1
|
Elgabry RM, Hassan M, Fawzy GA, Meselhy KM, Mohamed OG, Al-Taweel AM, Sedeek MS. A Comparative Analysis of Polysaccharides and Ethanolic Extracts from Two Egyptian Sweet Potato Cultivars, Abees and A 195: Chemical Characterization and Immunostimulant Activities. Metabolites 2024; 14:222. [PMID: 38668350 PMCID: PMC11051996 DOI: 10.3390/metabo14040222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Sweet potato (Ipomoea batatas (L.) Lam.) belongs to family Convolvulaceae. The plant is distributed worldwide and consumed, especially for its edible tubers. Many studies have proved that the plant has variable biological activities such as antidiabetic, anti-cancer, antihypertensive, antimicrobial, and immunostimulant activities. The roots of sweet potatoes are rich in valuable phytochemical constituents that vary according to the flesh color. Our investigation focused on the chemical profiling of two Egyptian sweet potato cultivars, Abees and A 195, using UPLC-QTOF and the analysis of their polysaccharide fractions by GC-MS. Furthermore, we assessed the immunostimulant properties of these extracts in immunosuppressed mice. The study revealed that sweet potato roots contain significant concentrations of phenolic acids, including caffeoylquinic, caffeic, caffeoyl-feruloyl quinic, and p-coumaric acids, as well as certain flavonoids, such as diosmin, diosmetin, and jaceosidin, and coumarins, such as scopoletin and umbelliferone. Moreover, polysaccharides prepared from both studied cultivars were analyzed using GC-MS. Further biological analysis demonstrated that all the tested extracts possessed immunostimulant properties by elevating the level of WBCs, IL-2, TNF, and IFN-γ in the immunosuppressed mice relative to the control group with the highest values in polysaccharide fractions of A195 (the ethanolic extract showed a higher effect on TNF and IFN-γ, while its polysaccharide fraction exhibited a promising effect on IL-2 and WBCs). In conclusion, the roots of the Egyptian sweet potato cultivars Abees and A 195 demonstrated significant immunostimulant activities, which warrants further investigation through clinical studies.
Collapse
Affiliation(s)
- Rehab M. Elgabry
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (R.M.E.); (G.A.F.); (K.M.M.); (O.G.M.)
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 12613, Egypt;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City 43511, Egypt
| | - Ghada A. Fawzy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (R.M.E.); (G.A.F.); (K.M.M.); (O.G.M.)
| | - Khaled M. Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (R.M.E.); (G.A.F.); (K.M.M.); (O.G.M.)
| | - Osama G. Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (R.M.E.); (G.A.F.); (K.M.M.); (O.G.M.)
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Areej M. Al-Taweel
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Mohamed S. Sedeek
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (R.M.E.); (G.A.F.); (K.M.M.); (O.G.M.)
| |
Collapse
|
2
|
Cavalcante SB, Dos Santos Biscaino C, Kreusch MG, da Silva AF, Duarte RTD, Robl D. The hidden rainbow: the extensive biotechnological potential of Antarctic fungi pigments. Braz J Microbiol 2023; 54:1675-1687. [PMID: 37286926 PMCID: PMC10484874 DOI: 10.1007/s42770-023-01011-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
The Antarctic continent is an extreme environment recognized mainly by its subzero temperatures. Fungi are ubiquitous microorganisms that stand out even among Antarctic organisms, primarily due to secondary metabolites production with several biological activities. Pigments are examples of such metabolites, which mainly occur in response to hostile conditions. Various pigmented fungi have been isolated from the Antarctic continent, living in the soil, sedimentary rocks, snow, water, associated with lichens, mosses, rhizospheres, and zooplankton. Physicochemical extreme environments provide a suitable setup for microbial pigment production with unique characteristics. The biotechnological potential of extremophiles, combined with concerns over synthetic pigments, has led to a great interest in natural pigment alternatives. Besides biological activities provided by fungal pigments for surviving in extreme environments (e.g., photoprotection, antioxidant activity, and stress resistance), it may present an opportunity for biotechnological industries. This paper reviews the biotechnological potential of Antarctic fungal pigments, with a detailed discussion over the biological role of fungal pigments, potential industrial production of pigments from extremophilic fungi, pigments toxicity, current market perspective and published intellectual properties related to pigmented Antarctic fungi.
