1
|
Swangsri T, Reamtong O, Saralamba S, Rakthong P, Thaenkham U, Saralamba N. Exploring the antimicrobial potential of crude peptide extracts from Allium sativum and Allium oschaninii against antibiotic-resistant bacterial strains. PHARMACEUTICAL BIOLOGY 2024; 62:666-675. [PMID: 39205473 PMCID: PMC11363733 DOI: 10.1080/13880209.2024.2395517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/04/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
CONTEXT Plant peptides garner attention for their potential antimicrobial properties amid the rising concern over antibiotic-resistant bacteria. OBJECTIVE This study investigates the antibacterial potential of crude peptide extracts from 27 Thai plants collected locally. MATERIALS AND METHODS Peptide extracts from 34 plant parts, derived from 27 Thai plants, were tested for their antimicrobial efficacy against four highly resistant bacterial strains: Streptococcus aureus MRSA, Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli. The stability of these peptide extracts was examined at different temperatures, and the synergistic effects of two selected plant peptide extracts were investigated. Additionally, the time-kill kinetics of the individual extracts and their combination were determined against the tested pathogens. RESULTS Peptides from Allium sativum L. and Allium oschaninii O. Fedtsch (Amaryllidaceae) were particularly potent, inhibiting bacterial growth with MICs ranging from 1.43 to 86.50 µg/mL. The consistent MICs and MBCs of these extracts across various extraction time points highlight their reliability. Stability tests reveal that these peptides maintain their antimicrobial activity at -20 °C for over a month, emphasizing their durability for future exploration and potential applications in addressing antibiotic resistance. Time-kill assays elucidate the time and concentration-dependent nature of these antimicrobial effects, underscoring their potent initial activity and sustained efficacy over time. DISCUSSION AND CONCLUSIONS This study highlights the antimicrobial potential of Allium-derived peptides, endorsing them for combating antibiotic resistance and prompting further investigation into their mechanisms.
Collapse
Affiliation(s)
- Thitiluck Swangsri
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sompob Saralamba
- Mathematical and Economic Modelling (MAEMOD), Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pakavadee Rakthong
- Faculty of Science and Technology, Rajabhat Suratthani University, Surat Thani, Thailand
| | - Urusa Thaenkham
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Naowarat Saralamba
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Lombardi SJ, Pannella G, Coppola F, Vergalito F, Maiuro L, Succi M, Sorrentino E, Tremonte P, Coppola R. Plant-Based Ingredients Utilized as Fat Replacers and Natural Antimicrobial Agents in Beef Burgers. Foods 2024; 13:3229. [PMID: 39456291 PMCID: PMC11507565 DOI: 10.3390/foods13203229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The present study aimed to find solutions based on the use of plant-based ingredients that would improve the nutritional quality of meat products as well as ensure sensory and microbiological quality. Two fat replacers, lemon albedo (Citrus lemon) and carob seed gum (Ceratonia siliqua), were investigated by chemical analysis and panel testing to evaluate their effect on the nutritional and sensory quality of beef burgers. The antimicrobial activity of two plant extracts, from nettle (Urtica dioica) leaves and medlar (Eriobotrya japonica) seeds, was studied, evaluating the intensity of inhibitory action and the minimum inhibitory concentration against Pseudomonas spp. and Listeria innocua strains by plate test. In addition, the antioxidant activity of both extracts was evaluated. Based on the results, lemon albedo and medlar seed extracts were validated in a food model (beef burger) by a storage test and a challenge test. The storage test results highlight that medlar seed extract prevents the formation of thiobarbituric acid reactive substances (TBARSs) and ensures microbiological quality, inhibiting Enterobacteriaceae and Pseudomonas spp. Anti-Listeria efficacy was confirmed in situ by challenge test results. In conclusion, although fat replacers ensure nutritional and sensory quality, they do not satisfy microbiological quality. This study clearly demonstrates that the safety of low-fat burgers can only be achieved through the combination of appropriate fat replacers with well-selected natural antimicrobial extracts.
