1
|
Yang L, Liu J, Zhang J, Shao F, Jin Y, Xing J, Zhou H, Yu A. Anticancer effects of Erzhimaoling decoction in high-grade serous ovarian cancer in vitro and in vivo. Eur J Med Res 2024; 29:405. [PMID: 39103890 PMCID: PMC11299366 DOI: 10.1186/s40001-024-01968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (HGSOC) is a common gynecologic malignancy with a poor prognosis. The traditional Chinese medicine formula Erzhimaoling decoction (EZMLD) has anticancer potential. This study aims to elucidate the anticancer effects of EZMLD on HGSOC in vitro and in vivo. MATERIALS AND METHODS EZMLD-containing serum was prepared from Sprague-Dawley rats for treating SKOV3 ovarian cancer cells at varying concentrations for 24 h and 48 h to determine the IC50. Concentrations of 0%, 5%, and 10% for 24 h were chosen for subsequent in vitro experiments. The roles of METTL3 and METTL14 in SKOV3 cells were explored by overexpressing these genes and combining EZMLD with METTL3/14 knockdown. Investigations focused on cell viability and apoptosis, apoptosis-related protein expression, and KRT8 mRNA m6A modification. For in vivo studies, 36 BALB/c nude mice were divided into six groups involving EZMLD (6.75, 13.5, and 27 g/kg) and METTL3 or METTL14 knockdowns, with daily EZMLD gavage for two weeks. RESULTS In vitro, EZMLD-containing serum had IC50 values of 8.29% at 24 h and 5.95% at 48 h in SKOV3 cells. EZMLD-containing serum decreased SKOV3 cell viability and increased apoptosis. EZMLD upregulated METTL3/14 and FAS-mediated apoptosis proteins, while downregulating Keratin 8 (KRT8). EZMLD increased KRT8 mRNA m6A methylation. METTL3/14 overexpression reduced SKOV3 cell viability and increased apoptosis, while METTL3/14 knockdown mitigated EZMLD's effects. In vivo, EZMLD suppressed SKOV3 xenografts growth, causing significant apoptosis and modulating protein expression. CONCLUSIONS EZMLD has therapeutic potential for ovarian cancer and may be considered for other cancer types. Future research may explore its broader effects beyond cell apoptosis.
Collapse
MESH Headings
- Female
- Animals
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/genetics
- Humans
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Mice
- Apoptosis/drug effects
- Mice, Nude
- Mice, Inbred BALB C
- Rats
- Cell Proliferation/drug effects
- Rats, Sprague-Dawley
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/pathology
- Cystadenocarcinoma, Serous/metabolism
- Cystadenocarcinoma, Serous/genetics
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Cell Survival/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Li Yang
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Hangzhou, 310022, Zhejiang, China
| | - Jingfang Liu
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Hangzhou, 310022, Zhejiang, China
| | - Jiejie Zhang
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Hangzhou, 310022, Zhejiang, China
| | - Feng Shao
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Hangzhou, 310022, Zhejiang, China
| | - Yanlu Jin
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Hangzhou, 310022, Zhejiang, China
| | - Jie Xing
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Hangzhou, 310022, Zhejiang, China
| | - Heran Zhou
- Department of Oncology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, No. 453 Stadium Road, Hangzhou, 310007, Zhejiang, China.
