1
|
Zhao JQ, Zhou QQ, Sun Y, Yu T, Jiang Y, Li HJ. The anti-non-small cell lung cancer effect of Diosbulbin B: Targeting YY1 induced cell cycle arrest and apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155734. [PMID: 38761775 DOI: 10.1016/j.phymed.2024.155734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Toxic components frequently exhibit unique characteristics and activities, offering ample opportunities for the advancement of anti-cancer medications. As the main hepatotoxic component of Dioscorea bulbifera L. (DB), Diosbulbin B (DIOB) has been widely studied for its anti-tumor activity at nontoxic doses. However, the effectiveness and mechanism of DIOB against non-small cell lung cancer (NSCLC) remains unclear. PURPOSE To evaluate the anti-NSCLC activity of DIOB and to elucidate the specific mechanism of action. METHOD The effect of DIOB on NSCLCL in vitro was evaluated through CCK8, colony formation, and flow cytometry. The in vivo efficacy and safety of DIOB in treating NSCLC were assessed using various techniques, including HE staining, tunel staining, immunohistochemistry, and biochemical index detection. To understand the underlying mechanism, cell transfection, western blotting, molecular docking, cellular thermal shift assay (CESTA), and surface plasmon resonance (SPR) were employed for investigation. RESULTS DIOB effectively hindered the progression of NSCLC both in vitro and in vivo settings at a no-observed-adverse-effect concentration (NOAEC) and a safe dosage. Specifically, DIOB induced significant G0/G1 phase arrest and apoptosis in A549, PC-9, and H1299 cells, while also notably inhibiting the growth of subcutaneous tumors in nude mice. Mechanistically, DIOB could directly interact with oncogene Yin Yang 1 (YY1) and inhibit its expression. The reduction in YY1 resulted in the triggering of the tumor suppressor P53, which induced cell cycle arrest and apoptosis in NSCLC cells by inhibiting the expression of Cyclin A2, B2, CDK1, CDK2, CDK4, BCL-2, and inducing the expression of BAX. In NSCLC cells, the induction of G0/G1 phase arrest and apoptosis by DIOB was effectively reversed when YY1 was overexpressed or P53 was knocked down. Importantly, we observed that DIOB exerted the same effect by directly influencing the expression of YY1-regulated c-Myc and BIM, particularly in the absence of P53. CONCLUSION For the inaugural investigation, this research unveiled the anti-NSCLC impact of DIOB, alongside its fundamental mechanism. DIOB has demonstrated potential as a treatment agent for NSCLC due to its impressive efficacy in countering NSCLC.
Collapse
Affiliation(s)
- Jin-Quan Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Qi-Qi Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Yuan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Ting Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Yan Jiang
- Nanjing Forestry University, Nanjing 210037, China.
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
2
|
Wan D, Wu Y, Liu Y, Liu Y, Pan J. Advances in 2,3-Dimethylmaleic Anhydride (DMMA)-Modified Nanocarriers in Drug Delivery Systems. Pharmaceutics 2024; 16:809. [PMID: 38931929 PMCID: PMC11207803 DOI: 10.3390/pharmaceutics16060809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer represents a significant threat to human health. The cells and tissues within the microenvironment of solid tumors exhibit complex and abnormal properties in comparison to healthy tissues. The efficacy of nanomedicines is inhibited by the presence of substantial and complex physical barriers in the tumor tissue. The latest generation of intelligent drug delivery systems, particularly nanomedicines capable of charge reversal, have shown promise in addressing this issue. These systems can transform their charge from negative to positive upon reaching the tumor site, thereby enhancing tumor penetration via transcytosis and promoting cell internalization by interacting with the negatively charged cell membranes. The modification of nanocarriers with 2,3-dimethylmaleic anhydride (DMMA) and its derivatives, which are responsive to weak acid stimulation, represents a significant advance in the field of charge-reversal nanomedicines. This review provides a comprehensive examination of the recent insights into DMMA-modified nanocarriers in drug delivery systems, with a particular focus on their potential in targeted therapeutics. It also discusses the synthesis of DMMA derivatives and their role in charge reversal, shell detachment, size shift, and ligand reactivation mechanisms, offering the prospect of a tailored, next-generation therapeutic approach to overcome the diverse challenges associated with cancer therapy.
Collapse
Affiliation(s)
- Dong Wan
- School of Chemistry, Tiangong University, Tianjin 300387, China; (D.W.); (Y.W.)
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China;
| | - Yanan Wu
- School of Chemistry, Tiangong University, Tianjin 300387, China; (D.W.); (Y.W.)
| | - Yujun Liu
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China;
| | - Yonghui Liu
- School of Chemistry, Tiangong University, Tianjin 300387, China; (D.W.); (Y.W.)
| | - Jie Pan
- School of Chemistry, Tiangong University, Tianjin 300387, China; (D.W.); (Y.W.)
| |
Collapse
|
3
|
Islam MR, Rauf A, Alash S, Fakir MNH, Thufa GK, Sowa MS, Mukherjee D, Kumar H, Hussain MS, Aljohani ASM, Imran M, Al Abdulmonem W, Thiruvengadam R, Thiruvengadam M. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: targeting insights into molecular signaling pathways. Med Oncol 2024; 41:134. [PMID: 38703282 DOI: 10.1007/s12032-024-02333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/13/2024] [Indexed: 05/06/2024]
Abstract
Primary liver cancer is a type of cancer that develops in the liver. Hepatocellular carcinoma is a primary liver cancer that usually affects adults. Liver cancer is a fatal global condition that affects millions of people worldwide. Despite advances in technology, the mortality rate remains alarming. There is growing interest in researching alternative medicines to prevent or reduce the effects of liver cancer. Recent studies have shown growing interest in herbal products, nutraceuticals, and Chinese medicines as potential treatments for liver cancer. These substances contain unique bioactive compounds with anticancer properties. The causes of liver cancer and potential treatments are discussed in this review. This study reviews natural compounds, such as curcumin, resveratrol, green tea catechins, grape seed extracts, vitamin D, and selenium. Preclinical and clinical studies have shown that these medications reduce the risk of liver cancer through their antiviral, anti-inflammatory, antioxidant, anti-angiogenic, and antimetastatic properties. This article discusses the therapeutic properties of natural products, nutraceuticals, and Chinese compounds for the prevention and treatment of liver cancer.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Alash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Md Naeem Hossain Fakir
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Mahbuba Sharmin Sowa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Dattatreya Mukherjee
- Raiganj Government Medical College and Hospital, Pranabananda Sarani, Raiganj, 733134, West Bengal, India
| | - Harendra Kumar
- Dow University of Health Sciences, Mission Rd, New Labour Colony Nanakwara, Karachi, 74200, Sindh, Pakistan
| | - Md Sadique Hussain
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, 302017, Rajasthan, India
| | - Abdullah S M Aljohani
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
4
|
Chuah YY, Lee YY, Chou CK, Chang LJ. Catharanthus roseus intoxication mimicking acute cholangitis. BMC Complement Med Ther 2024; 24:139. [PMID: 38575897 PMCID: PMC10993546 DOI: 10.1186/s12906-024-04441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Catharanthus roseus, a Madagascar native flowering plant, is known for its glossy leaves and vibrant flowers, and its medicinal significance due to its alkaloid compounds. As a source of vinblastine and vincristine used in chemotherapy, Catharanthus roseus is also employed in traditional medicine with its flower and stalks in dried form. Its toxicity can lead to various adverse effects. We report a case of Catharanthus roseus juice toxicity presenting as acute cholangitis, emphasizing the importance of healthcare providers obtaining detailed herbal supplement histories. CASE PRESENTATION A 65-year-old woman presented with abdominal pain, fever, anorexia, and lower limb numbness. Initial diagnosis of acute cholangitis was considered, but imaging excluded common bile duct stones. Further investigation revealed a history of ingesting Catharanthus roseus juice for neck pain. Laboratory findings showed leukocytosis, elevated liver enzymes, and hyperbilirubinemia. The patient developed gastric ulcers, possibly due to alkaloids in Catharanthus roseus. No bacterial growth was noted in blood cultures. The patient recovered after discontinuing the herbal extract. CONCLUSIONS Catharanthus roseus toxicity can manifest as fever, hepatotoxicity with cholestatic jaundice, and gastric ulcers, mimicking acute cholangitis. Awareness of herbal supplement use and potential toxicities is crucial for healthcare providers to ensure prompt diagnosis and appropriate management. This case emphasizes the need for public awareness regarding the possible toxicity of therapeutic herbs and the importance of comprehensive patient histories in healthcare settings.
Collapse
Affiliation(s)
- Yoen Young Chuah
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ping Tung Christian Hospital, Pingtung, Taiwan
- Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Yeong Yeh Lee
- Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kota Bahru, Malaysia
| | - Chu-Kuang Chou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Obesity center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Li-Jen Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan.
- Min-Hwei Junior College of Health Care Management, Tainan, Taiwan.
| |
Collapse
|
5
|
Cai Q, Chen M, Wang B, Wang J, Xia L, Li J. Phytosphingosine inhibits the growth of lung adenocarcinoma cells by inducing G2/M-phase arrest, apoptosis, and mitochondria-dependent pathway cell death in vitro and in vivo. Chem Biol Interact 2024; 387:110795. [PMID: 37956922 DOI: 10.1016/j.cbi.2023.110795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
In order to search for novel antitumor drugs with high efficiency and low toxicity, the anti-lung cancer activity of phytosphingosine was studied. Phytosphingosine is widely distributed in fungi, plants, animals, and has several biological activities, including anti-inflammation and anti-tumor. However, its anti-lung cancer activity needs to be further investigated. The effects and pharmacological mechanisms of phytosphingosine on lung cancer treatment were investigated both in vitro and in vivo. The results showed that phytosphingosine inhibited the growth of lung cancer cell lines. Phytosphingosine induced apoptosis through a mitochondria-mediated pathway, phytosphingosine arrested the cell cycle at the G2/M phase and induced apoptosis in a dose-dependent manner by increasing Bax/Bcl-2 ratio, which caused the decrease of mitochondrial membrane potential to promote the release of cytochrome C, caspase 9 and 3, and degrade PARP in A549 cells. The results showed that phytosphingosine could damage the mitochondrial functions, increase ROS levels, and arrest the cell cycle at the G2/M stages. Finally, phytosphingosine also inhibited the growth of tumor in mice. Taken together, phytosphingosine suppressed the growth of lung cancer cells both in vitro and in vivo and had potential application in the research and development of antitumor drugs. The aim of the present study was to explain the theoretical basis of phytosphingosine therapy for lung cancer and providing new possibilities for lung cancer treatment.
