1
|
Le Merdy M, Spires J, Tan ML, Zhao L, Lukacova V. Clinical Ocular Exposure Extrapolation for a Complex Ophthalmic Suspension Using Physiologically Based Pharmacokinetic Modeling and Simulation. Pharmaceutics 2024; 16:914. [PMID: 39065612 PMCID: PMC11280076 DOI: 10.3390/pharmaceutics16070914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The development of generic ophthalmic drug products with complex formulations is challenging due to the complexity of the ocular system and a lack of sensitive testing to evaluate the interplay of its physiology with ophthalmic drugs. New methods are needed to facilitate the development of ophthalmic generic drug products. Ocular physiologically based pharmacokinetic (O-PBPK) models can provide insight into drug partitioning in eye tissues that are usually not accessible and/or are challenging to sample in humans. This study aims to demonstrate the utility of an ocular PBPK model to predict human exposure following the administration of ophthalmic suspension. Besifloxacin (Bes) suspension is presented as a case study. The O-PBPK model for Bes ophthalmic suspension (Besivance® 0.6%) accounts for nasolacrimal drainage, suspended particle dissolution in the tears, ocular absorption, and distribution in the rabbit eye. A topical controlled release formulation was used to integrate the effect of Durasite® on Bes ocular retention. The model was subsequently used to predict Bes exposure after its topical administration in humans. Drug-specific parameters were used as validated for rabbits. The physiological parameters were adjusted to match human ocular physiology. Simulated human ocular pharmacokinetic profiles were compared with the observed ocular tissue concentration data to assess the OCAT models' ability to predict human ocular exposure. The O-PBPK model simulations adequately described the observed concentrations in the eye tissues following the topical administration of Bes suspension in rabbits. After adjustment of physiological parameters to represent the human eye, the extrapolation of clinical ocular exposure following a single ocular administration of Bes suspension was successful.
Collapse
Affiliation(s)
- Maxime Le Merdy
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA 93534, USA
| | - Jessica Spires
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA 93534, USA
| | - Ming-Liang Tan
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Liang Zhao
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Viera Lukacova
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA 93534, USA
| |
Collapse
|
2
|
Alomari N, Alhussaini W. Update on the advances and challenges in bioequivalence testing methods for complex topical generic products. Front Pharmacol 2024; 15:1330712. [PMID: 38389924 PMCID: PMC10881717 DOI: 10.3389/fphar.2024.1330712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Most of the government regulatory agencies, including the United States Food and Drug Administration and the European Medicine Agency, demand that the generic complex topical products prove pharmaceutical and bioequivalence. The evaluation of bioequivalence for complex topical dermatological formulations is a challenging task that requires careful consideration of several factors. Although comparative clinical studies are still considered the gold standard approach for establishing bioequivalence in most formulations, these studies can be costly and insensitive to detect formulation differences. Therefore, significant efforts have been made to develop and validate alternative approaches that demonstrate bioequivalence and expedite the availability of high-quality generic topical dermatological products. This article reviews the current methods for determining the bioequivalence of topical formulations in humans, with particular emphasis on recent advances in these methodologies. Most of the alternative methods are sensitive and reproducible, with the capability to ease the financial burden of comparative clinical studies within a short delivery time. The limitations associated with each technique are reviewed in detail.