| | - Aijun Yu
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, No. 1 Banshan East Road, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
2
|
Chen L, Huang D, Jiang L, Yang J, Shi X, Wang R, Li W. A review of botany, phytochemistry, pharmacology, and applications of the herb with the homology of medicine and food: Ligustrum lucidum W.T. Aiton. Front Pharmacol 2024; 15:1330732. [PMID: 38933667 PMCID: PMC11199554 DOI: 10.3389/fphar.2024.1330732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Ligustrum lucidum W.T. Aiton is an outstanding herb with the homology of medicine and food. Its ripe fruits are traditionally used as an important tonic for kidneys and liver in China. Ligustrum lucidum W.T. Aiton is rich in nutritional components and a variety of bioactive ingredients. A total of 206 compounds have been isolated and identified, they mainly include flavonoids, phenylpropanoids, iridoid glycosides, and triterpenoids. These compounds exert anti-osteoporosis, anti-tumor, liver protective, antioxidant, anti-inflammatory, and immunomodulatory effects. Ligustrum lucidum W.T. Aiton has been traditionally used to treat many complex diseases, including osteoporotic bone pain, rheumatic bone, cancer, related aging symptoms, and so on. In the 2020 Edition of Chinese Pharmacopoeia, there are more than 100 prescriptions containing L. lucidum W.T. Aiton. Among them, some classical preparations including Er Zhi Wan and Zhenqi fuzheng formula, are used in the treatment of various cancers with good therapeutic effects. Additionally, L. lucidum W.T. Aiton has also many excellent applications for functional food, ornamental plants, bioindicator of air pollution, algicidal agents, and feed additives. Ligustrum lucidum W.T. Aiton has rich plant resources. However, the application potential of it has not been fully exploited. We hope that this paper provides a theoretical basis for the high-value and high-connotation development of L. lucidum W.T. Aiton in the future.
Collapse
Affiliation(s)
- Liping Chen
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| | - Dong Huang
- School of Medicine, Tibet University, Lhasa, China
| | - Lin Jiang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jihong Yang
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaoyu Shi
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Rong Wang
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| | - Wenbin Li
- Department of Pharmacy, The 940th Hospital of Joint Logistic Support Force of PLA, Lanzhou, China
| |
Collapse
|
3
|
Wang KH, Shen HS, Chu SC, Wang TF, Lin CW, Huang WH, Wu YF, Ho CC, Pang CY, Li CC. Effectiveness of Chinese Herbal Medicine as a Complementary Treatment for Neutropenia Prevention and Immunity Modulation During Chemotherapy in Patients With Breast Cancer: Protocol for a Real-World Pragmatic Clinical Trial. JMIR Res Protoc 2024; 13:e55662. [PMID: 38466979 DOI: 10.2196/55662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND In recent years, advancements in cancer treatment have enabled cancer cell inhibition, leading to improved patient outcomes. However, the side effects of chemotherapy, especially leukopenia, impact patients' ability to tolerate their treatments and affect their quality of life. Traditional Chinese medicine is thought to provide complementary cancer treatment to improve the quality of life and prolong survival time among patients with cancer. OBJECTIVE This study aims to evaluate the effectiveness of Chinese herbal medicine (CHM) as a complementary treatment for neutropenia prevention and immunity modulation during chemotherapy in patients with breast cancer. METHODS We will conduct a real-world pragmatic clinical trial to evaluate the effectiveness of CHM as a supplementary therapy to prevent neutropenia in patients with breast cancer undergoing chemotherapy. Patients will be classified into CHM or non-CHM groups based on whether they received CHM during chemotherapy. Using generalized estimating equations or repeated measures ANOVA, we will assess differences in white blood cell counts, absolute neutrophil counts, immune cells, and programmed cell death protein 1 (PD-1) expression levels between the 2 groups. RESULTS This study was approved by the research ethics committee of Hualien Tzu Chi Hospital (IRB 110-168-A). The enrollment process began in September 2021 and will stop in December 2024. A total of 140 patients will be recruited. Data cleaning and analysis are expected to finish in the middle of 2025. CONCLUSIONS Traditional Chinese medicine is the most commonly used complementary medicine, and it has been reported to significantly alleviate chemotherapy-related side effects. This study's findings may contribute to developing effective interventions targeting chemotherapy-related neutropenia among patients with breast cancer in clinical practice. TRIAL REGISTRATION International Traditional Medicine Clinical Trial Registry ITMCTR2023000054; https://tinyurl.com/yc353hes. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/55662.