Collapse
Affiliation(s)
- Qi Cai
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Min Chen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Bo Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Jin Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| |
Collapse
|
6
|
Wen W, Jin K, Che Y, Du LY, Wang LN. Arnicolide D Inhibits Oxidative Stress-induced Breast Cancer Cell Growth and Invasion through Apoptosis, Ferroptosis, and Parthanatos. Anticancer Agents Med Chem 2024; 24:836-844. [PMID: 36503456 DOI: 10.2174/1871520623666221208102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/15/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Breast cancer is the most common malignant tumor in women, and its pathogenesis is very complicated. More and more studies have found that Traditional Chinese Medicine plays an important role in tumor prevention. OBJECTIVE To investigate the mechanism of arnicolide D isolated from Centipeda minima in breast cancer. METHODS Cell Counting Kit-8 (CCK-8), western blot, RT-qPCR, ELISA, flow cytometry, and Transwell were used to detect the effect of arnicolide D on the biological function of breast cancer cells. RESULTS Arnicolide D promoted reactive oxygen species (ROS) production and induced a decrease in mitochondrial membrane potential in breast cancer cells, thereby inhibiting cell viability and increasing lactate dehydrogenase (LDH) release. Arnicolide D activated the classical apoptosis pathway to induce cell apoptosis; it significantly promoted PARP-1 expression, enhanced the nuclear translocation of apoptosis-inducing factor (AIF), and reduced the expression of AIF in mitochondria, indicating that it can induce the occurrence of parthanatos in a ROS dependent manner. In addition, arnicolide D down-regulated glutathione peroxidase 4 (GPX4) expression and increased the accumulation of Fe2+ and malondialdehyde (MDA), thereby activating ferroptosis. Apoptosis inhibitor, ferroptosis inhibitor, PARP inhibitor, PARP-1 siRNA, AIF siRNA and GPX4 overexpression vector significantly attenuated the inhibitory effect of arnicolide D on cell viability and reduced LDH release, which indicates that arnicolide D inhibits breast cancer cell growth by inducing apoptosis, parthanatos and ferroptosis. Arnicolide D also reduced breast cancer cell invasion and inhibited the expression of matrix metallopeptidase (MMP)-2 and MMP-9. CONCLUSION Arnicolide D can activate a variety of cell death modes by inducing oxidative stress, thereby inhibiting the growth and invasion of breast cancer cells, indicating that arnicolide D has a good anti-tumor effect.
Collapse
Affiliation(s)
- Wei Wen
- General Surgery Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Ke Jin
- Emergency Department, The second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Ying Che
- Ultrasonic Diagnostics Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Lin-Yao Du
- Ultrasonic Diagnostics Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Li-Na Wang
- Ultrasonic Diagnostics Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| |
Collapse
|
7
|
Kim GD. Harmine Hydrochloride Induces G2/M Cell Cycle Arrest and Apoptosis in SK-Hep1 Hepatocellular Carcinoma Cells by Regulating Mitogen-Activated Protein Kinases and the PI3K/AKT Pathway. Prev Nutr Food Sci 2023; 28:436-443. [PMID: 38188092 PMCID: PMC10764232 DOI: 10.3746/pnf.2023.28.4.436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024] Open
Abstract
Liver cancer is a globally common form of cancer. Thus, novel drugs derived from natural products are needed to reduce the side effects of chemotherapy. The present study aimed to analyze the anticancer properties and effects of harmine hydrochloride (HMH), a water-soluble metabolite of harmine that can be easily absorbed into tissues, in treating liver cancer cells. HMH dose-dependently inhibited cell growth, migration, invasion, and colony formation in SK-Hep1 cells. It also induced G2/M arrest by reducing the expression of p-cdc2, cyclin B1, and Rb (G2/M phase regulatory proteins) in a dose-dependent manner. HMH treatment reduced the expression of caspase-9, caspase-3, PARP, and Bcl-2 and increased the expression of Bax (a proapoptotic protein). Moreover, it increased the production of reactive oxygen species and decreased the intracellular uptake of rhodamine 123 due to mitochondrial dysfunction because of oxidative stress. HMH treatment also upregulated the phosphorylation of JNK, p38, and FOXO3a in SK-Hep1 cells and downregulated the PI3K/AKT signaling pathway. Our findings suggest that HMH may activate the compounds responsible for anticancer effects in hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Gi Dae Kim
- Department of Food and Nutrition, Kyungnam University, Gyeongnam 51767, Korea
| |
Collapse
|
8
|
Pan L, Wang Y, Yue L, Wang N, Xu W, Liao X, Wang H, Xiu Y. Review on Processing Methods of Toxic Chinese Materia Medica and the Related Mechanisms of Action. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1385-1412. [PMID: 37545180 DOI: 10.1142/s0192415x23500635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Toxic Chinese materia medica (CMM) has both pharmacological activities and toxic effects. Based on thousands of years of experience in the application of CMMs, people have explored many practical processing methods of CMMs, also known as "Pao Zhi", to reduce/control toxicity and preserve/enhance efficacy. Toxic CMMs have been used throughout China's hospitals. Yet, the production and use of toxic CMM should be carried out in accordance with the Chinese pharmacopoeia (ChP) and the processing regulations formulated by the health administrative departments of provinces, autonomous regions, and municipalities directly under the Central Government. This paper summarizes the current understanding and awareness of toxicity and 45 toxic CMMs, the commonly used processing methods of toxic CMMs recorded in the 2020 edition of ChP, and the changes in the chemical component, toxicity, or efficacy profiles after processing. This review may provide useful information for the processing methods of toxic CMMs worldwide. We believe that with an in-depth study and understanding of toxic CMMs combined with a standardized application, the toxicity of CMMs will be predictable and controllable in the future.
Collapse
Affiliation(s)
- Lingyun Pan
- Experiment Center for Science and Technology, Shanghai 201203, P. R. China
| | - Yingshu Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Lixia Yue
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Nan Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Wen Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Xue Liao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Haiying Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Yanfeng Xiu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| |
Collapse
|
9
|
Wu Z, Yuan C, Zhang Z, Wang M, Xu M, Chen Z, Tian J, Cao W, Wang Z. Paris saponins Ⅶ inhibits glycolysis of ovarian cancer via the RORC/ACK1 signaling pathway. Biochem Pharmacol 2023; 213:115597. [PMID: 37196681 DOI: 10.1016/j.bcp.2023.115597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Rhizoma Paridis is a traditional Chinese medicine commonly used for treatment of malignant tumors. Paris saponins Ⅶ (PSⅦ) is one of the components of Rhizoma Paridis, but the role of PSⅦ in glucose metabolism in ovarian cancer remains elucidated. A series of experiments in the current study demonstrated that PSⅦ inhibites glycolysis and promotes cell apoptosis in ovarian cancer cells. Expression levels of glycolysis-related proteins and apoptosis-related proteins were significantly altered by upon treatment with PSⅦ, as determined from western blot analyses. Mechanistically, PSⅦ exerted its anti-tumor effects by targeting the RORC/ACK1 signaling pathway. These findings indicate that PSⅦ inhibits glycolysis-induced cell proliferation and apoptosis through the RORC/ACK1 pathway, supporting its potential development as a candidate chemotherapeutic agent for ovarian cancer.
Collapse
Affiliation(s)
- Zong Wu
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai 200071, China
| | - Chenyue Yuan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai 200071, China
| | - Zihao Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; Qingdao Institute, Fudan University, Shanghai, China
| | - Mengfei Wang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai 200071, China
| | - Meng Xu
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai 200071, China
| | - Ziqi Chen
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai 200071, China
| | - Jianhui Tian
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai 200071, China.
| | - Wenjiao Cao
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China.
| | - Ziliang Wang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai 200071, China; Cancer Institute, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
10
|
Yang Q, Guo J, Zheng J, Chen Y, Zou B, Li R, Ding Z, Wang Y, Li L, Chen Z, Mo L, Liang Q, Chen F, Li X. Polyphyllin VII protects from breast cancer-induced osteolysis by suppressing osteoclastogenesis via c-Fos/NFATc1 signaling. Int Immunopharmacol 2023; 120:110316. [PMID: 37253315 DOI: 10.1016/j.intimp.2023.110316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023]
Abstract
Bone is a preferred metastatic site of advanced breast cancer and the 5-year overall survival rate of breast cancer patients with bone metastasis is only 22.8%. Targeted inhibition of osteoclasts can treat skeletal-related events (SREs) in breast cancer patients. Polyphyllin VII (PP7), a pennogenyl saponin isolated from traditional Chinese herb Paris polyphylla, exhibits strong anti-inflammatory and anti-cancer activities. In this study, we evaluated the effect of PP7 on metastatic breast cancer-induced bone destruction in vivo and the underlying mechanisms. We found that intraperitoneal injection of 1 mg/kg PP7 significantly ameliorated the breast cancer MDA-MB-231 cell-induced osteolysis in mice. Mechanistically, PP7 (0.125-0.5 μM) inhibited the conditioned medium of MDA-MB-231 cells (MDA-MB-231 CM)-induced osteoclast formation in bone marrow-derived macrophages (BMMs). Furthermore, PP7 markedly reduced MDA-MB-231 CM-induced osteoclastic bone resorption and F-actin rings formation in vitro. During MDA-MB-231 CM-induced osteoclastogenesis, the activation of c-Fos and NFATc1 signaling was significantly downregulated by PP7, and finally osteoclast-related genes such as Oscar, Atp6v0d2, Mmp9 and β3 integrin were decreased. In addition, the formation of osteoblast was promoted by PP7 treatment. Our current findings revealed PP7 as a potential safe agent for preventing and treating bone destruction in breast cancer patients with bone metastases.
Collapse
Affiliation(s)
- Qin Yang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jingyun Guo
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiehuang Zheng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Binhua Zou
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ruopeng Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zongbao Ding
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yiyuan Wang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lihong Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ziye Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lixia Mo
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qinghe Liang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengsheng Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
11
|
Emami A, Ghafouri H, Sariri R. Polyphyllin D-Loaded Solid Lipid Nanoparticles for Breast Cancer: Synthesis, Characterization, In Vitro, and in Vivo Studies. Int J Pharm 2023; 639:122976. [PMID: 37088118 DOI: 10.1016/j.ijpharm.2023.122976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Polyphyllin D (PD), a steroidal saponin in Paris polyphylla, induces apoptosis via the intrinsic apoptotic pathway in different cancer types. However, emerging evidence has shown that the primary issue with PD is its structure's hemolysis and cytotoxicity. This study aimed to develop and optimize PD-loaded SLN formulation and evaluate its efficacy in breast cancer cell lines. Apoptosis, as the mechanism of cell death, was confirmed by flow cytometry following Annexin V/propidium iodide staining and western blot analysis. In in vivo studies, tumor inhibitory efficacy was compared with different doses of PD-loaded SLN on 4T1-implanted BALB/c mice. The half-maximal inhibitory concentration (IC50) of PD- loaded SLN was calculated to be 33.25 and 35.74 μg/mL for MCF7 and MDA-MB-231 cells, respectively. Flow cytometry analysis further confirmed a significant increase in apoptosis after treatment with PD- loaded SLN. When both cell lines were treated with PD-loaded SLN, Bcl2 and HSP70 proteins were down regulated, while Bax, Bad, P53, Apaf-1, p-p53 and Noxa proteins were upregulated. This effect was also confirmed by test performed on BALB/c mice in vivo. Based on results, PD-loaded SLN may be a promising breast cancer treatment, without recognizable side effects.
Collapse
Affiliation(s)
- Azadeh Emami
- Department of Biology, Faculty of Basic Sciences, University of Guilan, University Campus 2, Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Department of Marine Science, Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran
| | - Reyhaneh Sariri
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
12
|
Xiao Y, Ji WS, Jin WK, Wen P, Shan LH, Hou ZR, Li XH, Zhou XL, Liu YJ, Xu JB, Gao F. Synthesis, antiproliferative and anti-MDR activities of lathyrane diterpene derivatives based on configuration inversion strategy. Bioorg Chem 2023; 131:106329. [PMID: 36565674 DOI: 10.1016/j.bioorg.2022.106329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
A series of lathyrane-type Euphorbia diterpene derivatives featured 3R configuration (H-3β) were synthesized from natural rich Euphorbia factor L3via modified Mitsunobu reaction based on configuration inversion strategy. The antiproliferation activity and MDR reversal ability of the lathyrane derivatives were evaluated, and the most synthesized compounds showed moderate or strong potencies. Among them, diterpenes 21 (IC50 values of 2.6, 5.2 and 13.1 μM, respectively) and 25 (IC50 values of 5.5, 8.6 and 1.3 μM, respectively) presented the strong cytotoxicity against MCF-7, 4 T1 and HepG2 cells. Meanwhile, derivative 25 exhibited excellent MDR reversal ability with the reversal fold of 16.1 higher than that of verapamil. The cellular thermal shift assay and molecular docking proved direct engagement of diterpene 25 to ABCB1, suggesting 25 could be a promising MDR modulator. Furthermore, the preliminary SARs of these diterpenes were also discussed.