Collapse
Affiliation(s)
- Nedaa Alomari
- Department of Pharmaceutical Analysis, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Waleed Alhussaini
- Department of Pharmaceutical Analysis, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard-Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Stamatopoulos K, Mistry N, Fotaki N, Turner DB, Swift B. Physiologically Based Biopharmaceutics Model (PBBM) of Minimally Absorbed Locally Acting Drugs in the Gastrointestinal Tract-Case Study: Tenapanor. Pharmaceutics 2023; 15:2726. [PMID: 38140067 PMCID: PMC10747343 DOI: 10.3390/pharmaceutics15122726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
A physiologically based biopharmaceutics model (PBBM) was developed to predict stool and urine sodium content in response to tenapanor administration in healthy subjects. Tenapanor is a minimally absorbed small molecule that inhibits the sodium/hydrogen isoform 3 exchanger (NHE3). It is used to treat irritable bowel syndrome with constipation (IBS-C). Its mode of action in the gastrointestinal tract reduces the uptake of sodium, resulting in an increase in water secretion in the intestinal lumen and accelerating intestinal transit time. The strategy employed was to perform drug-drug interaction (DDI) modelling between sodium and tenapanor, with sodium as the "victim" administered as part of daily food intake and tenapanor as the "perpetrator" altering sodium absorption. Food effect was modelled, including meal-induced NHE3 activity using sodium as an inducer by normalising the induction kinetics of butyrate to sodium equivalents. The presented model successfully predicted both urine and stool sodium content in response to tenapanor dosed in healthy subjects (within 1.25-fold error) and provided insight into the clinical observations of tenapanor dosing time relative to meal ingestion. The PBBM model was applied retrospectively to assess the impact of different forms of tenapanor (free base vs. HCl salt) on its pharmacodynamic (PD) effect. The developed modelling strategy can be effectively adopted to increase confidence in using PBBM models for the prediction of the in vivo behaviour of minimally absorbed, locally acting drugs in the gastrointestinal tract, when other approaches (e.g., biomarkers or PD data) are not available.
Collapse
Affiliation(s)
| | - Nena Mistry
- Biopharmaceutics, DPD, MDS, GSK, Ware SG12 0DP, UK;
| | - Nikoletta Fotaki
- Centre for Therapeutic Innovation, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK;
| | | | | |
Collapse
|
4
|
Tsakalozou E, Mohamed MEF, Polak S, Heimbach T. Applications of Modeling and Simulation Approaches in Support of Drug Product Development of Oral Dosage Forms and Locally Acting Drug Products: a Symposium Summary. AAPS J 2023; 25:96. [PMID: 37783902 DOI: 10.1208/s12248-023-00862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/16/2023] [Indexed: 10/04/2023] Open
Abstract
The number of modeling and simulation applications, including physiologically based pharmacokinetic (PBPK) models, physiologically based biopharmaceutics modeling (PBBM), and empirical models, has been constantly increasing along with the regulatory acceptance of these methodologies. While aiming at minimizing unnecessary human testing, these methodologies are used today to support the development and approval of novel drug products and generics. Modeling approaches are leveraged today for assessing drug-drug interaction, informing dose adjustments in renally or hepatically impaired patients, perform dose selection in pediatrics and pregnant women and diseased populations, and conduct biopharmaceutics-related assessments such as establish clinically relevant specifications for drug products and achieve quality assurance throughout the product life cycle. In the generics space, PBPK analyses are utilized toward virtual bioequivalence assessments within the scope of alternative bioequivalence approaches, product-specific guidance development, and food effect assessments among others. Case studies highlighting the evolving and expanding role of modeling and simulation approaches within the biopharmaceutics space were presented at the symposium titled "Model Informed Drug Development (MIDD): Role in Dose Selection, Vulnerable Populations, and Biowaivers - Chemical Entities" and Prologue "PBPK/PBBM to inform the Bioequivalence Safe Space, Food Effects, and pH-mediated DDIs" at the American Association of Pharmaceutical Scientists (AAPS) PharmSci 360 Annual Meeting in Boston, MA, on October 16-19, 2022, and are summarized here.
Collapse
Affiliation(s)
- Eleftheria Tsakalozou
- Division of Quantitative Methods and Modeling, Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), 10903 New Hampshire Avenue, Silver Spring, Maryland, USA.