Collapse
Affiliation(s)
- Silvia Jane Lombardi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| | - Gianfranco Pannella
- Department of Science and Technology for Sustainable Development and One Health, Università Campus-Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Francesca Coppola
- Institute of Food Science, National Research Council, Via Roma, 60, 83100 Avellino, Italy
| | - Franca Vergalito
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| | - Lucia Maiuro
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| | - Mariantonietta Succi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| | - Elena Sorrentino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| | - Patrizio Tremonte
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy
| |
Collapse
|
3
|
Hu B, Hu H, Peng D, Wei Z, Wang Q, Kuang H. Phytochemical components analysis and hypolipidemic effect on hyperlipidemia mice of the aerial parts from Allium sativum. Front Nutr 2024; 11:1422857. [PMID: 39119464 PMCID: PMC11306067 DOI: 10.3389/fnut.2024.1422857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Background The bulbs of Allium sativum are widely used as food or seasoning (garlic), while they have also been utilized as a famous traditional medicine since ancient eras for the treatment of scabies, tuberculosis, pertussis, diarrhea and dysentery, etc. However, very few studies focus on their abundant aerial parts, which are normally discarded during the harvest season. Methods The hyperlipidemic mice model has been used to study the lipid-lowering effect of the aerial parts in this article. 180 mice were randomly divided into 18 groups, including blank control (BC), model (Mod), positive control (PC), and low-, medium-, and high-dose groups of the crude extract, petroleum ether, ethyl acetate, n-butanol, and residual water extracts (corresponding to CE, PEE, EAE, NBE, WE), with 10 mice in each group. The preventive effects of the extracts on hyperlipidemic mice lasted for four weeks. Ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) and gas chromatography tandem mass spectrometry (GC-MS/MS) were used to analyze the chemical components of NBE and PEE respectively. Results The results of the mice experiment showed that n-butanol extract (NBE) and petroleum ether extract (PEE) from the aerial parts could significantly reduce the contents of total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C), alanine transaminase (ALT) and aspartate transaminase (AST) in serum of hyperlipidemic mice, and increase the contents of high density lipoprotein cholesterol (HDL-C). They could enhance the activity of superoxide dismutase (SOD) in liver and reduce the level of malondialdehyde (MDA). At the same time, they could improve steatosis and inflammation of liver cells. The results of phytochemical components analysis showed that NBE was rich in organic acids, flavonoids and nitrogen-containing constituents, while PEE contained organic sulfur compounds, aliphatic acids and derivatives, alkaloids, phytosterols, etc. Conclusion These results support that the aerial parts of A. sativum are an interesting source of bioactive ingredients that may be useful in the prevention and treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Bin Hu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, China
- Key Laboratory of Chinese Materia Medica, School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haibo Hu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Donghui Peng
- Key Laboratory of Chinese Materia Medica, School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zheng Wei
- Key Laboratory of Chinese Materia Medica, School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Ganzhou People's Hospital, Ganzhou, China
| | - Qiuhong Wang
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica, School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Cai X, Zhu K, Li W, Peng Y, Yi Y, Qiao M, Fu Y. Characterization of flavor and taste profile of different radish ( Raphanus Sativus L.) varieties by headspace-gas chromatography-ion mobility spectrometry (GC/IMS) and E-nose/tongue. Food Chem X 2024; 22:101419. [PMID: 38756475 PMCID: PMC11096940 DOI: 10.1016/j.fochx.2024.101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
A comprehensive study of the overall flavor and taste profile of different radishes is lacking. This study systematically compared the volatile profile of six radish varieties using HS-GC-IMS and their correlation with the E-nose analysis. Organic acids and amino acids were quantified, and their association with the E-tongues analysis was explored. A total of 73 volatile compounds were identified, with diallyl sulfide and dimethyl disulfide being the primary sulfides responsible for the unpleasant flavor in radish. Compared to other varieties, cherry radishes boast a significantly higher concentration of allyl isothiocyanate, which likely contributes to their characteristic radish flavor. Moreover, oxalic acid was identified as the most abundant organic acid in radish, accounting for over 97% of its content, followed by malic acid and succinic acid. In conclusion, the distinct flavor and taste characteristics of different radish varieties partially explain their suitability for diverse culinary preferences.
Collapse
Affiliation(s)
- Xuemei Cai
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Kaixian Zhu
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Wanli Li
- Solid-state Fermentation Resource Utilization Key Laboratory of Sichuan Province, Yibin University, Yibin 644007, China
| | - Yiqin Peng
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Yuwen Yi
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Mingfeng Qiao
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Yu Fu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
5
|
Ahmad N, Lesa KN, Ujiantari NSO, Sudarmanto A, Fakhrudin N, Ikawati Z. Development of White Cabbage, Coffee, and Red Onion Extracts as Natural Phosphodiesterase-4B (PDE4B) Inhibitors for Cognitive Dysfunction: In Vitro and In Silico Studies. Adv Pharmacol Pharm Sci 2024; 2024:1230239. [PMID: 38808119 PMCID: PMC11132833 DOI: 10.1155/2024/1230239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Human cognition fundamentally depends on memory. Alzheimer's disease exhibits a strong correlation with a decline in this factor. Phosphodiesterase-4 B (PDE4B) plays a crucial role in neurodegenerative disorders, and its inhibition is one of the promising approaches for memory enhancement. This study aimed to identify secondary metabolites in white cabbage, coffee, and red onion extracts and identify their molecular interaction with PDE4B by in silico and in vitro experiments. Crushed white cabbage and red onion were macerated separately with ethanol to yield respective extracts, and ground coffee was boiled with water to produce aqueous extract. Thin layer chromatography (TLC)-densitometry was used to examine the phytochemicals present in white cabbage, coffee, and red onion extracts. Molecular docking studies were performed to know the interaction of test compounds with PDE4B. TLC-densitometry analysis showed that chlorogenic acid and quercetin were detected as major compounds in coffee and red onion extracts, respectively. In silico studies revealed that alpha-tocopherol (binding free energy (∆Gbind) = -38.00 kcal/mol) has the strongest interaction with PDE4B whereas chlorogenic acid (∆Gbind = -21.50 kcal/mol) and quercetin (∆Gbind = -17.25 kcal/mol) exhibited moderate interaction. In vitro assay showed that the combination extracts (cabbage, coffee, and red onion) had a stronger activity (half-maximal inhibitory concentration (IC50) = 0.12 ± 0.03 µM) than combination standards (sinigrin, chlorogenic acid, and quercetin) (IC50 = 0.17 ± 0.03 µM) and rolipram (IC50 = 0.15 ± 0.008 µM). Thus, the combination extracts are a promising cognitive enhancer by blocking PDE4B activity.