Collapse
Affiliation(s)
- Yao Xiao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Wan-Sheng Ji
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Wen-Ke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Peng Wen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Lian-Hai Shan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Zong-Rui Hou
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xiao-Huan Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xian-Li Zhou
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Yan-Jun Liu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, PR China.
| | - Jin-Bu Xu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| | - Feng Gao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
13
|
Bi C, Xu H, Yu J, Ding Z, Liu Z. Botanical characteristics, chemical components, biological activity, and potential applications of mangosteen. PeerJ 2023; 11:e15329. [PMID: 37187523 PMCID: PMC10178281 DOI: 10.7717/peerj.15329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Garcinia mangostana L. (Mangosteen), a functional food, belongs to the Garcinaceae family and has various pharmacological effects, including anti-oxidative, anti-inflammatory, anticancer, antidiabetic, and neuroprotective effects. Mangosteen has abundant chemical constituents with powerful pharmacological effects. After searching scientific literature databases, including PubMed, Science Direct, Research Gate, Web of Science, VIP, Wanfang, and CNKI, we summarized the traditional applications, botanical features, chemical composition, and pharmacological effects of mangosteen. Further, we revealed the mechanism by which it improves health and treats disease. These findings provide a theoretical basis for mangosteen's future clinical use and will aid doctors and researchers who investigate the biological activity and functions of food.
Collapse
Affiliation(s)
- Chenchen Bi
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China
| | - Hang Xu
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China
| | - Jingru Yu
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China
| | - Zhinan Ding
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China
| | - Zheng Liu
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China
| |
Collapse
|
14
|
Chen W, Luo H, Zhong Z, Wei J, Wang Y. The safety of Chinese medicine: A systematic review of endogenous substances and exogenous residues. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154534. [PMID: 36371955 DOI: 10.1016/j.phymed.2022.154534] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Safety and toxicity have become major challenges in the internationalization of Chinese medicine. Inspite of its wide application, security problems of Chinese medicine still occur from time to time, raising widespread concerns about its safety. Most of the studies either only partially discussed the intrinsic toxicities or extrinsic harmful residues in Chinese medicine, or briefly described detoxification and attenuation methods. It is necessary to systematically discuss Chinese medicine's extrinsic and intrinsic toxic components and corresponding toxicity detoxification or detection methods as a whole. PURPOSE This review comprehensively summarizes various toxic components in Chinese medicine from intrinsic and extrinsic. Then the corresponding methods for detoxification or detection of toxicity are highlighted. It is expected to provide a reference for safeguards for developing and using Chinese medicine. METHODS A literature search was conducted in the databases, including PubMed, Web of Science,Wan-fang database, and the China National Knowledge Infrastructure (CNKI). Keywords used were safety, toxicity, intrinsic toxicities, extrinsic harmful residues, alkaloids, terpene and macrolides, saponins, toxic proteins, toxic crystals, minerals, heavy metals, pesticides, mycotoxins, sulfur dioxide, detoxification, detection, processing (Paozhi), compatibility (Peiwu), Chinese medicine, etc., and combinations of these keywords. All selected articles were from 2006 to 2022, and each was assessed critically for our exclusion criteria. Studies describe the classification of toxic components of Chinese medicine, the toxic effects and mechanisms of Chinese medicine, and the corresponding methods for detoxification or detection of toxicity. RESULTS The toxic components of Chinese medicines can be classified as intrinsic toxicities and extrinsic harmful residues. Firstly, we summarized the intrinsic toxicities of Chinese medicine, the adverse effects and toxicity mechanisms caused by these components. Next, we focused on the detoxification or attenuation methods for intrinsic toxicities of Chinese medicine. The other main part discussed the latest progress in analytical strategies for exogenous hazardous substances, including heavy metals, pesticides, and mycotoxins. Beyond reviewing mainstream instrumental methods, we also introduced the emerging biochip, biosensor and immuno-based techniques. CONCLUSION In this review, we provide an overall assessment of the recent progress in endogenous toxins and exogenous hazardous substances concerning Chinese medicine, which is expected to render deeper insights into the safety of Chinese medicine.
Collapse
Affiliation(s)
- Wenyue Chen
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Hua Luo
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Jinchao Wei
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
15
|
Kim T, Kim YJ, Jeong KH, Park YT, Kwon H, Choi P, Ju HN, Yoon CH, Kim JY, Ham J. The efficient synthesis and biological evaluation of justicidin B. Nat Prod Res 2023; 37:56-62. [PMID: 34227447 DOI: 10.1080/14786419.2021.1948843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A facile new synthetic method for the preparation of a Type-A 1-arylnaphthalene lactone skeleton was developed and used to synthesise justicidin B and several derivatives. Key synthesis steps included Hauser-Kraus annulation of a phthalide intermediate and Suzuki-Miyaura cross coupling between a triflated naphthalene lactone intermediate and various potassium organotrifluoroborates. With two exceptions, the derivatives showed significant inhibitory effect on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in mouse macrophages. Moreover, several compounds, including justicidin B, had marked cytotoxicity towards six human tumour cell lines.
Collapse
Affiliation(s)
- Taejung Kim
- Korea Institute of Science and Technology (KIST), Natural Products Research Institute, Gangneung, Republic of Korea
| | - Young-Joo Kim
- Korea Institute of Science and Technology (KIST), Natural Products Research Institute, Gangneung, Republic of Korea
| | - Kyu-Hyuk Jeong
- Korea Institute of Science and Technology (KIST), Natural Products Research Institute, Gangneung, Republic of Korea
| | - Young-Tae Park
- Korea Institute of Science and Technology (KIST), Natural Products Research Institute, Gangneung, Republic of Korea
| | - Hyukjoon Kwon
- Korea Institute of Science and Technology (KIST), Natural Products Research Institute, Gangneung, Republic of Korea
| | - Pilju Choi
- Korea Institute of Science and Technology (KIST), Natural Products Research Institute, Gangneung, Republic of Korea
| | - Ha-Neul Ju
- Korea Institute of Science and Technology (KIST), Natural Products Research Institute, Gangneung, Republic of Korea
| | - Cheol Hee Yoon
- Korea Institute of Science and Technology (KIST), Natural Products Research Institute, Gangneung, Republic of Korea
| | - Ji-Yool Kim
- Korea Institute of Science and Technology (KIST), Natural Products Research Institute, Gangneung, Republic of Korea.,Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jungyeob Ham
- Korea Institute of Science and Technology (KIST), Natural Products Research Institute, Gangneung, Republic of Korea.,Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
16
|
Yan YC, Xu ZH, Wang J, Yu WB. Uncovering the pharmacology of Ginkgo biloba folium in the cell-type-specific targets of Parkinson's disease. Front Pharmacol 2022; 13:1007556. [PMID: 36249800 PMCID: PMC9556873 DOI: 10.3389/fphar.2022.1007556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/12/2022] [Indexed: 01/31/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease with a fast-growing prevalence. Developing disease-modifying therapies for PD remains an enormous challenge. Current drug treatment will lose efficacy and bring about severe side effects as the disease progresses. Extracts from Ginkgo biloba folium (GBE) have been shown neuroprotective in PD models. However, the complex GBE extracts intertwingled with complicated PD targets hinder further drug development. In this study, we have pioneered using single-nuclei RNA sequencing data in network pharmacology analysis. Furthermore, high-throughput screening for potent drug-target interaction (DTI) was conducted with a deep learning algorithm, DeepPurpose. The strongest DTIs between ginkgolides and MAPK14 were further validated by molecular docking. This work should help advance the network pharmacology analysis procedure to tackle the limitation of conventional research. Meanwhile, these results should contribute to a better understanding of the complicated mechanisms of GBE in treating PD and lay the theoretical ground for future drug development in PD.
Collapse
Affiliation(s)
| | | | - Jian Wang
- *Correspondence: Jian Wang, ; Wen-Bo Yu,
| | - Wen-Bo Yu
- *Correspondence: Jian Wang, ; Wen-Bo Yu,
| |
Collapse
|
17
|
Wei X, Wang M, Shi S, Jiang M, Wang Z, Zhang J, Yue Z, Wang H, Chen M, Wang Y. An integrated fecal microbiome and metabolome in rats reveal variations in gut microbiota and fecal metabolic phenotype of Semen Euphorbiae and Semen Euphorbiae Pulveratum. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1211:123459. [DOI: 10.1016/j.jchromb.2022.123459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/19/2022] [Accepted: 09/08/2022] [Indexed: 10/31/2022]
|
18
|
Feng H, Chen G, Zhang Y, Guo M. Potential Multifunctional Bioactive Compounds from Dysosma versipellis Explored by Bioaffinity Ultrafiltration-HPLC/MS with Topo I, Topo II, COX-2 and ACE2. J Inflamm Res 2022; 15:4677-4692. [PMID: 35996684 PMCID: PMC9392260 DOI: 10.2147/jir.s371830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background Dysosma versipellis (D. versipellis) has been traditionally used as a folk medicine for ages. However, the specific phytochemicals responsible for their correlated anti-inflammatory, anti-proliferative and antiviral activities remain unknown. Purpose This study aimed to explore the specific active components in D. versipellis responsible for its potential anti-inflammatory, anti-proliferative, and antiviral effects, and further elucidate the corresponding mechanisms of action. Methods Bioaffinity ultrafiltration coupled to liquid chromatography–mass spectrometry (UF-LC/MS) was firstly hired to fast screen for the anti-inflammatory, anti-proliferative and antiviral compounds from rhizomes of D. versipellis, and then further validation was conducted using in vitro inhibition assays and molecular docking. Results A total of 12, 12, 9 and 12 phytochemicals with considerable affinities to Topo I, Topo II, COX-2 and ACE2 were fished out, respectively. The anti-proliferative assay in vitro indicated that podophyllotoxin and quercetin exhibited comparably strong inhibitory rates on A549 and HT-29 cells compared with 5-FU and etoposide. Meanwhile, kaempferol displayed prominent dose-dependent inhibition against COX-2 with IC50 value at 0.36 ± 0.02 μM lower than indomethacin at 0.73 ± 0.07 μM. Furthermore, quercetin exerted stronger inhibitory effect against ACE2 with IC50 value at 104.79 ± 8.26 μM comparable to quercetin 3-O-glucoside at 135.25 ± 6.54 μM. Conclusion We firstly showcased an experimental investigation on the correlations between bioactive phytochemicals of D. versipellis and their multiple drug targets reflecting its potential pharmacological activities, and further constructed a multi-target and multi-component network to decipher its empirical traditional applications. It could not only offer a reliable and valuable experimental basis to better comprehend the curative effects of D. versipellis but also provide more new insights and strategies for other traditional medicinal plants.