| | | | - Sebastian Polak
- Certara UK, Simcyp Division, Sheffield, UK
- Jagiellonian University Medical College, Krakow, Poland
| | - Tycho Heimbach
- Pharmaceutical Sciences, MRL, Merck & Co., Inc, Rahway, New Jersey, 07065, USA
| |
Collapse
|
5
|
Clinical Ocular Exposure Extrapolation for Ophthalmic Solutions Using PBPK Modeling and Simulation. Pharm Res 2023; 40:431-447. [PMID: 36151444 PMCID: PMC9944674 DOI: 10.1007/s11095-022-03390-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND The development of generic ophthalmic drug products is challenging due to the complexity of the ocular system, and a lack of sensitive testing to evaluate the interplay of physiology with ophthalmic formulations. While measurements of drug concentration at the site of action in humans are typically sparse, these measurements are more easily obtained in rabbits. The purpose of this study is to demonstrate the utility of an ocular physiologically based pharmacokinetic (PBPK) model for translation of ocular exposure from rabbit to human. METHOD The Ocular Compartmental Absorption and Transit (OCAT™) model within GastroPlus® v9.8.2 was used to build PBPK models for levofloxacin (Lev), moxifloxacin (Mox), and gatifloxacin (Gat) ophthalmic solutions. in the rabbit eye. The models were subsequently used to predict Lev, Mox, and Gat exposure after ocular solution administrations in humans. Drug-specific parameters were used as fitted and validated in the rabbit OCAT model. The physiological parameters were scaled to match human ocular physiology. RESULTS OCAT model simulations for rabbit well described the observed concentrations in the eye compartments following Lev, Mox, and Gat solution administrations of different doses and various administration schedules. The clinical ocular exposure following ocular administration of Lev, Mox, and Gat solutions at different doses and various administration schedules was well predicted. CONCLUSION Even though additional case studies for different types of active pharmaceutical ingredients (APIs) and formulations will be needed, the current study represents an important step in the validation of the extrapolation method to predict human ocular exposure for ophthalmic drug products using PBPK models.
Collapse
|
6
|
Tsakalozou E, Alam K, Ghosh P, Spires J, Polak S, Fang L, Sammeta S, Zhao P, Arora S, Raney SG. Mechanistic modeling of drug products applied to the skin: A workshop summary report. CPT Pharmacometrics Syst Pharmacol 2022; 12:575-584. [DOI: 10.1002/psp4.12893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Eleftheria Tsakalozou
- Division of Quantitative Methods and Modeling Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA) Silver Spring Maryland USA
| | - Khondoker Alam
- Division of Quantitative Methods and Modeling Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA) Silver Spring Maryland USA
| | - Priyanka Ghosh
- Division of Therapeutic Performance I Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA) Silver Spring Maryland USA
| | | | - Sebastian Polak
- Certara UK, Simcyp Division Sheffield UK
- Jagiellonian University Medical College Krakow Poland
| | - Lanyan Fang
- Division of Quantitative Methods and Modeling Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA) Silver Spring Maryland USA
| | | | - Ping Zhao
- Bill & Melinda Gates Foundation Seattle Washington USA
| | - Sumit Arora
- Certara UK, Simcyp Division Sheffield UK
- Janssen Pharmaceutical, Companies of Johnson & Johnson Beerse Belgium
| | - Sam G. Raney
- Division of Therapeutic Performance I Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA) Silver Spring Maryland USA
| |
Collapse
|
7
|
Mittapelly N, Polak S. Modelling and Simulation Approaches to Support Formulation Optimization, Clinical Development and Regulatory Assessment of the Topically Applied Formulations- Nimesulide Solution Gel Case Study. Eur J Pharm Biopharm 2022; 178:140-149. [PMID: 35985454 DOI: 10.1016/j.ejpb.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/21/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022]
Abstract
The objective of the study was to show how mechanistic modelling can be used to characterize the skin absorption of Nimesulide (NIM) in both in vitro systems and in vivo subjects. A basic PBPK model for oral absorption to characterize the systemic disposition of NIM and MPML MechDermATM models for in vitro permeation and in vivo, topical absorption was developed and verified using published data. The developed models utilize drug physicochemical properties, formulation attributes and physiology information either collected from literature and/or from Simcyp databases (systems' data). Following the verification of the PBPK models virtual bioequivalence (VBE) trials were performed both at systemic and local exposure levels (dermis concentrations) to compare these formulations. A parameter sensitivity analysis was conducted to understand the impact of vehicle-related attributes on IVPT (in vitro permeation test) data. The vehicle-stratum corneum lipids partition coefficient in the formulation layer (Kpsc_lip:vehicle) was identified to be an appropriate parameter to take into account the differences in dermal absorption of marketed preparations based on the qualitative composition. Thus, this parameter was optimized for each marketed product based on the published in vitro data. After verification of the IVPT model, IVIVE was performed to assess the predictability of the model for studying the in vivo pharmacokinetics of NIM. The VBE analysis concluded that these formulations are bioequivalent at the level of systemic and local dermis exposure. To summarize, the study shows the use of modelling and simulation (M&S) tools to better understand the behaviour of formulations and their interaction with human physiology.