Collapse
Affiliation(s)
- Nazir Ahmad
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Kaisun Nesa Lesa
- Department of Food and Nutritional Science, Khulna City Corporation Women's College, Affiliated to Khulna University, Khulna, Bangladesh
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Pediatrics, Nihon University Hospital, Tokyo, Japan
- Department of Nutrition and Food Technology, Jessore University of Science and Technology, Jessore, Bangladesh
| | - Navista Sri Octa Ujiantari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Ari Sudarmanto
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Nanang Fakhrudin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
- Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Sleman 55281, Yogyakarta, Indonesia
| | - Zullies Ikawati
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| |
Collapse
|
6
|
Kasamatsu S, Kinno A, Hishiyama JI, Akaike T, Ihara H. Development of methods for quantitative determination of the total and reactive polysulfides: Reactive polysulfide profiling in vegetables. Food Chem 2023; 413:135610. [PMID: 36774840 DOI: 10.1016/j.foodchem.2023.135610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/19/2022] [Accepted: 01/29/2023] [Indexed: 02/06/2023]
Abstract
Alliaceous and cruciferous vegetables are rich in bioactive organosulfur compounds, including polysulfides, which exhibit a broad spectrum of potential health benefits. Here, we developed novel, accurate, and reproducible methods to quantify the total polysulfide content (TPsC) and the reactive polysulfide content (RPsC) using liquid chromatography-electrospray ionization-tandem mass spectrometry, and analyzed the reactive polysulfide profiles of 22 types of fresh vegetables, including onions, garlic, and broccoli. Quantitative analyses revealed that onions contained the largest amounts of polysulfides, followed by broccoli, Chinese chive, and garlic. A strong positive correlation was observed between the TPsC and RPsC, whereas only a moderate positive correlation was found between the total sulfur content and TPsC. These results suggest that reactive polysulfide profiling can be a novel criterion for evaluating the beneficial functions of vegetables and their derivatives, which may lead to an understanding of the detailed mechanisms underlying their bioactivities.
Collapse
Affiliation(s)
- Shingo Kasamatsu
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai 599-8531, Japan; Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Ayaka Kinno
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Jun-Ichi Hishiyama
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Hideshi Ihara
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai 599-8531, Japan; Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai 599-8531, Japan.
| |
Collapse
|
7
|
D'Amico F, Casalino G, Dinardo FR, Schiavitto M, Camarda A, Romito D, Bove A, Circella E. Antimicrobial Efficacy of Phyto-L, Thiosulfonate from Allium spp. Containing Supplement, against Escherichia Coli Strains from Rabbits. Vet Sci 2023; 10:411. [PMID: 37505817 PMCID: PMC10384763 DOI: 10.3390/vetsci10070411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
Colibacillosis, caused by enteropathogenic Escherichia coli (EPEC), is one of the most common diseases in rabbit farms, resulting in economic losses due to mortality and decrease in production. Until recently, antimicrobials were used to both treat and prevent disease on livestock farms, leading to the possible risk of antimicrobial resistance (AMR) and the selection of multidrug-resistant (MDR) bacteria. Therefore, interest in alternative control methods, such as the use of natural substances, has increased in the scientific community. The aim of this study was to evaluate the antimicrobial efficacy of Phyto-L (Pro Tech s.r.l.), a product containing organosulfur compounds (OSCs) such as propyl propane thiosulfonate (PTSO) from Allium spp., against 108 strains of E. coli isolated from rabbits with colibacillosis from 19 farms. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Phyto-L were assessed. Bacterial suspensions with a charge of 108 CFU/mL, corresponding to those found in the rabbit gut under pathologic conditions, were tested with different concentrations from 20 to 0.15 μL/mL of Phyto-L. For each strain, the MIC and concentrations above the MIC were plated on Tryptic Soy agar (TSA) without Phyto-L to assess the MBCs. MIC and MBC values ranged from 1.25 to 5 μL/mL and 1.25 to 20 μL/mL, respectively, depending on the strain tested. The data showed an interesting antibacterial activity of Phyto-L against EPEC strains. Therefore, this product could be effective in preventing colibacillosis in field application, especially considering that 104-105 CFU/g of feces is the amount of E. coli usually found in the gut contents of rabbits under physiological condition.
Collapse
Affiliation(s)
- Francesco D'Amico
- Department of Veterinary Medicine, University of Bari "Aldo Moro", S. P. Casamassima km 3, 70010 Valenzano, BA, Italy
| | - Gaia Casalino
- Department of Veterinary Medicine, University of Bari "Aldo Moro", S. P. Casamassima km 3, 70010 Valenzano, BA, Italy
| | - Francesca Rita Dinardo
- Department of Veterinary Medicine, University of Bari "Aldo Moro", S. P. Casamassima km 3, 70010 Valenzano, BA, Italy
| | - Michele Schiavitto
- Italian Rabbit Breeders Association-ANCI, Contrada Giancola snc, 71030 Volturara Appula, FG, Italy
| | - Antonio Camarda
- Department of Veterinary Medicine, University of Bari "Aldo Moro", S. P. Casamassima km 3, 70010 Valenzano, BA, Italy
| | - Diana Romito
- Department of Veterinary Medicine, University of Bari "Aldo Moro", S. P. Casamassima km 3, 70010 Valenzano, BA, Italy
| | - Antonella Bove
- Department of Veterinary Medicine, University of Bari "Aldo Moro", S. P. Casamassima km 3, 70010 Valenzano, BA, Italy
| | - Elena Circella
- Department of Veterinary Medicine, University of Bari "Aldo Moro", S. P. Casamassima km 3, 70010 Valenzano, BA, Italy
| |
Collapse
|
8
|
Huang L, Liu Z, Wang J, Fu J, Jia Y, Ji L, Wang T. Bioactivity and health effects of garlic essential oil: A review. Food Sci Nutr 2023; 11:2450-2470. [PMID: 37324866 PMCID: PMC10261769 DOI: 10.1002/fsn3.3253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Garlic (Allium sativum L.), the underground bulb of the Allium plant in the family Liliaceae, is a common and popular spice that has historically been used to prevent and treat many different diseases such as pain, deafness, diarrhea, tumors, and other healthy problems. Garlic essential oil contains a variety of organosulfur compounds, such as the most representative diallyl disulfides (DADS) and diallyl trisulfides (DATS), which have attracted great interest in medicine, food, and agriculture because of their rich biological activities. This paper reviews the research progress on the composition and bioactivities of garlic essential oil mixtures and the bioactivity of some typical monomeric sulfides in garlic essential oil. The active mechanisms of representative sulfides in garlic essential oil were analyzed, and the applications of garlic essential oil in functional food, food additives, and clinical treatment were discussed. Combined with the current research status, the limitations and development direction of garlic essential oil in the study of molecular mechanism were discussed, which is of great significance to the development of garlic essential oil as a natural and safe alternative medicine for treatment.