Collapse
Affiliation(s)
- Sabrina Barros Cavalcante
- Department of Microbiology, Immunology and Parasitlogy, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Carla Dos Santos Biscaino
- Department of Microbiology, Immunology and Parasitlogy, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Marianne Gabi Kreusch
- Department of Microbiology, Immunology and Parasitlogy, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - André Felipe da Silva
- Bioprocess and Biotechnology Engineering Undergraduate Program, Federal University of Tocantins (UFT), Gurupi, TO, Brazil
| | - Rubens Tadeu Delgado Duarte
- Department of Microbiology, Immunology and Parasitlogy, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Diogo Robl
- Department of Microbiology, Immunology and Parasitlogy, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
3
|
|
4
|
Sakai Y, Sato M, Funami Y, Ishiyama A, Hokari R, Iwatsuki M, Nagai T, Otoguro K, Yamada H, Ōmura S, Kiyohara H. Peyer's patch-immunomodulating glucans from sugar cane enhance protective immunity through stimulation of the hemopoietic system. Int J Biol Macromol 2019; 124:505-514. [DOI: 10.1016/j.ijbiomac.2018.11.180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/02/2018] [Accepted: 11/18/2018] [Indexed: 10/27/2022]
|
5
|
Wang L, Pan MH, Lo CY, Zhao H, Li S, Ho CT, Yang G. Anti-fibrotic activity of polyphenol-enriched sugarcane extract in rats via inhibition of p38 and JNK phosphorylation. Food Funct 2018; 9:951-958. [DOI: 10.1039/c7fo01617d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sugarcane (Saccharum officinarum L.), which is one of the most important sources of sugar, is also rich in polyphenolic compounds.
Collapse
Affiliation(s)
- Liwen Wang
- Hubei Key Laboratory for Processing & Application of Catalytic Materials
- College of Chemistry & Chemical Engineering
- Huanggang Normal University
- China
- Tianjin Key Laboratory of Food and Biotechnology
| | - Min-Hsiung Pan
- Institute of Food Science and Technology
- National Taiwan University
- Taipei 10617
- Taiwan
- Department of Medical Research
| | - Chih-Yu Lo
- Department of Food Science
- National Chiayi University
- Chiayi 60004
- Taiwan
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology
- School of Biotechnology and Food Science
- Tianjin University of Commerce
- Tianjin
- China
| | - Shiming Li
- Hubei Key Laboratory for Processing & Application of Catalytic Materials
- College of Chemistry & Chemical Engineering
- Huanggang Normal University
- China
| | - Chi-Tang Ho
- Department of Food Science
- Rutgers University
- New Brunswick
- USA
| | - Guliang Yang
- Hubei Key Laboratory for Processing & Application of Catalytic Materials
- College of Chemistry & Chemical Engineering
- Huanggang Normal University
- China
| |
Collapse
|
6
|
Awais MM, Akhtar M, Anwar MI, Khaliq K. Evaluation of Saccharum officinarum L. bagasse-derived polysaccharides as native immunomodulatory and anticoccidial agents in broilers. Vet Parasitol 2018; 249:74-81. [DOI: 10.1016/j.vetpar.2017.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 10/18/2022]
|
7
|
Protective effect of sugar cane extract against dextran sulfate sodium-induced colonic inflammation in mice. Tissue Cell 2017; 49:8-14. [DOI: 10.1016/j.tice.2016.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/13/2016] [Accepted: 12/24/2016] [Indexed: 12/11/2022]
|
8
|
Akram M, Hamid A, Khalil A, Ghaffar A, Tayyaba N, Saeed A, Ali M, Naveed A. Review on Medicinal Uses, Pharmacological, Phytochemistry and Immunomodulatory Activity of Plants. Int J Immunopathol Pharmacol 2014; 27:313-9. [DOI: 10.1177/039463201402700301] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Since ancient times, plants have been an exemplary source of medicine. Researchers have discovered some important compounds from plants. The present work constitutes a review of the medicinal plants whose immunomodulant activity has been proven. We performed PUBMED, EMBASE, Google scholar searches for research papers of medicinal plants having immunomodulant activity. Medicinal plants used by traditional physicians or reported as having immunomodulant activity include Acacia concocinna, Camellia sinensis, Lawsonia inermis Linn, Piper longum Linn, Gelidium amansii, Petroselinum crispum, Plantago major and Allium sativum. Immunomodulant activities of some of these medicinal plants have been investigated. The medicinal plants documented have immunomodulant activity and should be further investigated via clinical trial.