Collapse
Affiliation(s)
- Naresh Mittapelly
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK
| | - Sebastian Polak
- Certara UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK; Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| |
Collapse
|
8
|
Ladumor MK, Unadkat JD. Predicting Regional Respiratory Tissue and Systemic Concentrations of Orally Inhaled Drugs through a Novel PBPK Model. Drug Metab Dispos 2022; 50:519-528. [PMID: 35246463 PMCID: PMC9073946 DOI: 10.1124/dmd.121.000789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
Oral inhalation (OI) of drugs is the route of choice to treat respiratory diseases or for recreational drug use (e.g., cannabis). After OI, the drug is deposited in and systemically absorbed from various regions of the respiratory tract. Measuring regional respiratory tissue drug concentrations at the site of action is important for evaluating the efficacy and safety of orally inhaled drugs (OIDs). Because such a measurement is routinely not possible in humans, the only alternative is to predict these concentrations, for example by physiologically based pharmacokinetic (PBPK) modeling. Therefore, we developed an OI-PBPK model to integrate the interplay between regional respiratory drug deposition and systemic absorption to predict regional respiratory tissue and systemic drug concentrations. We validated our OI-PBPK model by comparing the simulated and observed plasma concentration-time profiles of two OIDs, morphine and nicotine. Furthermore, we performed sensitivity analyses to quantitatively demonstrate the impact of key parameters on the extent and pattern of regional respiratory drug deposition, absorption, and the resulting regional respiratory tissue and systemic plasma concentrations. Our OI-PBPK model can be applied to predict regional respiratory tissue and systemic drug concentrations to optimize OID formulations, delivery systems, and dosing regimens. Furthermore, our model could be used to establish the bioequivalence of generic OIDs for which systemic plasma concentrations are not measurable or are not a good surrogate of the respiratory tissue drug concentrations. SIGNIFICANCE STATEMENT: Our OI-PBPK model is the first comprehensive model to predict regional respiratory deposition, as well as systemic and regional tissue concentrations of OIDs, especially at the drug's site of action, which is difficult to measure in humans. This model will help optimize OID formulations, delivery systems, dosing regimens, and bioequivalence assessment of generic OID. Furthermore, this model can be linked with organs-on-chips, pharmacodynamic and quantitative systems pharmacology models to predict and evaluate the safety and efficacy of OID.
Collapse
Affiliation(s)
- Mayur K Ladumor
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Jashvant D Unadkat
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| |
Collapse
|
9
|
Hummer J, Birngruber T, Sinner F, Page L, Toner F, Roper CS, Moore DJ, Baker MB, Boncheva Bettex M. Optimization of topical formulations using a combination of in vitro methods to quantify the transdermal passive diffusion of drugs. Int J Pharm 2022; 620:121737. [PMID: 35413396 DOI: 10.1016/j.ijpharm.2022.121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
This paper describes a new approach to the early-stage optimization of topical products and selection of lead formulation candidates. It demonstrates the application of open flow microperfusion in vitro in conjunction with the Franz diffusion cell to compare time-resolved, 24-hour profiles of diclofenac passive diffusion through all skin layers (including the skin barrier, dermis, and subcutis) resulting from nine topical formulations of different composition. The technique was successfully validated for in vitro sampling of diclofenac in interstitial fluid. A multi-compartmental model integrating the two datasets was analyzed and revealed that the passive diffusion of diclofenac through the dermis and subcutis does not correlate with its diffusion through the skin barrier and cannot be predicted using Franz diffusion cell data alone. The combined application of the two techniques provides a new, convenient tool for product development and selection enabling the comparison of topical formulation candidates and their impact on drug delivery through all skin layers. This approach can also generate the experimental data required to improve the robustness of mechanistic PBPK models, and when combined with clinical sampling via open flow microperfusion - for the development of better in vivo-in vitro correlative models.