Collapse
Affiliation(s)
- Lei Huang
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| | - Zhenxin Liu
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| | - Jing Wang
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| | - Jiaolong Fu
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| | - Yonglu Jia
- Department of Stomotology, Suzhou Kowloon HospitalShanghai Jiaotong University School of MedicineSuzhouChina
| | - Lilian Ji
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| | - Taoyun Wang
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouChina
| |
Collapse
|
9
|
Huygens J, Rasschaert G, Cottyn B, Dewulf J, Van Coillie E, Willekens K, Quataert P, Becue I, Daeseleire E, Heyndrickx M. The impact of antibiotic residues on resistance patterns in leek at harvest. Heliyon 2023; 9:e16052. [PMID: 37215782 PMCID: PMC10192768 DOI: 10.1016/j.heliyon.2023.e16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/07/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
When crops are cultivated on fields fertilized with animal manure, the risk exists that plants may take up antibiotic residues and may be exposed to antibiotic resistance genes and antibiotic resistant bacteria. During cultivation in a greenhouse pot experiment, leek (Allium porrum) was fertilized with either pig slurry or mineral fertilizer and exposed to either no antibiotics, doxycycline (10,000 μg/kg manure), sulfadiazine (1000 μg/kg manure), or lincomycin (1000 μg/kg manure). At harvest, 4.5 months later, lincomycin, sulfadiazine or doxycycline were not detected in any of the leek samples nor in their corresponding soil samples. Further, antimicrobial susceptibility testing was performed on 181 Bacillus cereus group isolates and 52 Pseudomonas aeruginosa isolates from the grown leek. For the B. cereus group isolates, only a small shift in MIC50 for lincomycin was observed among isolates from the lincomycin and control treatment. For P. aeruginosa, only in the setup with doxycycline treatment a higher MIC50 for doxycycline was observed compared to the control, specifically the isolates selected from growth media supplemented with 8 mg/L doxycycline. Nine antibiotic resistance genes (tet(B), tet(L), tet(M), tet(O), tet(Q), tet(W), erm(B), erm(F) and sul2) were investigated at harvest in the leek and soil samples. In the leek samples, none of the antibiotic resistance genes were detected. In the soil samples fertilized with pig slurry, the genes erm(B), erm(F), tet(M), sul2, tet(W) and tet(O) were detected in significantly higher copy numbers in the lincomycin treatment as compared to the other antibiotic treatments. This could be due to a shift in soil microbiota induced by the addition of lincomycin. The results of this study indicate that consumption of leek carries a low risk of exposure to antibiotic residues or antibiotic resistance to doxycycline, sulfadiazine or lincomycin.
Collapse
Affiliation(s)
- Judith Huygens
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Geertrui Rasschaert
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Bart Cottyn
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Science Unit, Caritasstraat 39, 9090 Melle, Belgium
| | - Jeroen Dewulf
- Ghent University, Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction an Population Medicine, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Els Van Coillie
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Koen Willekens
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Science Unit, Caritasstraat 39, 9090 Melle, Belgium
| | - Paul Quataert
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Science Unit, Caritasstraat 39, 9090 Melle, Belgium
| | - Ilse Becue
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Els Daeseleire
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
- Ghent University, Faculty of Veterinary Medicine, Department of Pathobiology, Pharmacology and Zoological Medicine, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
10
|
The Use of Natural Methods to Control Foodborne Biofilms. Pathogens 2022; 12:pathogens12010045. [PMID: 36678393 PMCID: PMC9865977 DOI: 10.3390/pathogens12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Biofilms are large aggregates of various species of bacteria or other microorganisms tightly attached to surfaces through an intricate extracellular matrix. These complex microbial communities present quite the challenge in the food processing industry, as conditions such as raw meats and diverse food product content in contact with workers, drains, machinery, and ventilation systems, make for prime circumstances for contamination. Adding to the challenge is the highly resistant nature of these biofilm growths and the need to keep in mind that any antimicrobials utilized in these situations risk health implications with human consumption of the products that are being processed in these locations. For that reason, the ideal means of sanitizing areas of foodborne biofilms would be natural means. Herein, we review a series of innovative natural methods of targeting foodborne biofilms, including bacteriocins, bacteriophages, fungi, phytochemicals, plant extracts, essential oils, gaseous and aqueous control, photocatalysis, enzymatic treatments, and ultrasound mechanisms.