Collapse
Affiliation(s)
- Huixia Feng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Yongli Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| |
Collapse
|
19
|
Alves ALV, da Silva LS, Faleiros CA, Silva VAO, Reis RM. The Role of Ingenane Diterpenes in Cancer Therapy: From Bioactive Secondary Compounds to Small Molecules. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221105691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Diterpenes are a class of critical taxonomic markers of the Euphorbiaceae family, representing small compounds (eg, molecules) with a wide range of biological activities and multi-target therapeutic potential. Diterpenes can exert different activities, including antitumor and multi-drug resistance-reversing activities, and antiviral, immunomodulatory, and anti-inflammatory effects, mainly due to their great structural diversity. In particular, one polycyclic skeleton has been highlighted: ingenane. Besides this natural diterpene, promising polycyclic skeletons may be submitted to chemical modification—by in silico approaches, chemical reactions, or biotransformation—putatively providing more active analogs (eg, ingenol derivatives), which are currently under pre-clinical investigation. This review outlines the current mechanisms of action and potential therapeutic implications of ingenol diterpenes as small cancer molecules.
Collapse
Affiliation(s)
- Ana Laura V. Alves
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Luciane S. da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Camila A. Faleiros
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Viviane A. O. Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | - Rui M. Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
20
|
Liu J, Liu Y, Li H, Wei C, Mao A, Liu W, Pan G. Polyphyllin D induces apoptosis and protective autophagy in breast cancer cells through JNK1-Bcl-2 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114591. [PMID: 34481873 DOI: 10.1016/j.jep.2021.114591] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/17/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polyphyllin D (PD), an active component from rhizome of Paris polyphylla Sm, root and rhizome, shows a strong anti-cancer activity in several cancers. However, whether autophagy is involved in PD-induced cell death in breast cancer cells and its molecular mechanism has not yet been elucidated. AIM OF THE STUDY To explore the anti-tumor effects of PD in breast cancer and the underlying mechanisms. MATERIALS AND METHODS PD was isolated from P. polyphylla Sm and confirmed by HPLC and NMR. The role of PD in cell viability, apoptosis, autophagy in breast cancer cells were determined. RESULTS PD shows significant anti-tumor activity by inhibit cell proliferation and induce caspase-dependent apoptosis in breast cancer cells. Moreover, PD treatment could induce autophagy by activation of JNK1/Bcl-2 pathway. Importantly, blocking of autophagy by using autophagy inhibitor 3-methyladenine (3-MA) dramatically increase PD-induced apoptosis as evidence by the increased percentage of apoptotic cell death. The anti-tumor effects of PD also investigated in vivo. The results showed that the combinatory treatment of PD with autophagy inhibitor significantly promote PD-induced apoptosis. CONCLUSION PD could induce caspase-dependent apoptosis and cyto-protectvie autophagy by activation of JNK1/Bcl-2 pathway in breast cancer cells. Combination with an autophagy inhibitor significantly enhance cytotoxic effect of PD and this combination may be a promising candidate for breast cancer therapy.
Collapse
Affiliation(s)
- Jiazhe Liu
- Department of General Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongzhi Liu
- Department of General Surgery, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Zhejiang, China
| | - Hongchang Li
- Department of General Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuangchao Wei
- Department of General Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anwei Mao
- Department of General Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiyan Liu
- Department of General Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Gaofeng Pan
- Department of General Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Li W, Gong J, Chu W, Li L. Chemical constituents from the stem and root bark of Daphne giraldii Nitsche (Thymelaeaceae). BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2021.104352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Jiang C, Xue J, Yuan Y, Li Y, Zhao C, Jing Q, Zhang X, Yang M, Han T, Bai J, Li Z, Li D, Hua H. Progress in structure, synthesis and biological activity of natural cephalotane diterpenoids. PHYTOCHEMISTRY 2021; 192:112939. [PMID: 34536803 DOI: 10.1016/j.phytochem.2021.112939] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/29/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
The Cephalotaxus genus is well-known owing to the numerous complex, biologically relevant natural products that can be obtained from its constituent species. The successful identification of various Cephalotaxus alkaloids and natural, structurally diverse cephalotane diterpenoids that exhibit antitumor activities and excellent pharmacological properties has encouraged the discovery of previously undescribed compounds from this genus. The present review summarizes the different strategies for the total synthesis of cephalotane diterpenoids as well as their diverse chemical structures, antitumor activities, structure-activity relationships (SARs), and biosynthetic pathways.
Collapse
Affiliation(s)
- Chunyu Jiang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Jingjing Xue
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Yizhen Yuan
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Yanzhi Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Chunxue Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Qinxue Jing
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xin Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Mengyue Yang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Tong Han
- Department of Pharmaceutical Engineering, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing, 163319, PR China
| | - Jiao Bai
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
23
|
Jiang Y, Pei J, Zheng Y, Miao YJ, Duan BZ, Huang LF. Gallic Acid: A Potential Anti-Cancer Agent. Chin J Integr Med 2021; 28:661-671. [PMID: 34755289 DOI: 10.1007/s11655-021-3345-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 10/19/2022]
Abstract
Cancer is one of the most devastating diseases worldwide and definitive therapeutics for treating cancer are not yet available despite extensive research efforts. The key challenges include limiting factors connected with traditional chemotherapeutics, primarily drug resistance, low response rates, and adverse side-effects. Therefore, there is a high demand for novel anti-cancer drugs that are both potent and safe for cancer prevention and treatment. Gallic acid (GA), a natural botanic phenolic compound, can mediate various therapeutic properties that are involved in anti-inflammation, anti-obesity, and anti-cancer activities. More recently, GA has been shown to exert anti-cancer activities via several biological pathways that include migration, metastasis, apoptosis, cell cycle arrest, angiogenesis, and oncogene expression. This review discusses two aspects, one is the anti-cancer potential of GA against different types of cancer and the underlying molecular mechanisms, the other is the bibliometric analysis of GA in cancer and tumor research. The results indicated that lung cancer, prostate cancer, stomach cancer, and colon adenocarcinoma may become a hot topic in further research. Overall, this review provides evidence that GA represents a promising novel, potent, and safe anti-cancer drug candidate for treating cancer.
Collapse
Affiliation(s)
- Yuan Jiang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,College of Pharmaceutical Science, Dali University, Dali, Yunnan Province, 671000, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yan Zheng
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yu-Jing Miao
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Bao-Zhong Duan
- College of Pharmaceutical Science, Dali University, Dali, Yunnan Province, 671000, China
| | - Lin-Fang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China. .,State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
24
|
Harmine Hydrochloride Mediates the Induction of G2/M Cell Cycle Arrest in Breast Cancer Cells by Regulating the MAPKs and AKT/FOXO3a Signaling Pathways. Molecules 2021; 26:molecules26216714. [PMID: 34771123 PMCID: PMC8588485 DOI: 10.3390/molecules26216714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/24/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022] Open
Abstract
Breast cancer (BC) is one of the most common causes of death among women worldwide. Recently, interest in novel approaches for BC has increased by developing new drugs derived from natural products with reduced side effects. This study aimed to treat BC cells with harmine hydrochloride (HMH) to identify its anticancer effects and mechanisms. HMH treatment suppressed cell growth, migration, invasion, and colony formation in MCF-7 and MDA-MB-231 cells, regardless of the hormone signaling. It also reduced the phosphorylation of PI3K, AKT, and mTOR and increased FOXO3a expression. Additionally, HMH treatment increased p38 phosphorylation in MCF-7 cells and activated c-Jun N-terminal kinase (JNK) phosphorylation in MDA-MB-231 cells in a dose-dependent manner, where activated p38 and JNK increased FOXO3a expression. Activated FOXO3a increased the expression of p53, p21, and their downstream proteins, including p-cdc25, p-cdc2, and cyclin B1, to induce G2/M cell cycle arrest. Furthermore, HMH inhibited the PI3K/AKT/mTOR pathway by significantly reducing p-AKT expression in combination with LY294002, an AKT inhibitor. These results indicate that mitogen-activated protein kinases (MAPKs) and AKT/FOXO3a signaling pathways mediate the induction of cell cycle arrest following HMH treatment. Therefore, HMH could be a potential active compound for anticancer bioactivity in BC cells.
Collapse
|
25
|
Luo YH, Wang C, Xu WT, Zhang Y, Zhang T, Xue H, Li YN, Fu ZR, Wang Y, Jin CH. 18β-Glycyrrhetinic Acid Has Anti-Cancer Effects via Inducing Apoptosis and G2/M Cell Cycle Arrest, and Inhibiting Migration of A549 Lung Cancer Cells. Onco Targets Ther 2021; 14:5131-5144. [PMID: 34712051 PMCID: PMC8548027 DOI: 10.2147/ott.s322852] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Background 18β-glycyrrhetinic acid (18β-Gly), which is extracted from licorice root, has various pharmacological properties; however, its anti-cancer effects on lung cancer cells have not been fully established. Purpose In this study, we investigated the underlying molecular mechanisms of 18β-Gly. Results Our results showed that 18β-Gly had significant cytotoxic effects and no apparent side effects. 18β-Gly induced mitochondria-dependent apoptosis of A549 lung cancer cells. In addition, after treatment with 18β-Gly, intracellular reactive oxygen species (ROS) levels were significantly increased, and G2/M cell cycle arrest and inhibition of cell migration were induced via the mitogen-activated protein kinase (MAPK)/signal transducer and activator of transcription 3 (STAT3)/nuclear factor kappa (NF-κB) signaling pathways. After pretreatment with the ROS scavenger N-acetyl-L-cysteine or MAPK inhibitors, the expression levels of phosphorylated p38 (p-p38), phosphorylated c-Jun N-terminal kinase, inhibitor of nuclear factor kappa B, cleaved caspase-3 (cle-cas-3), cleaved poly (ADP ribose) polymerase (cle-PARP), p-p53, p27, p21, and E-cadherin were decreased; and levels of phosphorylated extracellular signal-regulated kinase, p-STAT3, NF-κB, Bcl-2, cyclin B1, cyclase-dependent kinase 1/2 (CDK1/2), N-cadherin, vimentin, and snail homolog 1 (SNAI 1) were increased. In addition, the percentage of cells in the G2/M phase was decreased, and inhibition of migration was reduced. Conclusion In summary, 18β-Gly induced apoptosis and G2/M cell cycle arrest and inhibited migration via the ROS/MAPK/STAT3/NF-κB signaling pathways in A549 lung cancer cells. Therefore, 18β-Gly is a novel promising candidate for the treatment of lung cancer.
Collapse
Affiliation(s)
- Ying-Hua Luo
- Department of Grass Science, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Cheng Wang
- Pharmacy Department, Daqing Oilfield General Hospital, Daqing, 163001, People's Republic of China
| | - Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Hui Xue
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Yan-Nan Li
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Zhong-Ren Fu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Ying Wang
- College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.,College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.,National Coarse Cereals Engineering Research Center, Daqing, 163319, People's Republic of China
| |
Collapse
|
26
|
Zhang Q, Li X, Gao X, Cao C, Hu Y, Guo H. Total saponins from stems and leaves of Panax quinquefolius L. ameliorate podophyllotoxin-induced myelosuppression and gastrointestinal toxicity. Biomed Chromatogr 2021; 36:e5266. [PMID: 34648200 DOI: 10.1002/bmc.5266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 11/06/2022]
Abstract
Podophyllotoxin (POD), a natural lignan distributed in podophyllum species, possesses significant antitumor and antiviral activities. But POD often causes serious side effects, such as myelosuppression, gastrointestinal toxicity, neurotoxicity, hepatic and renal dysfunction, and even death, which not only hinder its clinical application but also threaten the patient's health. Therefore, an effective treatment against POD-induced toxicity is important. Our preliminary study found that the total saponins from the stems and leaves of Panax quinquefolius L. (PQS) could significantly reduce the death of mice caused by POD. To reveal how PQS can alleviate POD-induced toxicity, further study was needed. Peripheral blood cell analysis, diarrhea score, and histological examination demonstrated that PQS could relieve myelosuppression and gastrointestinal side effects induced by POD. Then, metabolomics was performed to investigate the possible protective mechanism of PQS on POD-induced myelosuppression and gastrointestinal toxicity. Metabolomics analysis showed that metabolic changes caused by POD could be reversed by PQS to some extent; 23 metabolites altered significantly after POD exposure, and 11 metabolites significantly reversed by PQS pretreatment. Metabolic pathway analysis suggested that PQS might exhibit its protective effects by rebalancing disordered arginine, glutamine, and unsaturated fatty acid metabolism.
