences between these codes. This is especially important for unfolded proteins and intrinsically disordered proteins, which are known to exhibit residual and/or transient secondary structure whose characterization is challenging. In this work, we have carried out Molecular Dynamics simulations of (relatively) disordered peptides, specifically gp41659-671 (ELLELDKWASLWN), the homopeptide polyasparagine (N18), and polyasparagine dimers. We have analyzed the resulting conformations with DSSP and STRIDE, based on hydrogen-bond patterns (and dihedral angles for STRIDE), and KAKSI, based on α-Carbon distances; and carefully characterized the differences in structural assignments. The full-sequence Segment Overlap (SOV) scores, that quantify the agreement between two secondary structure assignments, vary from 70% for gp41659-671 (STRIDE as reference) to 49% for N18 (DSSP as reference). Major differences are observed in turns, in the distinction between α and 310 helices, and in short parallel-sheet segments.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Physics, North Carolina State University, Raleigh, NC 27695, United States; Center for High Performance Simulations (CHiPS), North Carolina State University, Raleigh, NC 27695, United States
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695, United States; Center for High Performance Simulations (CHiPS), North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
5
|
Abstract
Virus-cell fusion is the primary means by which the human immunodeficiency virus-1 (HIV) delivers its genetic material into the human T-cell host. Fusion is mediated in large part by the viral glycoprotein 41 (gp41) which advances through four distinct conformational states: (i) native, (ii) pre-hairpin intermediate, (iii) fusion active (fusogenic), and (iv) post-fusion. The pre-hairpin intermediate is a particularly attractive step for therapeutic intervention given that gp41 N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR) domains are transiently exposed prior to the formation of a six-helix bundle required for fusion. Most peptide-based inhibitors, including the FDA-approved drug T20, target the intermediate and there are significant efforts to develop small molecule alternatives. Here, we review current approaches to studying interactions of inhibitors with gp41 with an emphasis on atomic-level computer modeling methods including molecular dynamics, free energy analysis, and docking. Atomistic modeling yields a unique level of structural and energetic detail, complementary to experimental approaches, which will be important for the design of improved next generation anti-HIV drugs.
Collapse
|
6
|
Zhang Y, Sagui C. The gp41659–671 HIV-1 Antibody Epitope: A Structurally Challenging Small Peptide. J Phys Chem B 2013; 118:69-80. [DOI: 10.1021/jp409355r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yuan Zhang
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for High Performance Simulations (CHiPS), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Celeste Sagui
- Department
of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
- Center
for High Performance Simulations (CHiPS), North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
7
|
Is there a future for antiviral fusion inhibitors? Curr Opin Virol 2012; 2:50-9. [DOI: 10.1016/j.coviro.2012.01.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/05/2012] [Accepted: 01/05/2012] [Indexed: 12/20/2022]
|
8
|
Resistance of human immunodeficiency virus type 1 to a third-generation fusion inhibitor requires multiple mutations in gp41 and is accompanied by a dramatic loss of gp41 function. J Virol 2011; 85:10785-97. [PMID: 21835789 DOI: 10.1128/jvi.05331-11] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
HIV-1 entry into target cells requires the fusion of viral and cellular membranes. This process is an attractive target for therapeutic intervention, and a first-generation fusion inhibitor, T20 (Enfuvirtide; Fuzeon), was approved for clinical use in 2003. Second-generation (T1249) and third-generation (T2635) fusion inhibitors with improved stability and potency were developed. Resistance to T20 and T1249 usually requires one or two amino acid changes within the binding site. We studied the in vitro evolution of resistance against T2635. After 6 months of culturing, a multitude of resistance mutations was identified in all gp41 subdomains, but no single mutation provided meaningful T2635 resistance. In contrast, multiple mutations within gp41 were required for resistance, and this was accompanied by a dramatic loss of viral infectivity. Because most of the escape mutations were situated outside the T2635 binding site, a decrease in drug target affinity cannot account for most of the resistance. T2635 resistance is likely to depend on altered kinetics of six-helix bundle formation, thus limiting the time window for T2635 to interfere with membrane fusion. Interestingly, the loss of virus infectivity caused by T2635 resistance mutations in gp41 was partially compensated for by a mutation at the base of the V3 domain in gp120. Thus, escape from the third-generation HIV-1 fusion inhibitor T2635 is mechanistically distinct from resistance against its predecessors T20 and T1249. It requires the accumulation of multiple mutations in gp41, is accompanied with a dramatic loss of gp41 function, and induces compensatory mutations in gp120.