Collapse
|
11
|
Sari NF, Ray P, Rymer C, Kliem KE, Stergiadis S. Garlic and Its Bioactive Compounds: Implications for Methane Emissions and Ruminant Nutrition. Animals (Basel) 2022; 12:2998. [PMID: 36359121 PMCID: PMC9654579 DOI: 10.3390/ani12212998] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Methane (CH4) emission from enteric fermentation of ruminant livestock is a source of greenhouse gases (GHG) and has become a significant concern for global warming. Enteric methane emission is also associated with poor feed efficiency. Therefore, research has focused on identifying dietary mitigation strategies to decrease CH4 emissions from ruminants. In recent years, plant-derived bioactive compounds have been investigated for their potential to reduce CH4 emissions from ruminant livestock. The organosulphur compounds of garlic have been observed to decrease CH4 emission and increase propionate concentration in anaerobic fermentations (in vitro) and in the rumen (in vivo). However, the mode of action of CH4 reduction is not completely clear, and the response in vivo is inconsistent. It might be affected by variations in the concentration and effect of individual substances in garlic. The composition of the diet that is being fed to the animal may also contribute to these differences. This review provides a summary of the effect of garlic and its bioactive compounds on CH4 emissions by ruminants. Additionally, this review aims to provide insight into garlic and its bioactive compounds in terms of enteric CH4 mitigation efficacy, consistency in afficacy, possible mode of action, and safety deriving data from both in vivo and in vitro studies.
Collapse
Affiliation(s)
- Nurul Fitri Sari
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Cibinong 16911, West Java, Indonesia
| | - Partha Ray
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
- The Nature Conservancy, Arlington, VA 22203, USA
| | - Caroline Rymer
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
| | - Kirsty E. Kliem
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
| | - Sokratis Stergiadis
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
| |
Collapse
|
12
|
Robinson K, Assumpcao ALFV, Arsi K, Donoghue A, Jesudhasan PRR. Ability of Garlic and Ginger Oil to Reduce Salmonella in Post-Harvest Poultry. Animals (Basel) 2022; 12:2974. [PMID: 36359098 PMCID: PMC9656020 DOI: 10.3390/ani12212974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 09/06/2023] Open
Abstract
Approximately 1.35 million human salmonellosis cases are reported in the United States every year, resulting in over 26,000 hospitalizations and 400 deaths. Consumption of contaminated poultry products is one of the leading causes of human salmonellosis. Poultry meat becomes contaminated when feces from an infected bird comes into contact with the carcass during processing. Additional carcasses can then become cross-contaminated along the processing line. While chemicals such as peracetic acid are currently used to kill microbes such as Salmonella, consumers are increasingly calling for more natural alternatives. Our objective for this study was to determine the ability of the phytochemicals garlic and ginger oil to reduce Salmonella prevalence in the processing environment. In a simulated scalding tank environment, dipping contaminated chicken skin samples in a solution containing both garlic and ginger oil reduced Salmonella by up to 2 log CFU. Furthermore, the oils prevented Salmonella growth in the tank solution. The mechanism of action of garlic and ginger was evaluated using the sub-inhibitory concentration of each oil individually. While both were found to decrease autoinducer-2 (AI-2) levels, no effect was seen on expression of 10 genes involved in Salmonella virulence and survival. In total, this work demonstrates the potential of garlic and ginger to reduce Salmonella prevalence in the post-harvest environment. However, more work remains to be done to understand the mechanism of action.
Collapse
Affiliation(s)
- Kelsy Robinson
- Poultry Research Unit, ARS, USDA, Mississippi State, MS 39762, USA
| | | | - Komala Arsi
- Poultry Production and Product Safety Research Unit, ARS, USDA, Fayetteville, AR 72701, USA
| | - Annie Donoghue
- Poultry Production and Product Safety Research Unit, ARS, USDA, Fayetteville, AR 72701, USA
| | - Palmy R. R. Jesudhasan
- Poultry Production and Product Safety Research Unit, ARS, USDA, Fayetteville, AR 72701, USA
| |
Collapse
|
13
|
Tudu CK, Dutta T, Ghorai M, Biswas P, Samanta D, Oleksak P, Jha NK, Kumar M, Radha, Proćków J, Pérez de la Lastra JM, Dey A. Traditional uses, phytochemistry, pharmacology and toxicology of garlic ( Allium sativum), a storehouse of diverse phytochemicals: A review of research from the last decade focusing on health and nutritional implications. Front Nutr 2022; 9:949554. [PMID: 36386956 PMCID: PMC9650110 DOI: 10.3389/fnut.2022.929554] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/05/2022] [Indexed: 10/29/2023] Open
Abstract
Allium sativum L. (Garlic) is a fragrant herb and tuber-derived spice that is one of the most sought-after botanicals, used as a culinary and ethnomedicine for a variety of diseases around the world. An array of pharmacological attributes such as antioxidant, hypoglycemic, anti-inflammatory, antihyperlipidemic, anticancer, antimicrobial, and hepatoprotective activities of this species have been established by previous studies. A. sativum houses many sulfur-containing phytochemical compounds such as allicin, diallyl disulfide (DADS), vinyldithiins, ajoenes (E-ajoene, Z-ajoene), diallyl trisulfide (DATS), micronutrient selenium (Se) etc. Organosulfur compounds are correlated with modulations in its antioxidant properties. The garlic compounds have also been recorded as promising immune-boosters or act as potent immunostimulants. A. sativum helps to treat cardiovascular ailments, neoplastic growth, rheumatism, diabetes, intestinal worms, flatulence, colic, dysentery, liver diseases, facial paralysis, tuberculosis, bronchitis, high blood pressure, and several other diseases. The present review aims to comprehensively enumerate the ethnobotanical and pharmacological aspects of A. sativum with notes on its phytochemistry, ethnopharmacology, toxicological aspects, and clinical studies from the retrieved literature from the last decade with notes on recent breakthroughs and bottlenecks. Future directions related to garlic research is also discussed.