Collapse
Affiliation(s)
- Qianqian Zhang
- Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing, China.,School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xuemei Li
- Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing, China
| | - Xiaoxin Gao
- Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing, China
| | - Chunran Cao
- Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing, China
| | - Yuchi Hu
- Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing, China
| | - Hongzhu Guo
- Beijing Institute for Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine (Traditional Chinese Patent Medicine), Beijing Key Laboratory of Analysis and Evaluation on Chinese Medicine, Beijing, China
| |
Collapse
|
27
|
Zhu Y, Liu L, Gao B, Liu J, Qiao X, Lian C, He Y. TCDO: A Community-Based Ontology for Integrative Representation and Analysis of Traditional Chinese Drugs and Their Properties. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6637810. [PMID: 34603473 PMCID: PMC8483929 DOI: 10.1155/2021/6637810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/04/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022]
Abstract
Traditional Chinese drugs (TCDs) have been widely used in clinical practice in China and many other regions for thousands of years. Nowadays TCD's bioactive ingredients and mechanisms of action are being identified. However, the lack of standardized terminologies or ontologies for the description of TCDs has hindered the interoperability and deep analysis of TCD knowledge and data. By aligning with the Basic Formal Ontology (BFO), an ISO-approved top-level ontology, we constructed a community-driven TCD ontology (TCDO) with the aim of supporting standardized TCD representation and integrated analysis. TCDO provides logical and textual definitions of TCDs, TCD categories, and the properties of TCDs (i.e., nature, flavor, toxicity, and channel tropism). More than 400 popular TCD decoction pieces (TCD-DPs) and Chinese medicinal materials (CMMs) are systematically represented. The logical TCD representation in TCDO supports computer-assisted reasoning and queries using tools such as Description Logic (DL) and SPARQL queries. Our statistical analysis of the knowledge represented in TCDO revealed scientific insights about TCDs. A total of 36 TCDs with medium or high toxicity are most densely distributed, primarily in Aconitum genus, Lamiids clade, and Fabids clade. TCD toxicity is mostly associated with the hot nature and pungent or bitter flavors and has liver, kidney, and spleen channel tropism. The three pairs of TCD flavor-nature associations (i.e., bitter-cold, pungent-warm, and sweet-neutral) were identified. The significance of these findings is discussed. TCDO has also been used to support the development of a web-based traditional Chinese medicine semantic annotation system that provides comprehensive annotation for individual TCDs. As a novel formal TCD ontology, TCDO lays out a strong foundation for more advanced TCD studies in the future.
Collapse
Affiliation(s)
- Yan Zhu
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lihong Liu
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bo Gao
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jing Liu
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xingchao Qiao
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chaojie Lian
- National Institutes for Food and Drug Control, Beijing 102627, China
| | - Yongqun He
- University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
28
|
Tian X, Zhou M, Ning J, Deng X, Feng L, Huang H, Yao D, Ma X. The development of novel cytochrome P450 2J2 (CYP2J2) inhibitor and the underlying interaction between inhibitor and CYP2J2. J Enzyme Inhib Med Chem 2021; 36:737-748. [PMID: 33682565 PMCID: PMC7946002 DOI: 10.1080/14756366.2021.1896500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Human Cytochrome P450 2J2 (CYP2J2) as an important metabolic enzyme, plays a crucial role in metabolism of polyunsaturated fatty acids (PUFAs). Elevated levels of CYP2J2 have been associated with various types of cancer, and therefore it serves as a potential drug target. Herein, using a high-throughput screening approach based on enzymic activity of CYP2J2, we rapidly and effectively identified a novel natural inhibitor (Piperine, 9a) with IC50 value of 0.44 μM from 108 common herbal medicines. Next, a series of its derivatives were designed and synthesised based on the underlying interactions of Piperine with CYP2J2. As expected, the much stronger inhibitors 9k and 9l were developed and their inhibition activities increased about 10 folds than Piperine with the IC50 values of 40 and 50 nM, respectively. Additionally, the inhibition kinetics illustrated the competitive inhibition types of 9k and 9l towards CYP2J2, and Ki were calculated to be 0.11 and 0.074 μM, respectively. Furthermore, the detailed interaction mechanism towards CYP2J2 was explicated by docking and molecular dynamics, and our results revealed the residue Thr114 and Thr 315 of CYP2J2 were the critical sites of action, moreover the spatial distance between the carbon atom of ligand methylene and Fe atom of iron porphyrin coenzyme was the vital interaction factor towards human CYP2J2.
Collapse
Affiliation(s)
- Xiangge Tian
- Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Meirong Zhou
- Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jing Ning
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, Dalian Medical University, Dalian, China
| | - Xiaopeng Deng
- Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lei Feng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, Dalian Medical University, Dalian, China
| | - Huilian Huang
- Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, China
| | - Xiaochi Ma
- Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
29
|
Treatment for liver cancer: From sorafenib to natural products. Eur J Med Chem 2021; 224:113690. [PMID: 34256124 DOI: 10.1016/j.ejmech.2021.113690] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/14/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022]
Abstract
Liver cancer most commonly develops in patients with chronic liver disease, the etiology of which includes viral hepatitis (B and C), alcohol, obesity, dietary carcinogens, and so forth. The current treatment modalities, including surgical resection and liver transplantation, have been found far from effective. Hence, there is an obvious critical need to develop alternative strategies for the treatment of it. In this review, we discuss the formation process and therapeutic targets of liver cancer. Currently, targeted therapy is limited to sorafenib, lenvatinib, regorafenib, ramucirumab and cabozantinib which leads to a survival benefit in patients, but on the other hand is hampered by the occurrence of drug resistance. Pleasingly and importantly, there are multiple natural products undergoing clinical evaluation in liver cancer, such as polyphenols like icaritin, resveratrol, and silybin, saponins including ginsenoside Rg3 and glycyrrhizinate, alkaloid containing irinotecan and berberine and inorganic compound arsenic trioxide at present. Preclinical and clinical studies have shown that these compounds inhibit liver cancer formation owing to the influence on the anti-viral, anti-inflammation, anti-oxidant, anti-angiogenesis and anti-metastasis activity. Furthermore, a series of small molecule derivatives inspired by the aforementioned compounds are designed and synthesized according to structure-activity relationship studies. Drug combination and novel type of drug-targeted delivery system thereof have been well developed. This article is ended by a perspective remark of futuristic development of natural product-based therapeutic regimen for liver cancer treatment. We expect that this review is an account for current status of natural products as promising anti-liver cancer treatments and should contribute to its understanding.
Collapse
|
30
|
The Fruits of Paris polyphylla Inhibit Colorectal Cancer Cell Migration Induced by Fusobacterium nucleatum-Derived Extracellular Vesicles. Molecules 2021; 26:molecules26134081. [PMID: 34279421 PMCID: PMC8271733 DOI: 10.3390/molecules26134081] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 01/19/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Gut microbiota are highly associated with CRC, and Fusobacterium nucleatum was found to be enriched in CRC lesions and correlated with CRC carcinogenesis and metastases. Paris polyphylla is a well-known herbal medicine that showed anticancer activity. The present study demonstrates that P. polyphylla inhibited the growth of CRC cells. In addition, treating with active compounds pennogenin 3-O-beta-chacotrioside and polyphyllin VI isolated from P. polyphylla inhibited the growth of F. nucleatum. We also found that extracellular vesicles (EVs) released from F. nucleatum could promote mitochondrial fusion and cell invasion in CRC cells, whereas active components from P. polyphylla could dampen such an impact. The data suggest that P. polyphylla and its active ingredients could be further explored as potential candidates for developing complementary chemotherapy for the treatment of CRC.
Collapse
|
31
|
Zhang C, Li Q, Qin G, Zhang Y, Li C, Han L, Wang R, Wang S, Chen H, Liu K, He C. Anti-angiogenesis and anti-metastasis effects of Polyphyllin VII on Hepatocellular carcinoma cells in vitro and in vivo. Chin Med 2021; 16:41. [PMID: 34059099 PMCID: PMC8166003 DOI: 10.1186/s13020-021-00447-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background Polyphyllin VII (PP7), a steroidal saponin from P. polyphylla has been found to exert strong anticancer activity. Little is known about the anti-angiogenesis and anti-metastasis properties of PP7. In this study, the anti-angiogenic and anti-metastatic effects of PP7 on HCC and the molecular mechanisms were evaluated. Methods Effect of PP7 on angiogenesis was assessed by tube formation assay and applied a transgenic Tg(fli1:EGFP) zebrafish model. Effects of PP7 on tumor metastasis and invasion were examined in cell migration and invasion assay, zebrafish tumor xenograft models and lung metastasis mouse models. The protein levels were examined by Western blotting. Results PP7 significantly decreased the tube formation of human umbilical vein endothelial cells, the number and length of ISVs and SIVs of transgenic zebrafish, and the metastasis and invasion of cancer cells in vitro and in vivo. The anti-angiogenic and anti-metastatic effects of PP7 in HepG2 cells were attributable, at least partially, to downregulated NF-κB/MMP-9/VEGF signaling pathway. Conclusion This study demonstrates that PP7 possesses strong anti-angiogenesis and anti-metastasis activities, suggesting that PP7 could be a potential candidate agent for HCC treatment.
Collapse
Affiliation(s)
- Chao Zhang
- Beijing University of Chinese Medicine, Beijing, 100102, China.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Qingrui Li
- Beijing University of Chinese Medicine, Beijing, 100102, China.,Aerospace Central Hospital, Beijing, 100049, China
| | - Guozheng Qin
- Yunnan Provincial Hospital of Traditional Chinese Medicine/The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, 650021, China
| | - Yi Zhang
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Chaoying Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Liwen Han
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Shudan Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China.
| |
Collapse
|
32
|
Wang K, Yang JC, Jang YJ, Chen GY, Zhang YJ, Dai YH, Zhang DY, Wu YC. 19-(Benzyloxy)-19-oxojolkinolide B (19-BJB), an ent-abietane diterpene diepoxide, inhibits the growth of bladder cancer T24 cells through DNA damage. PLoS One 2021; 16:e0248468. [PMID: 33724994 PMCID: PMC7963099 DOI: 10.1371/journal.pone.0248468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/27/2021] [Indexed: 02/07/2023] Open
Abstract
Diterpenoids jolkinolide A and B, were first isolated from Euphorbia fischeriana. In our previous research, 19-(Benzyloxy)-19-oxojolkinolide B (19-BJB), a derivative of jolkinolides, was synthesized as a novel ent -abietane diterpene diepoxide. In this study, 19-BJB showed strong in vitro activity against bladder cancer cell lines. DNA damage which was observed through the interaction of 19-BJB with nucleotide chains and affected DNA repair resulted in the activation of checkpoint kinase 1 (Chk1) and checkpoint kinase 2 (Chk2) in bladder cancer cell lines. In vivo testing in nude mice also proved that 19-BJB revealed a potential inhibitory effect on tumor growth. Additionally, the 3D-QSAR models of jolkinolides were established. Briefly, we proved that 19-BJB could potentially be used as a drug to inhibit the growth of bladder tumor.