Collapse
|
9
|
Teixeira C, Gomes JRB, Gomes P, Maurel F, Barbault F. Viral surface glycoproteins, gp120 and gp41, as potential drug targets against HIV-1: brief overview one quarter of a century past the approval of zidovudine, the first anti-retroviral drug. Eur J Med Chem 2011; 46:979-92. [PMID: 21345545 DOI: 10.1016/j.ejmech.2011.01.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 01/15/2011] [Accepted: 01/25/2011] [Indexed: 12/15/2022]
Abstract
The first anti-HIV drug, zidovudine (AZT), was approved by the FDA a quarter of a century ago, in 1985. Currently, anti-HIV drug-combination therapies only target HIV-1 protease and reverse transcriptase. Unfortunately, most of these molecules present numerous shortcomings such as viral resistances and adverse effects. In addition, these drugs are involved in later stages of infection. Thus, it is necessary to develop new drugs that are able to block the first steps of viral life cycle. Entry of HIV-1 is mediated by its two envelope glycoproteins: gp120 and gp41. Upon gp120 binding to cellular receptors, gp41 undergoes a series of conformational changes from a non-fusogenic to a fusogenic conformation. The fusogenic core of gp41 is a trimer-of-hairpins structure in which three C-terminal helices pack against a central trimeric-coiled coil formed by three N-terminal helices. The formation of this fusogenic structure brings the viral and cellular membranes close together, a necessary condition for membrane fusion to occur. As gp120 and gp41 are attractive targets, the development of entry inhibitors represents an important avenue of anti-HIV drug therapy. The present review will focus on some general considerations about HIV, the main characteristics of gp120, gp41 and their inhibitors, with special emphasis on the advances of computational approaches employed in the development of bioactive compounds against HIV-1 entry process.
Collapse
Affiliation(s)
- Cátia Teixeira
- ITODYS, Université Paris Diderot, CNRS - UMR7086, 15 Rue Jean Antoine de Baif, 75205 Paris Cedex 13, France
| | | | | | | | | |
Collapse
|
10
|
Tulip PR, Gregor CR, Troitzsch RZ, Martyna GJ, Cerasoli E, Tranter G, Crain J. Conformational Plasticity in an HIV-1 Antibody Epitope. J Phys Chem B 2010; 114:7942-50. [DOI: 10.1021/jp100929n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- P. R. Tulip
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - C. R. Gregor
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - R. Z. Troitzsch
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - G. J. Martyna
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - E. Cerasoli
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - G. Tranter
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - J. Crain
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| |
Collapse
|
11
|
Eggink D, Langedijk JPM, Bonvin AMJJ, Deng Y, Lu M, Berkhout B, Sanders RW. Detailed mechanistic insights into HIV-1 sensitivity to three generations of fusion inhibitors. J Biol Chem 2009; 284:26941-50. [PMID: 19617355 DOI: 10.1074/jbc.m109.004416] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptides based on the second heptad repeat (HR2) of viral class I fusion proteins are effective inhibitors of virus entry. One such fusion inhibitor has been approved for treatment of human immunodeficiency virus-1 (T20, enfuvirtide). Resistance to T20 usually maps to the peptide binding site in HR1. To better understand fusion inhibitor potency and resistance, we combined virological, computational, and biophysical experiments with comprehensive mutational analyses and tested resistance to T20 and second and third generation inhibitors (T1249 and T2635). We found that most amino acid substitutions caused resistance to the first generation peptide T20. Only charged amino acids caused resistance to T1249, and none caused resistance to T2635. Depending on the drug, we can distinguish four mechanisms of drug resistance: reduced contact, steric obstruction, electrostatic repulsion, and electrostatic attraction. Implications for the design of novel antiviral peptide inhibitors are discussed.
Collapse
Affiliation(s)
- Dirk Eggink
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
Castanho MARB, Dathe M. Biophysics meets membrane-active peptides. J Pept Sci 2008; 14:365-7. [DOI: 10.1002/psc.1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|