Collapse
Affiliation(s)
- M. Akram
- Department of Eastern Medicine and Surgery, University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - A. Hamid
- Department of Horticulture, Faculty of Agriculture, University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - A. Khalil
- University College of Conventional Medicine, The Islamia University of Bahawalpur, Pakistan
| | - A. Ghaffar
- Department of Life Sciences, The Islamia University of Bahawalpur, Pakistan
| | - N. Tayyaba
- Department of Applied Psychology, Bahauddin Zakaria University Sub Campus Sahiwal, Pakistan
| | - A. Saeed
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Pakistan
| | - M. Ali
- Department of Eastern Medicine and Surgery, Govt College University Faisalabad
| | - A. Naveed
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Pakistan
| |
Collapse
|
9
|
Akbarian A, Golian A, Kermanshahi H, De Smet S, Michiels J. Antioxidant enzyme activities, plasma hormone levels and serum metabolites of finishing broiler chickens reared under high ambient temperature and fed lemon and orange peel extracts andCurcuma xanthorrhizaessential oil. J Anim Physiol Anim Nutr (Berl) 2014; 99:150-162. [DOI: 10.1111/jpn.12188] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 02/28/2014] [Indexed: 11/29/2022]
Affiliation(s)
- A. Akbarian
- Centre of Excellence in the Animal Science Department; Ferdowsi University of Mashhad; Mashhad Iran
- Laboratory for Animal Nutrition and Animal Product Quality; Department of Animal Production; Ghent University; Melle Belgium
| | - A. Golian
- Centre of Excellence in the Animal Science Department; Ferdowsi University of Mashhad; Mashhad Iran
| | - H. Kermanshahi
- Centre of Excellence in the Animal Science Department; Ferdowsi University of Mashhad; Mashhad Iran
| | - S. De Smet
- Laboratory for Animal Nutrition and Animal Product Quality; Department of Animal Production; Ghent University; Melle Belgium
| | - J. Michiels
- Laboratory for Animal Nutrition and Animal Product Quality; Department of Animal Production; Ghent University; Melle Belgium
- Department of Applied Biosciences; Ghent University; Ghent Belgium
| |
Collapse
|
10
|
Srednicka-Tober D, Barański M, Gromadzka-Ostrowska J, Skwarło-Sońta K, Rembiałkowska E, Hajslova J, Schulzova V, Cakmak I, Öztürk L, Królikowski T, Wiśniewska K, Hallmann E, Baca E, Eyre M, Steinshamn H, Jordon T, Leifert C. Effect of crop protection and fertilization regimes used in organic and conventional production systems on feed composition and physiological parameters in rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1017-1029. [PMID: 23323826 DOI: 10.1021/jf303978n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Very little is known about the effects of an organic or conventional diet on animal physiology and health. Here, we report the effect of contrasting crop protection (with or without chemosynthetic pesticides) and fertilization (manure or mineral fertilizers) regimes on feed composition and growth and the physiological parameters of rats. The use of manure instead of mineral fertilizers in feed production resulted in lower concentrations of protein (18.8 vs 20.6%) and cadmium (3.33 vs 4.92 μg/100 g) but higher concentrations of polyphenols (1.46 vs 0.89 g/100 g) in feeds and higher body protein (22.0 vs 21.5%), body ash (3.59 vs 3.51%), white blood cell count (10.86 vs 8.19 × 10³/mm³), plasma glucose (7.23 vs 6.22 mmol/L), leptin (3.56 vs 2.78 ng/mL), insulin-like growth factor 1 (1.87 vs 1.28 μg/mL), corticosterone (247 vs 209 ng/mL), and spontaneous lymphocyte proliferation (11.14 vs 5.03 × 10³ cpm) but lower plasma testosterone (1.07 vs 1.97 ng/mL) and mitogen stimulated proliferation of lymphocytes (182 vs 278 × 10³ cpm) in rats. There were no main effects of crop protection, but a range of significant interactions between fertilization and crop protection occurred.