Collapse
Affiliation(s)
| | - Tusheema Dutta
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Protha Biswas
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Dipu Samanta
- Department of Botany, Dr. Kanailal Bhattacharyya College, Howrah, India
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska, Poland
| | - José M. Pérez de la Lastra
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC). Avda, Astrofísico Francisco Sánchez, San Cristóbal de la Laguna, Spain
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
14
|
Marques CS, Arruda TR, Silva RRA, Ferreira ALV, Oliveira WLDA, Rocha F, Mendes LA, de Oliveira TV, Vanetti MCD, Soares NDFF. Exposure to cellulose acetate films incorporated with garlic essential oil does not lead to homologous resistance in Listeria innocua ATCC 33090. Food Res Int 2022; 160:111676. [DOI: 10.1016/j.foodres.2022.111676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/21/2022] [Accepted: 07/08/2022] [Indexed: 11/04/2022]
|
15
|
Synthesis and Biological Activity of Unsymmetrical Monoterpenylhetaryl Disulfides. Molecules 2022; 27:molecules27165101. [PMID: 36014334 PMCID: PMC9416111 DOI: 10.3390/molecules27165101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
New unsymmetrical monoterpenylhetaryl disulfides based on heterocyclic disulfides and monoterpene thiols were synthesized for the first time in 48–88% yields. Hydrolysis of disulfides with fragments of methyl esters of 2-mercaptonicotinic acid was carried out in 73–95% yields. The obtained compounds were evaluated for antioxidant, antibacterial, antifungal activity, cytotoxicity and mutagenicity.
Collapse
|
16
|
Pérez‐Córdoba LJ, Pinheiro AC, Núñez de Villavicencio‐Ferrer M, Trindade MA, Sobral PJA. Applying gelatine:chitosan film loaded with nanoemulsified garlic essential oil/α‐tocopherol as active packaging of sliced Omega‐3 rich mortadella. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luis J. Pérez‐Córdoba
- Universidad Nacional Agraria La Molina, Facultad de Industrias Alimentarias, Departamento de Ingeniería de Alimentos, Av. La Molina S/N, La Molina CP 12056 Lima Perú
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Av Duque de Caxias Norte, 225 13635‐900 Pirassununga SP Brazil
| | - Ana C. Pinheiro
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Av Duque de Caxias Norte, 225 13635‐900 Pirassununga SP Brazil
| | | | - Marco A. Trindade
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Av Duque de Caxias Norte, 225 13635‐900 Pirassununga SP Brazil
| | - Paulo J. A. Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering University of São Paulo Av Duque de Caxias Norte, 225 13635‐900 Pirassununga SP Brazil
| |
Collapse
|
17
|
Nazzaro F, Polito F, Amato G, Caputo L, Francolino R, D’Acierno A, Fratianni F, Candido V, Coppola R, De Feo V. Chemical Composition of Essential Oils of Bulbs and Aerial Parts of Two Cultivars of Allium sativum and Their Antibiofilm Activity against Food and Nosocomial Pathogens. Antibiotics (Basel) 2022; 11:antibiotics11060724. [PMID: 35740131 PMCID: PMC9219697 DOI: 10.3390/antibiotics11060724] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
This work aimed to evaluate the chemical composition of the essential oils (EOs) of two cultivars of Allium sativum and their antibiofilm activity against the food pathogens Acinetobacter baumannii, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus. The crystal violet assay ascertained the susceptibility of the bacterial biofilms, while the MTT assay let to evaluations of the metabolic changes occurring in the bacterial cells within biofilms. Their chemical composition indicated some sulfuric compounds (i.e., allicin, diallyl disulfide, and allyl propyl disulfide), and decene as some of the main components of the EOs. The aerial parts and bulbs’ EOs from the two cultivars showed chemical differences, which seemed to affect the antibiofilm activity. The EOs from aerial parts of ‘Bianco del Veneto’ inhibited the biofilm formation of L. monocytogenes and E. coli (60.55% and 40.33%, respectively). In comparison, the ‘Staravec’ EO inhibited the cellular metabolism of E. coli (62.44%) and S. aureus (51.52%) sessile cells. These results indicate their possible use as preserving agents in the food industry and suggest their potential exploitation in the development of new formulations to avoid or limit nosocomial infections.