Collapse
Affiliation(s)
- Joanna Hummer
- Joanneum Research Forschungsgesellschaft mbH, Health-Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Thomas Birngruber
- Joanneum Research Forschungsgesellschaft mbH, Health-Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Frank Sinner
- Joanneum Research Forschungsgesellschaft mbH, Health-Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Leanne Page
- Charles River Laboratories, Tranent, Edinburgh, EH33 2NE, UK
| | - Frank Toner
- Charles River Laboratories, Tranent, Edinburgh, EH33 2NE, UK
| | - Clive S Roper
- Roper Toxicology Consulting Limited, 6 St Colme Street, Edinburgh, EH3 6AD, UK
| | - David J Moore
- GSK Consumer Healthcare, 184 Liberty Corner Rd, Warren, NJ 07059, USA
| | - Mark B Baker
- GSK Consumer Healthcare SARL, Route de l'Etraz 2, Case postale 1279, 1260 Nyon 1, Switzerland
| | - Mila Boncheva Bettex
- GSK Consumer Healthcare SARL, Route de l'Etraz 2, Case postale 1279, 1260 Nyon 1, Switzerland.
| |
Collapse
|
10
|
Development of PBPK model for intra-articular injection in human: methotrexate solution and rheumatoid arthritis case study. J Pharmacokinet Pharmacodyn 2021; 48:909-922. [PMID: 34569001 PMCID: PMC8604827 DOI: 10.1007/s10928-021-09781-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/29/2021] [Indexed: 11/26/2022]
Abstract
A physiologically based model describing the dissolution, diffusion, and transfer of drug from the intra-articular (IA) space to the plasma, was developed for GastroPlus® v9.8. The model is subdivided into compartments representing the synovial fluid, synovium, and cartilage. The synovium is broken up into two sublayers. The intimal layer acts as a diffusion barrier between the synovial fluid and the subintimal layer. The subintimal layer of the synovium has fenestrated capillaries that allow the free drug to be transported into systemic circulation. The articular cartilage is broken up into 10 diffusion sublayers as it is much thicker than the synovium. The cartilage acts as a depot tissue for the drug to diffuse into from synovial fluid. At later times, the drug will diffuse from the cartilage back into synovial fluid once a portion of the dose enters systemic circulation. In this study, a listing of all relevant details and equations for the model is presented. Methotrexate was chosen as a case study to show the application and utility of the model, based on the availability of intravenous (IV), oral (PO) and IA administration data in patients presenting rheumatoid arthritis (RA) symptoms. Systemic disposition of methotrexate in RA patients was described by compartmental pharmacokinetic (PK) model with PK parameters extracted using the PKPlus™ module in GastroPlus®. The systemic PK parameters were validated by simulating PO administration of methotrexate before being used for simulation of IA administration. For methotrexate, the concentrations of drug in the synovial fluid and plasma were well described after adjustments of physiological parameters to account for RA disease state, and with certain assumptions about binding and diffusion. The results indicate that the model can correctly describe PK profiles resulting from administration in the IA space, however, additional cases studies will be required to evaluate ability of the model to scale between species and/or doses.
Collapse
|
11
|
Tsakalozou E, Alam K, Babiskin A, Zhao L. Physiologically-Based Pharmacokinetic Modeling to Support Determination of Bioequivalence for Dermatological Drug Products: Scientific and Regulatory Considerations. Clin Pharmacol Ther 2021; 111:1036-1049. [PMID: 34231211 DOI: 10.1002/cpt.2356] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/11/2021] [Indexed: 12/30/2022]
Abstract
Physiologically-based pharmacokinetic (PBPK) modeling and simulation provides mechanism-based predictions of the pharmacokinetics of an active ingredient following its administration in humans. Dermal PBPK models describe the skin permeation and disposition of the active ingredient following the application of a dermatological product on the skin of virtual healthy and diseased human subjects. These models take into account information on product quality attributes, physicochemical properties of the active ingredient and skin (patho)physiology, and their interplay with each other. Regulatory and product development decision makers can leverage these quantitative tools to identify factors impacting local and systemic exposure. In the realm of generic drug products, the number of US Food and Drug Administratioin (FDA) interactions that use dermal PBPK modeling to support alternative bioequivalence (BE) approaches is increasing. In this report, we share scientific considerations on the development, verification and validation (V&V), and application of PBPK models within the context of a virtual BE assessment for dermatological drug products. We discuss the challenges associated with model V&V for these drug products stemming from the fact that target-site active ingredient concentrations are typically not measurable. Additionally, there are no established relationships between local and systemic PK profiles, when the latter are quantifiable. To that end, we detail a multilevel model V&V approach involving validation for the model of the drug product of interest coupled with the overall assessment of the modeling platform in use while leveraging in vitro and in vivo data related to local and systemic bioavailability.