Collapse
Affiliation(s)
- Dominika Srednicka-Tober
- Department of Functional & Organic Food & Commodities, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chen MH, Lo DY, Liao JW, Hsuan SL, Chien MS, Lin CC, Chen TH, Lee WC. Immunostimulation of sugar cane extract on neutrophils to Salmonella typhimurium infection in mice. Phytother Res 2011; 26:1062-7. [PMID: 22213156 DOI: 10.1002/ptr.3676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 09/04/2011] [Accepted: 09/15/2011] [Indexed: 12/29/2022]
Abstract
The aim of this study was to evaluate the immunomodulatory effects of sugar cane extract (SCE) on the biological activities of neutrophils in mice. Six-week-old BALB/c mice were fed 1250 mg/kg of SCE once. The generation, migration and biological functions of neutrophils and the survival rates of the mice in response to Salmonella typhimurium infection were evaluated. The results show that the numbers of both bone marrow cells and neutrophils were significantly increased in response to SCE administration (p < 0.05) compared with controls. The migration, phagocytosis and H₂O₂ generation of neutrophils were all significantly enhanced in SCE-treated mice (p < 0.05). After challenge with S. typhimurium (lethal dose, 50% (LD₅₀), SCE-treated mice had a 19.2% higher survival rate and milder hepatic lesions than the controls. Additionally, fewer invasive bacteria were recovered from the spleens of SCE-treated mice. In conclusion, our results suggest that SCE has a positive regulatory effect on the biological function of mouse neutrophils that may increase host resistance against bacterial infections.
Collapse
Affiliation(s)
- Ming-Hua Chen
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, 250 Kuo Kuang Rd, 40227 Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Gaire BP, Subedi L. Medicinal Plant Diversity and their Pharmacological Aspects of Nepal Himalayas. ACTA ACUST UNITED AC 2011. [DOI: 10.5530/pj.2011.25.2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
The effect of olive oil polyphenols on antibodies against oxidized LDL. A randomized clinical trial. Clin Nutr 2011; 30:490-3. [DOI: 10.1016/j.clnu.2011.01.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/04/2011] [Accepted: 01/16/2011] [Indexed: 11/23/2022]
|
14
|
Immunotherapeutic effects of some sugar cane (Saccharum officinarum L.) extracts against coccidiosis in industrial broiler chickens. Exp Parasitol 2011; 128:104-10. [DOI: 10.1016/j.exppara.2011.02.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/11/2011] [Accepted: 02/21/2011] [Indexed: 11/20/2022]
|
15
|
Wallace RJ, Oleszek W, Franz C, Hahn I, Baser KHC, Mathe A, Teichmann K. Dietary plant bioactives for poultry health and productivity. Br Poult Sci 2011; 51:461-87. [PMID: 20924841 DOI: 10.1080/00071668.2010.506908] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. Plants and their biologically active chemical constituents, sometimes called secondary metabolites or bioactives, present numerous opportunities for the improvement of livestock production by inclusion in the diet. 2. Many such plant derived materials have well established therapeutic values in man; however, their potential as feed additives in animal production, particularly of poultry, remains largely unexploited. 3. There is increasing evidence indicating that they can be efficient in controlling diseases, and plant bioactives may also influence production parameters such as feed efficiency and product quality. 4. It has been reported that they may even replicate some of the effects of antibiotic growth promoters, which were banned from use in Europe from 2006. 5. This review assesses the status of plant bioactives in poultry production and their mode of action on avian physiology, particularly in the digestive tract.
Collapse
Affiliation(s)
- R J Wallace
- Rowett Institute of Nutrition and Health, University of Aberdeen, UK.
| | | | | | | | | | | | | |
Collapse
|