Collapse
Affiliation(s)
- Ke Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, PR China
- Center for Drug Discovery, China Pharmaceutical University, Nanjing, PR China
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Juan-Cheng Yang
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Yeong-Jiunn Jang
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Guan-Yu Chen
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Ya-Jing Zhang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, PR China
- Center for Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Yun-Hao Dai
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Da-Yong Zhang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, PR China
- Center for Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
33
|
Carter OWL, Xu Y, Sadler PJ. Minerals in biology and medicine. RSC Adv 2021; 11:1939-1951. [PMID: 35424161 PMCID: PMC8693805 DOI: 10.1039/d0ra09992a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/21/2020] [Indexed: 01/08/2023] Open
Abstract
Natural minerals ('stone drugs') have been used in traditional Chinese medicines for over 2000 years, but there is potential for modern-day use of inorganic minerals to combat viral infections, antimicrobial resistance, and for other areas in need of new therapies and diagnostic aids. Metal and mineral surfaces on scales from milli-to nanometres, either natural or synthetic, are patterned or can be modified with hydrophilic/hydrophobic and ionic/covalent target-recognition sites. They introduce new strategies for medical applications. Such surfaces have novel properties compared to single metal centres. Moreover, 3D mineral particles (including hybrid organo-minerals) can have reactive cavities, and some minerals have dynamic movement of metal ions, anions, and other molecules within their structures. Minerals have a unique ability to interact with viruses, microbes and macro-biomolecules through multipoint ionic and/or non-covalent contacts, with potential for novel applications in therapy and biotechnology. Investigations of mineral deposits in biology, with their often inherent heterogeneity and tendency to become chemically-modified on isolation, are highly challenging, but new methods for their study, including in intact tissues, hold promise for future advances.
Collapse
Affiliation(s)
- Oliver W L Carter
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- MAS CDT, Senate House, University of Warwick Coventry CV4 7AL UK
| | - Yingjian Xu
- GoldenKeys High-Tech Materials Co., Ltd, Building B, Innovation & Entrepreneurship Park Guian New Area Guizhou Province 550025 China
| | - Peter J Sadler
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
34
|
Yoon BK, Lim ZY, Jeon WY, Cho NJ, Kim JH, Jackman JA. Medicinal Activities and Nanomedicine Delivery Strategies for Brucea javanica Oil and Its Molecular Components. Molecules 2020; 25:E5414. [PMID: 33228061 PMCID: PMC7699344 DOI: 10.3390/molecules25225414] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Brucea javanica oil (BJO) is widely used in traditional Chinese medicine to treat various types of cancer and inflammatory diseases. There is significant interest in understanding the medicinal activities of BJO and its molecular components, especially quassinoids, and in exploring how they can be incorporated into nanomedicine delivery strategies for improved application prospects. Herein, we cover the latest progress in developing different classes of drug delivery vehicles, including nanoemulsions, liposomes, nanostructured lipid carriers, and spongosomes, to encapsulate BJO and purified quassinoids. An introduction to the composition and medicinal activities of BJO and its molecular components, including quassinoids and fatty acids, is first provided. Application examples involving each type of drug delivery vehicle are then critically presented. Future opportunities for nanomedicine delivery strategies in the field are also discussed and considered within the context of translational medicine needs and drug development processes.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (B.K.Y.); (Z.Y.L.); (W.-Y.J.)
| | - Zheng Yi Lim
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (B.K.Y.); (Z.Y.L.); (W.-Y.J.)
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore;
| | - Won-Yong Jeon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (B.K.Y.); (Z.Y.L.); (W.-Y.J.)
- Omni Colab Corporation, Suwon 16229, Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore;
| | - Jeong Hoon Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, Korea;
| | - Joshua A. Jackman
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (B.K.Y.); (Z.Y.L.); (W.-Y.J.)
| |
Collapse
|
35
|
Gao X, Zhang X, Chen W, Li J, Yang W, Zhang X, Li S, Liu C. Transcriptome analysis of Paris polyphylla var. yunnanensis illuminates the biosynthesis and accumulation of steroidal saponins in rhizomes and leaves. PHYTOCHEMISTRY 2020; 178:112460. [PMID: 32692662 DOI: 10.1016/j.phytochem.2020.112460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Paris polyphylla var. yunnanensis can synthesize Paris saponins with multiple effective therapies, and its rhizome has become an indispensable ingredient in many patented drugs. However, how Paris saponin content changes in tissues at different stages and the molecular mechanisms underlying the production and accumulation of the bioactive compounds are unclear. This study aimed to uncover the mechanisms underlying the biosynthesis and accumulation by integrating transcriptome sequencing and phytochemical investigation of the leaves and rhizomes at different growth stages. Paris saponin content in leaves was lower during the fruiting stage than the vegetative stage, whereas the content in rhizomes increased during the fruiting stage. The candidate genes related to Paris saponin biosynthesis were determined by transcriptome analyses. Most biosynthetic genes were found to be abundantly expressed in the leaves during the vegetative stage in the light of expression profiles and functional enrichment results. The expression patterns of the differentially expressed genes related to the biosynthesis were positively correlated with the accumulation of saponins in tissues. These findings suggest that both leaves and rhizomes are capable of biosynthesizing Paris saponins, and that aerial plant parts can be used to extract them. The different patterns of biosynthesis and accumulation in the leaves and rhizomes were also determined here. This study will help improve our understanding of the mechanisms underlying the biosynthesis and accumulation of Paris saponins, and aid in the comprehensive development and utilization of this medicinal plant.
Collapse
Affiliation(s)
- Xiaoyang Gao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Xuan Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Jing Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjing Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
36
|
Barboza JR, Pereira FAN, Fernandes RA, Vasconcelos CC, Cartágenes MDSDS, Oliveira Lopes AJ, de Melo AC, Guimarães IDS, da Rocha CQ, Ribeiro MNDS. Cytotoxicity and Pro-Apoptotic, Antioxidant and Anti-Inflammatory Activities of Geopropolis Produced by the Stingless Bee Melipona fasciculata Smith. BIOLOGY 2020; 9:biology9090292. [PMID: 32942772 PMCID: PMC7566010 DOI: 10.3390/biology9090292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Geopropolis is produced by some stingless bee species, such as Melipona fasciculata Smith, a native species from Brazil. This study aims to investigate the antioxidant and anti-inflammatory activities and cytotoxicity effects of geopropolis hydroethanolic extracts against lung (H460 and A549) and ovarian (A2780 and ES2) cancer cell lines and non-tumor (HUVEC) cell lines using chemical identification by LC/MS/MS analysis and in silico assays to determine which compounds are associated with bioactivity. The antioxidant activity of extracts and inhibitory activity against COX enzymes were assessed by in vitro assays; cytotoxicity effect was evaluated by the MTT assay; cell cycle was assessed by flow cytometry and apoptosis by Western blotting. The geopropolis extracts showed great radical scavenging potential, preferential inhibition of COX-2, decreased cancer cell viability, non-cytotoxic effects against the non-tumoral cell line, besides modulating the cell cycle and inducing cancer cell apoptosis through the activation of caspase-3 and PARP protein cleavage. The in silico study suggests that corilagin, typhaneoside, taraxerone and marsformosanone, identified by LC/MS/MS, can be associated with anti-inflammatory activity and cytotoxic effects. Thus, the current study suggests the potential of geopropolis concerning the research field of new pharmacological alternatives regarding cancer therapy.
Collapse
Affiliation(s)
- Josianne Rocha Barboza
- Laboratório de Farmacognosia, Departamento de Farmácia, Campus Bacanga, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (F.A.N.P.); (A.J.O.L.); (M.N.d.S.R.)
- Correspondence: (J.R.B.); (C.Q.d.R.); Tel.: +55-98-3272-9243 (C.Q.d.R.)
| | - Francisco Assis Nascimento Pereira
- Laboratório de Farmacognosia, Departamento de Farmácia, Campus Bacanga, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (F.A.N.P.); (A.J.O.L.); (M.N.d.S.R.)
| | - Renan Amphilophio Fernandes
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biológicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21041-250, Rio de Janeiro, Brazil;
| | - Cleydlenne Costa Vasconcelos
- Laboratório de Estudo Experimental da Dor, Campus Bacanga, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (C.C.V.); (M.d.S.d.S.C.)
| | - Maria do Socorro de Sousa Cartágenes
- Laboratório de Estudo Experimental da Dor, Campus Bacanga, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (C.C.V.); (M.d.S.d.S.C.)
| | - Alberto Jorge Oliveira Lopes
- Laboratório de Farmacognosia, Departamento de Farmácia, Campus Bacanga, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (F.A.N.P.); (A.J.O.L.); (M.N.d.S.R.)
- Laboratório de Estudo Experimental da Dor, Campus Bacanga, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (C.C.V.); (M.d.S.d.S.C.)
| | - Andreia Cristina de Melo
- Divisão de Pesquisa Clínica e Desenvolvimento Tecnológico, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, Rio de Janeiro 20231-050, Rio de Janeiro, Brazil; (A.C.d.M.); (I.d.S.G.)
| | - Isabella dos Santos Guimarães
- Divisão de Pesquisa Clínica e Desenvolvimento Tecnológico, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, Rio de Janeiro 20231-050, Rio de Janeiro, Brazil; (A.C.d.M.); (I.d.S.G.)
| | - Cláudia Quintino da Rocha
- Laboratório de Química de Produtos Naturais, Departamento de Química, Campus Bacanga, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil
- Correspondence: (J.R.B.); (C.Q.d.R.); Tel.: +55-98-3272-9243 (C.Q.d.R.)
| | - Maria Nilce de Sousa Ribeiro
- Laboratório de Farmacognosia, Departamento de Farmácia, Campus Bacanga, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (F.A.N.P.); (A.J.O.L.); (M.N.d.S.R.)
| |
Collapse
|
37
|
Yao H, Zhao J, Wang Z, Lv J, Du G, Jin Y, Zhang Y, Song S, Han G. Enhanced anticancer efficacy of cantharidin by mPEG-PLGA micellar encapsulation: An effective strategy for application of a poisonous traditional Chinese medicine. Colloids Surf B Biointerfaces 2020; 196:111285. [PMID: 32771818 DOI: 10.1016/j.colsurfb.2020.111285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/11/2020] [Accepted: 07/27/2020] [Indexed: 02/04/2023]
Abstract
Cantharidin (CTD), the main active component of a poisonous traditional Chinese medicine (PTCM) Mylabris, exhibits highly effective therapy of hepatocellular carcinoma (HCC); however, the severe toxicity of CTD on the digestive and urinary systems prevents its clinical application. Here, CTD-loaded micelles (mPEG-PLGA-CTD) were prepared for enhancement of the antitumor efficacy and reduction of the toxicity of CTD. mPEG-PLGA-CTD comprised uniform spherical particles with particle size of 25.32 ± 1.25 nm and zeta potential of -5.70 ± 0.76 mV, exhibiting good stability and biocompatibility. mPEG-PLGA-CTD showed high toxicity on HepG2 cells by improving apoptosis and inhibiting protein phosphatases 2A (PP2A) compared to the low toxicity on l-02 hepatocytes. Intravenous injection of mPEG-PLGA-CTD led to a long circulation half-life of drugs, enhanced drug accumulation in the tumor tissues, and reduced drug accumulation in the other organs (e.g., the kidney) due to the enhanced permeability and retention effect compared to injection of free CTD; more importantly, the highly efficient antitumor effect and low systemic toxicity were achieved. A micellar formulation is very useful for enhancement of therapeutic efficacy and reduction of systemic toxicity of PTCMs.