Collapse
Affiliation(s)
- Eleftheria Tsakalozou
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Khondoker Alam
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Andrew Babiskin
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Liang Zhao
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| |
Collapse
|
12
|
Alsmadi MM, Al-Daoud NM, Jaradat MM, Alzughoul SB, Abu Kwiak AD, Abu Laila SS, Abu Shameh AJ, Alhazabreh MK, Jaber SA, Abu Kassab HT. Physiologically-based pharmacokinetic model for alectinib, ruxolitinib, and panobinostat in the presence of cancer, renal impairment, and hepatic impairment. Biopharm Drug Dispos 2021; 42:263-284. [PMID: 33904202 DOI: 10.1002/bdd.2282] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/18/2021] [Accepted: 04/11/2021] [Indexed: 12/24/2022]
Abstract
Renal (RIP) and hepatic (HIP) impairments are prevalent conditions in cancer patients. They can cause changes in gastric emptying time, albumin levels, hematocrit, glomerular filtration rate, hepatic functional volume, blood flow rates, and metabolic activity that can modify drug pharmacokinetics. Performing clinical studies in such populations has ethical and practical issues. Using predictive physiologically-based pharmacokinetic (PBPK) models in the evaluation of the PK of alectinib, ruxolitinib, and panobinostat exposures in the presence of cancer, RIP, and HIP can help in using optimal doses with lower toxicity in these populations. Verified PBPK models were customized under scrutiny to account for the pathophysiological changes induced in these diseases. The PBPK model-predicted plasma exposures in patients with different health conditions within average 2-fold error. The PBPK model predicted an area under the curve ratio (AUCR) of 1, and 1.8, for ruxolitinib and panobinostat, respectively, in the presence of severe RIP. On the other hand, the severe HIP was associated with AUCR of 1.4, 2.9, and 1.8 for alectinib, ruxolitinib, and panobinostat, respectively, in agreement with the observed AUCR. Moreover, the PBPK model predicted that alectinib therapeutic cerebrospinal fluid levels are achieved in patients with non-small cell lung cancer, moderate HIP, and severe HIP at 1-, 1.5-, and 1.8-fold that of healthy subjects. The customized PBPK models showed promising ethical alternatives for simulating clinical studies in patients with cancer, RIP, and HIP. More work is needed to quantify other pathophysiological changes induced by simultaneous affliction by cancer and RIP or HIP.