Collapse
Affiliation(s)
- Filomena Nazzaro
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
- Correspondence:
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (R.F.)
| | - Giuseppe Amato
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (R.F.)
| | - Rosaria Francolino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (R.F.)
| | - Antonio D’Acierno
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
| | - Florinda Fratianni
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
| | - Vincenzo Candido
- Department of European and Mediterranean Culture, University of Basilicata, Via Lanera, 20, 75100 Matera, Italy;
| | - Raffaele Coppola
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Vincenzo De Feo
- Institute of Food Sciences, CNR-ISA, Via Roma, 64, 83100 Avellino, Italy; (G.A.); (A.D.); (F.F.); (R.C.); (V.D.F.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (R.F.)
| |
Collapse
|
18
|
Farinacci P, Mevissen M, Ayrle H, Maurer V, Sørensen Dalgaard T, Melzig MF, Walkenhorst M. Medicinal Plants for Prophylaxis and Therapy of Common Infectious Diseases In Poultry-A Systematic Review of In Vivo Studies. PLANTA MEDICA 2022; 88:200-217. [PMID: 34359086 DOI: 10.1055/a-1543-5502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Medicinal plants for prophylaxis and therapy of common infectious diseases in poultry have been studied for several years. The goal of this review was to systematically identify plant species and evaluate their potential in prophylaxis and therapy of common diseases in poultry caused by bacteria and gastrointestinal protozoa. The procedure followed the recommendations of the PRISMA statement and the AMSTAR measurement tool. The PICOS scheme was used to design the research questions. Two databases were consulted, and publications were manually selected, according to predefined in- and exclusion criteria. A scoring system was established to evaluate the remaining publications. Initially, 4197 identified publications were found, and 77 publications remained after manual sorting, including 38 publications with 70 experiments on bacterial infections and 39 publications with 78 experiments on gastrointestinal protozoa. In total, 83 plant species from 42 families were identified. Asteraceae and Lamiaceae were the most frequently found families with Artemisia annua being the most frequently found plant, followed by Origanum vulgare. As compared to placebo and positive or negative control groups, antimicrobial effects were found in 46 experiments, prebiotic effects in 19 experiments, and antiprotozoal effects in 47 experiments. In summary, a total of 274 positive effects predominated over 241 zero effects and 37 negative effects. Data indicate that O. vulgare, Coriandrum sativum, A. annua, and Bidens pilosa are promising plant species for prophylaxis and therapy of bacterial and protozoal diseases in poultry.
Collapse
Affiliation(s)
- Patricia Farinacci
- Department of Clinical Research and Veterinary Public Health, Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Department of Livestock Science, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Meike Mevissen
- Department of Clinical Research and Veterinary Public Health, Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hannah Ayrle
- Department of Livestock Science, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Veronika Maurer
- Department of Livestock Science, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | | | | | - Michael Walkenhorst
- Department of Livestock Science, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| |
Collapse
|
19
|
Olaimat AN, Al-Holy MA, Abu Ghoush MH, Al-Nabulsi AA, Osaili TM, Ayyash M, Al-Degs YS, Holley RA. Use of citric acid and garlic extract to inhibit Salmonella enterica and Listeria monocytogenes in hummus. Int J Food Microbiol 2022; 362:109474. [PMID: 34781080 DOI: 10.1016/j.ijfoodmicro.2021.109474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
Recently, the consumption of hummus has become popular in the United States, European countries, and Canada, and unfortunately, several foodborne outbreaks and recalls have been reported due to its contamination with Listeria monocytogenes and Salmonella enterica. The current study aimed to investigate the inhibitory activity of 0.5, 1.0, and 1.5% citric acid (CA) and 1.0, 2.0 and 3.0% garlic extract (GE) toward S. enterica and L. monocytogenes in hummus stored at 4, 10 and 24 °C. L. monocytogenes grew well in untreated (control) hummus samples at all tested temperatures, whereas S. enterica grew only at 10 and 24 °C. CA at 0.5 to 1.5% reduced L. monocytogenes numbers by 3.0-3.3 log CFU/g at 4 °C, 1.7-3.9 log CFU/g at 10 °C, and 0.9-1.4 log CFU/g at 24 °C. Numbers of S. enterica were reduced by 0.6-1.7, 4.1-4.9 and <1.5 log CFU/g, at 4, 10 and 24 °C, respectively, compared to the control during 10 d storage. GE at 1.0-3.0% also reduced numbers of L. monocytogenes at 10 d by 0.7-3.0, and 1.3-3.6 log CFU/g at 4 and 10 °C, respectively, and numbers of S. enterica by 0.7-1.2, 1.8-2.6 and 0.5-1.6 log CFU/g, at 4, 10 and 24 °C, respectively, compared to the control. Chromatographic analysis of GE revealed the presence of four organosulfur compounds including diallyl disulfide, diallyl trisulfide, 2-vinyl-(4H)-1,3-dithiin and 3-vinyl-(4H)-1,2-dithiin where the latter was the predominant compound with a level of 22.9 mg/g which significantly contributed to the inhibitory effect of GE. CA and GE are adequate natural antimicrobials in hummus to reduce L. monocytogenes and S. enterica numbers and enhance product safety.
Collapse
Affiliation(s)
- Amin N Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan.
| | - Murad A Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Mahmoud H Abu Ghoush
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; Science of Nutrition and Dietetics Program, College of Pharmacy, Al Ain University, P.O. Box 64141, Abu Dhabi, United Arab Emirates
| | - Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Tareq M Osaili
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan; Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yahya S Al-Degs
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Richard A Holley
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
20
|
Panyod S, Wu WK, Chen PC, Chong KV, Yang YT, Chuang HL, Chen CC, Chen RA, Liu PY, Chung CH, Huang HS, Lin AYC, Shen TCD, Yang KC, Huang TF, Hsu CC, Ho CT, Kao HL, Orekhov AN, Wu MS, Sheen LY. Atherosclerosis amelioration by allicin in raw garlic through gut microbiota and trimethylamine-N-oxide modulation. NPJ Biofilms Microbiomes 2022; 8:4. [PMID: 35087050 PMCID: PMC8795425 DOI: 10.1038/s41522-022-00266-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is strongly associated with the gut microbiota and its metabolites, including trimethylamine-N-oxide (TMAO), formed from metaorganismal metabolism of ʟ-carnitine. Raw garlic juice, with allicin as its primary compound, exhibits considerable effects on the gut microbiota. This study validated the benefits of raw garlic juice against CVD risk via modulation of the gut microbiota and its metabolites. Allicin supplementation significantly decreased serum TMAO in ʟ-carnitine-fed C57BL/6 J mice, reduced aortic lesions, and altered the fecal microbiota in carnitine-induced, atherosclerosis-prone, apolipoprotein E-deficient (ApoE-/-) mice. In human subjects exhibiting high-TMAO production, raw garlic juice intake for a week reduced TMAO formation, improved gut microbial diversity, and increased the relative abundances of beneficial bacteria. In in vitro and ex vivo studies, raw garlic juice and allicin inhibited γ-butyrobetaine (γBB) and trimethylamine production by the gut microbiota. Thus, raw garlic juice and allicin can potentially prevent cardiovascular disease by decreasing TMAO production via gut microbiota modulation.