Collapse
Affiliation(s)
- Hailu Yao
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Junli Zhao
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Zhen Wang
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Jinwei Lv
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Gangjun Du
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yu Zhang
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Shiyong Song
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Guang Han
- Institute of Pharmacy, College of Pharmacy, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
38
|
Niu W, Xu L, Li J, Zhai Y, Sun Z, Shi W, Jiang Y, Ma C, Lin H, Guo Y, Liu Z. Polyphyllin II inhibits human bladder cancer migration and invasion by regulating EMT-associated factors and MMPs. Oncol Lett 2020; 20:2928-2936. [PMID: 32782609 PMCID: PMC7399771 DOI: 10.3892/ol.2020.11839] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/08/2020] [Indexed: 01/20/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) serves vital roles in the angiogenesis, cell invasion and metastasis of various malignant tumors, including bladder cancer. Traditional Chinese medicinal herbs have been demonstrated to exhibit anticancer properties. The present study aimed to screen the sensitivity of bladder cancer to natural compounds by using six classic anti-inflammatory and detoxifying herbs, including the ethanol extract of Paris polyphylla (PPE), Scutellaria barbata, Pulsatillae decoction, Dahuang Huanglian Xiexin decoction, Bazhengsan and Hedyotis diffusa combined with S. barbata, were used to treat bladder cancer cells in vitro. Bladder cancer was more sensitive to PPE compared with the other tested herbs, and PPE significantly suppressed bladder cancer cell migration and invasion. Thus, the present study focused on PPE. Bladder cancer cells were treated with monomer components of PPE, including polyphyllin (PP) I, PPII, PPVI and PPVII. The results demonstrated that PPII treatment significantly inhibited cancer cell migration and invasion, increased the expression level of E-cadherin and decreased the levels of N-cadherin, snail family transcriptional repressor 2, twist family bHLH transcription factor 1, matrix metallopeptidase (MMP) 2 and MMP9 compared with those in the control group (untreated cells). These results suggested that PPII treatment may suppress bladder cancer cell migration and invasion by regulating the expression of EMT-associated genes and MMPs. Therefore, PPE and PPII may have antimetastatic effects and PPII may serve as a potential therapeutic option for inhibiting bladder cancer metastasis.
Collapse
Affiliation(s)
- Weipin Niu
- Central Laboratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Li Xu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jingwei Li
- Department of Breast Surgery, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yi Zhai
- Medical Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Zhonghua Sun
- Medical Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Wei Shi
- Department of Gynecology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yuehua Jiang
- Central Laboratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Chenchen Ma
- Central Laboratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Haiqing Lin
- Central Laboratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yanxia Guo
- Engineering Laboratory of Shandong Province for Structure and Functional Reconstruction of Urinary Organs, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhiyong Liu
- Central Laboratory, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
39
|
Li J, Jia Y, Zhang P, Yang H, Cong X, An L, Xiao C. Celastrol Self-Stabilized Nanoparticles for Effective Treatment of Melanoma. Int J Nanomedicine 2020; 15:1205-1214. [PMID: 32110017 PMCID: PMC7037082 DOI: 10.2147/ijn.s232603] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/01/2020] [Indexed: 01/06/2023] Open
Abstract
Background Celastrol (CEL), a triterpene extracted from the Chinese herb tripterygium wilfordii, has been reported to have profound anticancer activities. However, poor water solubility and high side toxicities have severely restricted the clinical applications of CEL. Purpose We proposed a facile “in situ drug conjugation-induced self-assembly” strategy to prepare CEL-loaded nanoparticles (CEL-NPs) that exhibited enhanced antitumor activity against melanoma. Methods First, the CEL was chemically conjugated onto a methoxyl poly(ethylene glycol)-b-poly(L-lysine) (mPEG-PLL) backbone, resulting in the conversion of the double hydrophilic mPEG-PLL polymer into an amphiphilic polymer prodrug, mPEG-PLL/CEL. The obtained mPEG-PLL/CEL could self-assemble into stable micelles in aqueous solution due to the hydrophobic association of CEL moieties in the side chains and the possible electrostatic interaction between the carboxyl group in CEL and the residue amine group in the PLL segment. Thus, the obtained mPEG-PLL/CEL nanoparticles were named CEL self-stabilized nanoparticles (CEL-NPs), which were then characterized by dynamic light scattering and transmission electron microscopy. Furthermore, the antitumor effects of the CEL-NPs were investigated by an MTT assay in vitro and in a B16F10 tumor-bearing mice model. Results The CEL-NPs exhibited sustained drug release behavior and were effectively endocytosed by B16F10 cells. Furthermore, the in vivo antitumor evaluation demonstrated that the CEL-NPs had remarkably higher tumor growth inhibition rates and lower systemic side effects than free CEL. Conclusion In summary, our present work not only demonstrates the generation of stable CEL-loaded nanoparticles for the efficient treatment of melanoma but also describes a general way to prepare drug self-stabilized nanomedicine for anticancer therapy.
Collapse
Affiliation(s)
- Jinran Li
- Department of Dermatology, China-Japan Union Hospital, Jilin University, Changchun 130033, People's Republic of China
| | - Yuxi Jia
- Department of Dermatology, China-Japan Union Hospital, Jilin University, Changchun 130033, People's Republic of China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Huailin Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Xianling Cong
- Department of Dermatology, China-Japan Union Hospital, Jilin University, Changchun 130033, People's Republic of China
| | - Lin An
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, People's Republic of China
| |
Collapse
|
40
|
Quantum chemical studies, vibrational analysis, molecular dynamics and docking calculations of some ent-kaurane diterpenes from Annona vepretorum: a theoretical approach to promising anti-tumor molecules. Struct Chem 2020. [DOI: 10.1007/s11224-020-01491-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Gao H, Liang D, Li C, Xu G, Jiang M, Li H, Yin J, Song Y. 2-Deoxy-Rh2: A novel ginsenoside derivative, as dual-targeting anti-cancer agent via regulating apoptosis and glycolysis. Biomed Pharmacother 2020; 124:109891. [PMID: 31991384 DOI: 10.1016/j.biopha.2020.109891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/28/2022] Open
Abstract
20(S)-Rh2 is a ginsenoside isolated from Panax ginseng, which exhibits anti-cancer activities on various human cancer cells. A novel 20(S)-Rh2 derivative, 2-Deoxy-Rh2 was synthesized and hybridized with protopanaxadiol and 2-deoxy-glucose in an attempt to enhance the anticancer activity. Through screening the antitumor effect against various cell lines by MTT assay, 2-Deoxy-Rh2 especially resulted in a concentration-dependent and time-dependent inhibition of viability in MCF-7 human breast cancer cells. Multiple methods were used to explore the cellular and molecular mechanisms of 2-Deoxy-Rh2 as a potent anti-cancer agent. In MCF-7 cells, 2-Deoxy-Rh2 triggered apoptosis, stimulated ROS production and disrupted normal mitochondrial membrane potential. Meantime, 2-Deoxy-Rh2 eff ;ectively suppressed the glucose uptake capabilities and intracellular ATP production. The cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were significantly decreased in response to 2-Deoxy-Rh2, which were carried out to assess the overall glycolytic flux and mitochondrial respiration. Docking studies and molecular dynamics simulations were performed to verify the binding mode of 2-DG and 2-Deoxy-Rh2 with hexokinase II, with results showing that 2-Deoxy-Rh2 could easily fit into the similar active site of 2-DG, finally binding to hexokinase II to suppress glycolysis. Taken together, the results suggest that 2-Deoxy-Rh2 exhibited remarkable anticancer activity based on regulating mitochondrial apoptosis pathway, dampening glycolysis and inhibiting mitochondrial respiration, which support development of 2-Deoxy-Rh2 as a potential agent for cancer therapy.
Collapse
Affiliation(s)
- Huan Gao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China; School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Di Liang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Chenchen Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Guoxing Xu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Mengnan Jiang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Heng Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Jianyuan Yin
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, PR China.
| | - Yanqing Song
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China.
| |
Collapse
|
42
|
Hsiao YH, Lin CW, Wang PH, Hsin MC, Yang SF. The Potential of Chinese Herbal Medicines in the Treatment of Cervical Cancer. Integr Cancer Ther 2020; 18:1534735419861693. [PMID: 31271066 PMCID: PMC6611015 DOI: 10.1177/1534735419861693] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cervical cancer is a global health issue and places a considerable economic and medical burden on society. Thus, a concerted effort to improve the treatment of cervical cancer is warranted. Although several treatment options are currently available for treating patients with cervical cancer, such as chemoradiation and neoadjuvant or adjuvant chemotherapy, more aggressive systemic therapies and newer therapeutic agents are under investigation. Medicinal herbs have long been used to treat diseases. In this review, we summarize studies analyzing the antitumor effects and underlying mechanisms of Chinese herbal medicines, including the effects of crude extracts and compounds in vitro or in animal models for inducing apoptosis and inhibiting invasion or metastasis. Chinese herbal medicines with therapeutic targeting, such as those that interfere with tumor growth and progression in cervical cancer, have been widely investigated. To apply Chinese herbal medicine in the treatment of cervical cancer, adequate clinical studies are required to confirm its clinical safety and efficiency. Further investigations focused on the purification, pharmacokinetics, and identification of compounds from Chinese herbal medicines in cervical cancer treatment are necessary to achieve the aforementioned treatment goals.
Collapse
Affiliation(s)
- Yi-Hsuan Hsiao
- 1 Institute of Medicine, Chung Shan Medical University, Taichung.,2 School of Medicine, Chung Shan Medical University, Taichung.,3 Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua
| | - Chiao-Wen Lin
- 4 Institute of Oral Sciences, Chung Shan Medical University, Taichung.,5 Department of Dentistry, Chung Shan Medical University Hospital, Taichung
| | - Po-Hui Wang
- 1 Institute of Medicine, Chung Shan Medical University, Taichung.,2 School of Medicine, Chung Shan Medical University, Taichung.,6 Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung
| | - Min-Chien Hsin
- 1 Institute of Medicine, Chung Shan Medical University, Taichung
| | - Shun-Fa Yang
- 1 Institute of Medicine, Chung Shan Medical University, Taichung.,7 Department of Medical Research, Chung Shan Medical University Hospital, Taichung
| |
Collapse
|
43
|
Wang Z, Chen H, Chen J, Hong Z, Liao Y, Zhang Q, Tong H. Emodin sensitizes human pancreatic cancer cells to EGFR inhibitor through suppressing Stat3 signaling pathway. Cancer Manag Res 2019; 11:8463-8473. [PMID: 31572001 PMCID: PMC6756157 DOI: 10.2147/cmar.s221877] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Background Excessive expression of EGFR is closely related to tumor formation, transfer and deterioration, which has attracted much attention. EGFR overexpression may be detected in up to 90% of pancreatic tumors. However, drug resistance of EGFR inhibitors targeting treatment severely limits its clinical application. Methods In this study, Western blotting was used to detect the expression of p-Stat3, EGFR, Bcl-2, cleaved-caspase3 and Bax. Cell apoptosis was evaluated via flow cytometry. The colon assay and MTT assay were applied for detecting the cell proliferation in vitro. The xenograft mouse model was used to examine the cell proliferation in vivo. Results Emodin remarkably enhanced the anti-cancer effect of EGFR inhibitor on pancreatic cancer cells. In addition, emodin promoted afatinib-induced apoptosis by inhibiting the Stat3 signaling pathway. Meanwhile, siRNAs against Stat3 significantly increased the apoptosis of pancreatic cancer cells. EGFR inhibitor promoted phosphorylation of Stat3 in pancreatic cancer cells. Interestingly, emodin combined with EGFR inhibitor inhibited the proliferation of pancreatic cancer cells in vitro. The tumor xenograft mice model was further confirmed that emodin possessed a synergy anticancer effect with afatinib on pancreatic cancer cells by regulating the Stat3 expression. Conclusion These results indicate that the combination of emodin with EGFR inhibitor is an effective therapeutic strategy to sensitize human pancreatic cancer.