Collapse
Affiliation(s)
- Mo'tasem M Alsmadi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Nour M Al-Daoud
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mays M Jaradat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Saja B Alzughoul
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Amani D Abu Kwiak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Salam S Abu Laila
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Ayat J Abu Shameh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad K Alhazabreh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Sana'a A Jaber
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Hala T Abu Kassab
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
13
|
Tsakalozou E, Babiskin A, Zhao L. Physiologically-based pharmacokinetic modeling to support bioequivalence and approval of generic products: A case for diclofenac sodium topical gel, 1. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:399-411. [PMID: 33547863 PMCID: PMC8129718 DOI: 10.1002/psp4.12600] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/08/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Establishing bioequivalence (BE) for dermatological drug products by conducting comparative clinical end point studies can be costly and the studies may not be sufficiently sensitive to detect certain formulation differences. Quantitative methods and modeling, such as physiologically‐based pharmacokinetic (PBPK) modeling, can support alternative BE approaches with reduced or no human testing. To enable PBPK modeling for regulatory decision making, models should be sufficiently verified and validated (V&V) for the intended purpose. This report illustrates the US Food and Drug Administration (FDA) approval of a generic diclofenac sodium topical gel that was based on a totality of evidence, including qualitative and quantitative sameness and physical and structural similarity to the reference product, an in vivo BE study with PK end points, and, more importantly, for the purposes of this report, a virtual BE assessment leveraging dermal PBPK modeling and simulation instead of a comparative clinical end point study in patients. The modeling approach characterized the relationship between systemic (plasma) and local (skin and synovial fluid) diclofenac exposure and demonstrated BE between the generic and reference products at the presumed site of action. Based on the fit‐for‐purpose modeling principle, the V&V process involved assessing observed data of diclofenac concentrations in skin tissues and plasma, and the overall performance of the modeling platform for relevant products. Using this case as an example, this report provides current scientific considerations on good practices for model V&V and the establishment of BE for dermatological drug products when leveraging PBPK modeling and simulation for regulatory decision making.
Collapse
Affiliation(s)
- Eleftheria Tsakalozou
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Andrew Babiskin
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Liang Zhao
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| |
Collapse
|
14
|
Ngampanya A, Udomnilobol U, Sermsappasuk P, Pornputtapong N, Ongpipattanakul B, Patel N, Jianmongkol S, Prueksaritanont T. Development and Qualification of a Physiologically Based Pharmacokinetic Model of Finasteride and Minoxidil Following Scalp Application. J Pharm Sci 2021; 110:2301-2310. [PMID: 33609522 DOI: 10.1016/j.xphs.2021.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 11/20/2022]
Abstract
In this study, we aimed to develop and qualify a PBPK model for scalp application using two drugs with marked differences in physicochemical properties and PK profiles. The parameters related to scalp physiology, drug PK, and formulations were incorporated into a Multi-Phase and Multi-Layer (MPML) Mechanistic Dermal Absorption (MechDermA) model within the Simcyp® Simulator V17. The finasteride PBPK model was linked to its effect on dihydrotestosterone (DHT) levels in plasma and scalp using an indirect response model. Predicted PK (and PD for finasteride) profiles and parameters were compared against the clinically reported data and justified by visual predictive checks and two-fold error criteria for model verification. The PBPK/PD model for finasteride reasonably demonstrated an ability to predict its respective PK and PD profiles, and parameters following scalp application under various clinical scenarios. Using the same scalp physiological input parameters, the minoxidil PBPK model was then developed and satisfactorily qualified with independent clinical datasets. Collectively, these results suggested that the established PBPK model may have broader utility for other topical formulations intended for scalp application.
Collapse
Affiliation(s)
- Arpar Ngampanya
- Faculty of Pharmaceutical Sciences, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand
| | - Udomsak Udomnilobol
- Chulalongkorn University Drug Discovery and Drug Development Research Center (Chula4DR), Chulalongkorn University, Bangkok, Thailand
| | - Pakawadee Sermsappasuk
- Faculty of Pharmaceutical Sciences, Department of Pharmacy Practice, Naresuan University, Phitsanulok, Thailand
| | - Natapol Pornputtapong
- Faculty of Pharmaceutical Sciences, Department of Biochemistry and Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Boonsri Ongpipattanakul
- Faculty of Pharmaceutical Sciences, Department of Biochemistry and Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Nikunjkumar Patel
- Certara UK Limited (Simcyp Division), Level 2 - Acero, 1 Concourse Way, Sheffield, United Kingdom
| | - Suree Jianmongkol
- Faculty of Pharmaceutical Sciences, Department of Pharmacology and Physiology, Chulalongkorn University, Bangkok, Thailand.