Collapse
Affiliation(s)
- Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Hsuan-Shu Shen
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Sports Medicine Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Sung-Chao Chu
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ching-Wei Lin
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Han Huang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Clinical Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yi-Feng Wu
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ching-Chun Ho
- Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Cheng-Yoong Pang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chi-Cheng Li
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of Stem Cell and Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
4
|
Li X, Jia J, Li T, Zhao Z, Liu H, Song N, Pei J. Metabolomics analysis of Ligustri Lucidi Fructus at different harvest times during the whole growing period based on ultra-high-performance liquid chromatography with mass spectrometry. J Sep Sci 2023; 46:e2300196. [PMID: 37806751 DOI: 10.1002/jssc.202300196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023]
Abstract
After medicinal market research, it was found that the harvest time of Ligustri Lucidi Fructus (LLF) was chaotic in practice. In order to determine the optimal harvest period of LLF to ensure its pharmacological activity, metabolomics analysis of LLF at different harvest times based on ultra-high-performance liquid chromatography-triple quadrupole-(linear ion trap)-tandem mass spectrometry was established. In this study, 166 differential metabolites (DMs) in 448 metabolites at different harvest times were screened out based on variable importance in projection value, and among them, 94 DMs with regular trends of change in relative content (59 increased and 35 decreased with the growth period) were chosen to further research. The result of the multivariate statistical analysis showed that November was the optimal harvest period of LLF. Additionally, 10-hydroxyligustroside, oleoside 11-methyl ester, and salidroside were screened out to be used as the evaluation indicators of immature LLF, while specnuezhenide, nuezhenoside G13, and neonuezhenide were the evaluation indicators of mature LLF. This study provides fundamental insight for metabolite identification and proposes the best harvest period of LLF to avoid confusion in the medicinal market.
Collapse
Affiliation(s)
- Xiaoan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, P. R. China
- Ankang Inspection and Testing Center for Food and Drug, Ankang, P. R. China
| | - Jianzhong Jia
- Shaanxi Institute for Food and Drug Control, Shaanxi Key Laboratory of Food and Drug Safety Monitoring, Xi'an, P. R. China
| | - Tao Li
- Shaanxi Institute for Food and Drug Control, Shaanxi Key Laboratory of Food and Drug Safety Monitoring, Xi'an, P. R. China
| | - Zefeng Zhao
- Shaanxi University of Chinese Medicine, Xianyang, P. R. China
| | - Haijing Liu
- Shaanxi Institute for Food and Drug Control, Shaanxi Key Laboratory of Food and Drug Safety Monitoring, Xi'an, P. R. China
| | - Na Song
- Xi'an Central Hospital, Xi'an, P. R. China
| | - Jin Pei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, P. R. China
| |
Collapse
|
5
|
The Protective Effect of Ethyl Acetate and n-Butanol Fractions of Wine-Steamed Ligustri Lucidi Fructus on Diabetic Nephropathy in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6512242. [PMID: 34745293 PMCID: PMC8566045 DOI: 10.1155/2021/6512242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022]
Abstract
Ligustri Lucidi Fructus (LLF), the dry and ripe fruit of Ligustrum lucidum W. T. Aiton (Oleaceae), is a traditional Chinese medicine for nourishing the liver and kidney in clinics for thousands of years. Wine-steamed Ligustri Lucidi Fructus (WLL) can alleviate coolness and smoothness of LLF and enhance the function of nourishing the liver and kidney, so ancient and modern medicine usually used it in clinics. First of all, we prepared the extracts of different polar fractions of WLL to explore the effective fractions and potential mechanisms of WLL in the treatment of diabetic nephropathy (DN). Then, HPLC method was used to determine the contents of 12 active components in WLL and its different polar components. Finally, the potential relationship between 12 active components and physicochemical parameters of DN rats was explored. The pharmacological experiments showed that WLL, ethyl acetate (EtOAc), and n-butanol (n-BuOH) extracts not only significantly alleviated the clinical symptoms and kidney damage of DN rats but also had obvious anti-inflammatory and antioxidant effects. In addition, the results of HPLC analysis showed that the 12 active components of WLL mainly existed in the extracts of EtOAc and n-BuOH. The Pearson correlation analysis showed 12 active components and physicochemical parameters had different degrees of correlation. In conclusion, we proved that the extracts of EtOAc and n-BuOH were the effective fractions of WLL in treating DN in rats, and they could regulate the levels of inflammatory cytokines and decrease oxidation stress, which provides a basis for further research on the mechanism of WLL in treating DN and provides a pharmacological and chemical foundation for the development of new anti-DN drugs.