Collapse
Affiliation(s)
- Zhaohong Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Hui Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Jingjing Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Zhong Hong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Yi Liao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Qiyu Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| | - Hongfei Tong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, People's Republic of China
| |
Collapse
|
44
|
Paris Polyphylla Inhibits Colorectal Cancer Cells via Inducing Autophagy and Enhancing the Efficacy of Chemotherapeutic Drug Doxorubicin. Molecules 2019; 24:molecules24112102. [PMID: 31163662 PMCID: PMC6600962 DOI: 10.3390/molecules24112102] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/05/2022] Open
Abstract
Colorectal cancer is one of the most common cancers worldwide and chemotherapy is the main approach for the treatment of advanced and recurrent cases. Developing an effective complementary therapy could help to improve tumor suppression efficiency and control adverse effects from chemotherapy. Paris polyphylla is a folk medicine for treating various forms of cancer, but its effect on colorectal cancer is largely unexplored. The aim of the present study is to investigate the tumor suppression efficacy and the mechanism of action of the ethanolic extract from P. polyphylla (EEPP) in DLD-1 human colorectal carcinoma cells and to evaluate its combined effect with chemotherapeutic drug doxorubicin. The data indicated that EEPP induced DLD-1 cell death via the upregulation of the autophagy markers, without triggering p53- and caspase-3-dependent apoptosis. Moreover, EEPP treatment in combination with doxorubicin enhanced cytotoxicity in these tumor cells. Pennogenin 3-O-beta-chacotrioside and polyphyllin VI were isolated from EEPP and identified as the main candidate active components. Our results suggest that EEPP deserves further evaluation for development as complementary chemotherapy for colorectal cancer.
Collapse
|
45
|
Zhu A, Zhang T, Wang Q. The phytochemistry, pharmacokinetics, pharmacology and toxicity of Euphorbia semen. JOURNAL OF ETHNOPHARMACOLOGY 2018; 227:41-55. [PMID: 30144497 DOI: 10.1016/j.jep.2018.08.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/07/2018] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia semen, the dried and ripe seed of Euphorbia lathyris Linnaeus, is widely cultivated for traditional medicine use. This semen is used to expel water, help with phlegm retention, promote blood circulation, remove blood stasis, cure tinea and scabies, and treat amenorrhea, snakebites, terminal schistosomiasis, anuria and constipation. AIM OF THE REVIEW This review provides updated, comprehensive and categorized information on the local and traditional uses, phytochemistry, pharmacokinetics, pharmacological activities and toxicity of Euphorbia semen. Future research to deepen the recognition and utilization of Euphorbia semen is proposed. MATERIALS AND METHODS This article conducted a literature review on information about Euphorbia semen in multiple Internet databases, including PubMed, Web of Science, Wiley, Science Direct, Elsevier, ACS publications, SciFinder, Google Scholar and China National Knowledge Internet, until March of 2018. In this manuscript, a number of books, PhD and MSc dissertations, and Chinese Pharmacopeia were also used as references. RESULTS Approximately 240 chemical constituents have been isolated and identified from Euphorbia semen, namely, diterpenoids, coumarins, flavonoids, fatty acids, amino acids, and steroids. Pharmacokinetic study focused on investigating absorption, distribution, metabolism and excretion (ADME). The chemical constituents have extensive pharmacological effects, such as diuresis and anti-hyperuricaemia, anti-inflammation, antiviral, anticancer, antioxidant, antipigmentation, anti-platelet aggregation and anti-allergic activities, as well as hepatoprotection and neuroprotection. The toxicity of Euphorbia semen, including acute toxicity, target organ irritation and cocareinogenic effects, have been reported, and the detoxification methods are reviewed. CONCLUSION Euphorbia semen has extensive pharmacological activity and excellent clinical value, along with intense intestinal irritation. Although plenty of chemical constituents have been isolated and identified, the exact pharmacological and toxicological mechanisms still need to be explored.
Collapse
Affiliation(s)
- An Zhu
- Department of Toxicology, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Tao Zhang
- Department of Toxicology, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China.
| |
Collapse
|
46
|
Cui J, Man S, Cui N, Yang L, Guo Q, Ma L, Gao W. The synergistic anticancer effect of formosanin C and polyphyllin VII based on caspase-mediated cleavage of Beclin1 inhibiting autophagy and promoting apoptosis. Cell Prolif 2018; 52:e12520. [PMID: 30338602 PMCID: PMC6430456 DOI: 10.1111/cpr.12520] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/25/2018] [Accepted: 07/20/2018] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES Drug combination has a promising and potential development prospect in the treatment of various cancers. The objective of this study is to investigate the synergistic mechanisms of polyphyllin VII (PVII) and formosanin C (FC) in lung cancer. MATERIALS AND METHODS The combination of FC and PVII influenced on the apoptosis, autophagy, and the relative signalling pathways were analysed in lung cancer cells. RESULTS The combination of FC and PVII demonstrated a concentration- dependent growth inhibition in human lung cancer cells. The combination index (CI) obtained from four lung cancer cells was smaller than 1. This synergistic antitumour effect was based on the increase of their single proapoptotic effect but inhibiting FC-induced autophagy in NCI-H460 cells. FC and PVII activated proapoptotic elements like cleaved-caspase-3, -8, and -9 to induce Beclin1 cleaved into Beclin1-C which suppressed FC-triggered autophagy and enhanced apoptosis. CONCLUSIONS Formosanin C and PVII showed a synergistic antitumour effect on lung cancer cells. The findings would provide the foundation for the use of combination drugs in the future.
Collapse
Affiliation(s)
- Jingxia Cui
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, State Key Laboratory of Food Nutrition and Safety, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuli Man
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, State Key Laboratory of Food Nutrition and Safety, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Nina Cui
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, State Key Laboratory of Food Nutrition and Safety, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Li Yang
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, State Key Laboratory of Food Nutrition and Safety, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Qianbei Guo
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, State Key Laboratory of Food Nutrition and Safety, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Long Ma
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, State Key Laboratory of Food Nutrition and Safety, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
47
|
Schwermer M, Längler A, Fetz K, Ostermann T, Zuzak TJ. Management of Acute Gastroenteritis in Children: A Systematic Review of Anthroposophic Therapies. Complement Med Res 2018; 25:321-330. [DOI: 10.1159/000488317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: Acute gastroenteritis in children accounts for about 10% of hospital admissions and is still one of the major causes of death worldwide. As many children are treated with complementary and alternative medicine (CAM) and anthroposophic medicine, respectively, especially in Europe, the aim of this review was to descriptively present published anthroposophic therapies applied for the treatment of acute gastroenteritis in childhood. Methods: A complex search strategy recording a broad spectrum of CAM therapies was developed to identify anthroposophic therapy options for the treatment of gastroenteritis in children. The search was conducted in 4 general scientific as well as 3 CAM-specific databases. Results: In total, 3,086 articles were identified and screened for anthroposophic related content. The majority of hits deal with nutritional/dietary therapies. Articles considering anthroposophic approaches constitute only 3.1% (7/227) of all CAM-related articles. Among these articles 2 observational studies, 3 experience reports and 2 reviews were identified. In the experience reports, a variety of anthroposophic remedies was recommended but mostly unsupported by scientific evidence. However, observational studies for the anthroposophic medications, Bolus alba comp. and Gentiana comp., were detected. Additionally, studies investigating the efficacy and safety of Chamomilla, Ipecacuanha, Podophyllum or Tormentilla preparations in homeopathy and phytomedicine, respectively, were presented. Conclusions: Most CAM-associated therapies for gastroenteritis in childhood comprise dietary recommendations. Studies concerning anthroposophic approaches and medications, respectively, are deficient. The results of this study underline that effort is needed to evaluate anthroposophic therapies in a clinical setting.
Collapse
|
48
|
de Sousa IP, Sousa Teixeira MV, Jacometti Cardoso Furtado NA. An Overview of Biotransformation and Toxicity of Diterpenes. Molecules 2018; 23:E1387. [PMID: 29890639 PMCID: PMC6100218 DOI: 10.3390/molecules23061387] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022] Open
Abstract
Diterpenes have been identified as active compounds in several medicinal plants showing remarkable biological activities, and some isolated diterpenes are produced at commercial scale to be used as medicines, food additives, in the synthesis of fragrances, or in agriculture. There is great interest in developing methods to obtain derivatives of these compounds, and biotransformation processes are interesting tools for the structural modification of natural products with complex chemical structures. Biotransformation processes also have a crucial role in drug development and/or optimization. The understanding of the metabolic pathways for both phase I and II biotransformation of new drug candidates is mandatory for toxicity and efficacy evaluation and part of preclinical studies. This review presents an overview of biotransformation processes of diterpenes carried out by microorganisms, plant cell cultures, animal and human liver microsomes, and rats, chickens, and swine in vivo and highlights the main enzymatic reactions involved in these processes and the role of diterpenes that may be effectively exploited by other fields.
Collapse
Affiliation(s)
- Ingrid P de Sousa
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, São Paulo 14040903, Brazil.
| | - Maria V Sousa Teixeira
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, São Paulo 14040903, Brazil.
| | - Niege A Jacometti Cardoso Furtado
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, São Paulo 14040903, Brazil.
| |
Collapse
|
49
|
Ren W, Han L, Luo M, Bian B, Guan M, Yang H, Han C, Li N, Li T, Li S, Zhang Y, Zhao Z, Zhao H. Multi-component identification and target cell-based screening of potential bioactive compounds in toad venom by UPLC coupled with high-resolution LTQ-Orbitrap MS and high-sensitivity Qtrap MS. Anal Bioanal Chem 2018; 410:4419-4435. [DOI: 10.1007/s00216-018-1097-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 01/07/2023]
|
50
|
Peroxisomal Acyl-CoA Oxidase Type 1: Anti-Inflammatory and Anti-Aging Properties with a Special Emphasis on Studies with LPS and Argan Oil as a Model Transposable to Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6986984. [PMID: 29765501 PMCID: PMC5889864 DOI: 10.1155/2018/6986984] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/23/2018] [Indexed: 12/11/2022]
Abstract
To clarify appropriateness of current claims for health and wellness virtues of argan oil, studies were conducted in inflammatory states. LPS induces inflammation with reduction of PGC1-α signaling and energy metabolism. Argan oil protected the liver against LPS toxicity and interestingly enough preservation of peroxisomal acyl-CoA oxidase type 1 (ACOX1) activity against depression by LPS. This model of LPS-driven toxicity circumvented by argan oil along with a key anti-inflammatory role attributed to ACOX1 has been here transposed to model aging. This view is consistent with known physiological role of ACOX1 in yielding precursors of specialized proresolving mediators (SPM) and with characteristics of aging and related disorders including reduced PGC1-α function and improvement by strategies rising ACOX1 (via hormonal gut FGF19 and nordihydroguaiaretic acid in metabolic syndrome and diabetes conditions) and SPM (neurodegenerative disorders, atherosclerosis, and stroke). Delay of aging to resolve inflammation results from altered production of SPM, SPM improving most aging disorders. The strategic metabolic place of ACOX1, upstream of SPM biosynthesis, along with ability of ACOX1 preservation/induction and SPM to improve aging-related disorders and known association of aging with drop in ACOX1 and SPM, all converge to conclude that ACOX1 represents a previously unsuspected and currently emerging antiaging protein.
Collapse
|