| | - Thomayant Prueksaritanont
- Chulalongkorn University Drug Discovery and Drug Development Research Center (Chula4DR), Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
15
|
Donnelly M, Tsakalozou E, Sharan S, Straubinger T, Bies R, Zhao L. Review of Complex Generic Drugs Delivered Through the Female Reproductive Tract: The Current Competitive Landscape and Emerging Role of Physiologically Based Pharmacokinetic Modeling to Support Development and Regulatory Decisions. J Clin Pharmacol 2020; 60 Suppl 2:S26-S33. [PMID: 33274513 DOI: 10.1002/jcph.1760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Mark Donnelly
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Eleftheria Tsakalozou
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Satish Sharan
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Thomas Straubinger
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Robert Bies
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Liang Zhao
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| |
Collapse
|
16
|
Sharan S, Wang Y, Donnelly M, Zou Y, Fang L, Kim MJ, Zhao L. Regulatory Science to Promote Access to Intrauterine Systems for Women in the United States. J Clin Pharmacol 2020; 60 Suppl 2:S34-S38. [PMID: 33274507 DOI: 10.1002/jcph.1710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/12/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Satish Sharan
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Yan Wang
- Division of Therapeutic Performance (DTP), ORS, OGD, CDER, US FDA, Silver Spring, Maryland, USA
| | - Mark Donnelly
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Yuan Zou
- Division of Therapeutic Performance (DTP), ORS, OGD, CDER, US FDA, Silver Spring, Maryland, USA
| | - Lanyan Fang
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Myong-Jin Kim
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Liang Zhao
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| |
Collapse
|
17
|
Suarez-Sharp S, Lindahl A, Heimbach T, Rostami-Hodjegan A, Bolger MB, Ray Chaudhuri S, Hens B. Translational Modeling Strategies for Orally Administered Drug Products: Academic, Industrial and Regulatory Perspectives. Pharm Res 2020; 37:95. [DOI: 10.1007/s11095-020-02814-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
|
18
|
In Vitro Dissolution and in Silico Modeling Shortcuts in Bioequivalence Testing. Pharmaceutics 2020; 12:pharmaceutics12010045. [PMID: 31947944 PMCID: PMC7022479 DOI: 10.3390/pharmaceutics12010045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose: To review in vitro testing and simulation platforms that are in current use to predict in vivo performances of generic products as well as other situations to provide evidence for biowaiver and support drug formulations development. Methods: Pubmed and Google Scholar databases were used to review published literature over the past 10 years. The terms used were “simulation AND bioequivalence” and “modeling AND bioequivalence” in the title field of databases, followed by screening, and then reviewing. Results: A total of 22 research papers were reviewed. Computer simulation using software such as GastroPlus™, PK-Sim® and SimCyp® find applications in drug modeling. Considering the wide use of optimization for in silico predictions to fit observed data, a careful review of publications is required to validate the reliability of these platforms. For immediate release (IR) drug products belonging to the Biopharmaceutics Classification System (BCS) classes I and III, difference factor (ƒ1) and similarity factor (ƒ2) are calculated from the in vitro dissolution data of drug formulations to support biowaiver; however, this method can be more discriminatory and may not be useful for all dissolution profiles. Conclusions: Computer simulation platforms need to improve their mechanistic physiologically based pharmacokinetic (PBPK) modeling, and if prospectively validated within a small percentage of error from the observed clinical data, they can be valuable tools in bioequivalence (BE) testing and formulation development.
Collapse
|
19
|
Bai JP, Musante CJ, Petanceska S, Zhang L, Zhao L, Zhao P. American Society for Clinical Pharmacology and Therapeutics 2019 Annual Meeting Pre-Conferences. CPT Pharmacometrics Syst Pharmacol 2019; 8:333-335. [PMID: 31087531 PMCID: PMC6617844 DOI: 10.1002/psp4.12424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jane P.F. Bai
- Office of Clinical PharmacologyOffice of Translational SciencesCenter for Drug Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Cynthia J. Musante
- Quantitative Systems PharmacologyEarly Clinical Development, Pfizer IncCambridgeMassachusettsUSA
| | - Suzana Petanceska
- Division of NeuroscienceNational Institute on Aging at the National Institutes of HealthBethesdaMarylandUSA
| | - Lei Zhang
- Office of Research and StandardsOffice of Generic DrugsCenter for Drug Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Liang Zhao
- Office of Research and StandardsOffice of Generic DrugsCenter for Drug Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Ping Zhao
- Bill & Melinda Gates FoundationSeattleWashingtonUSA
| |
Collapse
|