Collapse
|
6
|
Moldovan B, Sincari V, Perde-Schrepler M, David L. Biosynthesis of Silver Nanoparticles Using Ligustrum Ovalifolium Fruits and Their Cytotoxic Effects. NANOMATERIALS 2018; 8:nano8080627. [PMID: 30126197 PMCID: PMC6116229 DOI: 10.3390/nano8080627] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/14/2023]
Abstract
The present study reports for the first time the efficacy of bioactive compounds from Ligustrum ovalifolium L. fruit extract as reducing and capping agents of silver nanoparticles (AgNPs), developing a green, zero energetic, cost effective and simple synthesis method of AgNPs. The obtained nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), confirming that nanoparticles were crystalline in nature, spherical in shape, with an average size of 7 nm. The FTIR spectroscopy analysis demonstrated that the AgNPs were capped and stabilized by bioactive molecules from the fruit extract. The cytotoxicity of the biosynthesized AgNPs was in vitro evaluated against ovarian carcinoma cells and there were found to be effective at low concentration levels.
Collapse
Affiliation(s)
- Bianca Moldovan
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics (ANALYTICA), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania.
| | - Vladislav Sincari
- Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania.
| | - Maria Perde-Schrepler
- "Ion Chiricuta" Oncology Institute, 34⁻36 Republicii Street, Cluj-Napoca 400015, Romania.
| | - Luminita David
- Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics (ANALYTICA), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania.
| |
Collapse
|
7
|
The advances in research on the pharmacological effects of Fructus Ligustri Lucidi. BIOMED RESEARCH INTERNATIONAL 2015; 2015:281873. [PMID: 25874204 PMCID: PMC4385624 DOI: 10.1155/2015/281873] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/17/2014] [Indexed: 12/14/2022]
Abstract
Fructus Ligustri Lucidi is a well-known invigorator in Chinese materia medica with hepatoprotective effect, anticancer activity, antioxidant activity, and so on. And oleanolic acids are the major pharmacologically active components in Fructus Ligustri Lucidi. So it has great value in medical health, and may be developed to a complementary and alternative medicine through further research. In this paper, the advances in research on pharmacological effects of Fructus Ligustri Lucidi were summarized by reviewing the recent related literature.
Collapse
|
8
|
Li TF, Lin CC, Tsai HP, Hsu CH, Fu SL. Effects of Kuan-Sin-Yin decoction on immunomodulation and tumorigenesis in mouse tumor models. Altern Ther Health Med 2014; 14:488. [PMID: 25510204 PMCID: PMC4301833 DOI: 10.1186/1472-6882-14-488] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/11/2014] [Indexed: 11/10/2022]
Abstract
Background Complementary therapies are widely used among cancer patients. Kuan-Sin-Yin (KSY) decoction, a popular qi-promoting herbal medicine, was constituted with several herbs known to exhibit immunomodulating or anticancer activity. After combining these herbs as a compound formula, it is necessary to reassess the immunomodulation effects, the effects on tumor growth, and possible toxicity of KSY. Methods The anti-cancer effects of KSY in vivo were determined by measuring the tumor volumes, anticancer-associated cytokines (IFN-gamma, TNF-alpha, IL-2, and IL-12), accumulation of tumor infiltrating leukocytes (TILs), proliferation and apoptosis-related molecular markers (Ki-67, p53, p21, activated caspase 3, and cleaved PARP), and an in situ TUNEL assay. The body weight and serum chemistry of treated mice were also assessed. In vitro, the effects of KSY were evaluated using MTT assay, BrdU incorporation assay and cell growth curve. Results In vivo, KSY suppressed bladder or lung cancer growth but did not promote the production of cytokines nor increase the accumulation of TILs. The expression of p53 and p21 in KSY-treated mice were increased. The numbers of apoptotic tumor cells and the expression of apoptosis marker proteins (Caspase 3 and cleaved PARP) were not significantly elevated after KSY treatment. In vitro, the viability and proliferation of tumor cells, but not normal cells, were suppressed by KSY treatment. No significant toxicity was found in KSY-treated mice. Conclusions KSY suppressed the tumor growth in vivo and in vitro, which resulted from its cytostatic effects on cancer cells, rather than the induction of anti-cancer immunity. Under these experimental conditions, no apparent toxicity was observed. Electronic supplementary material The online version of this article (doi:10.1186/1472-6882-14-488) contains supplementary material, which is available to authorized users.
Collapse
|