Collapse
Affiliation(s)
- Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Wei-Kai Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Chen Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Kent-Vui Chong
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yu-Tang Yang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Chieh-Chang Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Rou-An Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Po-Yu Liu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hu Chung
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Huai-Syuan Huang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Angela Yu-Chen Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Ting-Chin David Shen
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kai-Chien Yang
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Research Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tur-Fu Huang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Hsien-Li Kao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Alexander N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
- Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan.
- National Center for Food Safety Education and Research, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
21
|
Preparation and Optimization of Garlic Oil/Apple Cider Vinegar Nanoemulsion Loaded with Minoxidil to Treat Alopecia. Pharmaceutics 2021; 13:pharmaceutics13122150. [PMID: 34959435 PMCID: PMC8706394 DOI: 10.3390/pharmaceutics13122150] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Alopecia areata is a scarless, localized hair loss disorder that is typically treated with topical formulations that ultimately only further irritate the condition. Hence, the goal of this study was to develop a nanoemulsion with a base of garlic oil (GO) and apple cider vinegar (APCV) and loaded with minoxidil (MX) in order to enhance drug solubilization and permeation through skin. A distance coordinate exchange quadratic mixture design was used to optimize the proposed nanoemulsion. Span 20 and Tween 20 mixtures were used as the surfactant, and Transcutol was used as the co-surfactant. The developed formulations were characterized for their droplet size, minoxidil steady-state flux (MX Jss) and minimum inhibitory concentration (MIC) against Propionibacterium acnes. The optimized MX-GO-APCV nanoemulsion had a droplet size of 110 nm, MX Jss of 3 μg/cm2 h, and MIC of 0.275 μg/mL. The optimized formulation acquired the highest ex vivo skin permeation parameters compared to MX aqueous dispersion, and varying formulations lacked one or more components of the proposed nanoemulsion. GO and APCV in the optimized formulation had a synergistic, enhancing activity on the MX permeation across the skin membrane, and the percent permeated increased from 12.7% to 41.6%. Finally, the MX-GO-APCV nanoemulsion followed the Korsmeyer–Peppas model of diffusion, and the value of the release exponent (n) obtained for the formulations was found to be 1.0124, implying that the MX permeation followed Super case II transport. These results demonstrate that the MX-GO-APCV nanoemulsion formulation could be useful in promoting MX activity in treating alopecia areata.
Collapse
|
22
|
Diallyl Trisulfide, the Antifungal Component of Garlic Essential Oil and the Bioactivity of Its Nanoemulsions Formed by Spontaneous Emulsification. Molecules 2021; 26:molecules26237186. [PMID: 34885768 PMCID: PMC8658937 DOI: 10.3390/molecules26237186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to evaluate the chemical compounds of garlic essential oil (EO), and determine the antifungal efficacy of garlic EO and its major components, diallyl trisulfide and its nanoemulsions against wood-rotting fungi, Trametes hirsuta and Laetiporus sulphureus. GC-MS analysis revealed that the major constituents of garlic EO were diallyl trisulfide (39.79%), diallyl disulfide (32.91%), and diallyl sulfide (7.02%). In antifungal activity, the IC50 value of garlic EO against T. hirsuta and L. sulphureus were 137.3 and 44.6 μg/mL, respectively. Results from the antifungal tests demonstrated that the three major constituents were shown to have good antifungal activity, in which, diallyl trisulfide was the most effective against T. hirsuta and L. sulphureus, with the IC50 values of 56.1 and 31.6 μg/mL, respectively. The diallyl trisulfide nanoemulsions showed high antifungal efficacy against the examined wood-rotting fungi, and as the amount of diallyl trisulfide in the lipid phase increases, the antifungal efficacy of the nanoemulsions increases. These results showed that the nanoemulsions and normal emulsion of diallyl trisulfide have potential to develop into a natural wood preservative.
Collapse
|
23
|
Faghihi T, Haghgoo R, Taghizade F, Zareiyan M, Mehran M, Ansari G. The clinical and radiographic evaluation of Allium sativum oil (garlic oil) in comparison with mineral trioxide aggregate in primary molar pulpotomy. Dent Res J (Isfahan) 2021; 18:100. [PMID: 35003565 PMCID: PMC8672128 DOI: 10.4103/1735-3327.330881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 03/16/2021] [Accepted: 05/25/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Mineral trioxide aggregate (MTA) is known as a common biomaterial for pulpotomy of primary molars, with limitation including high cost, difficult handling, and long setting time. This study was conducted to compare the clinical and radiographic success rate of Allium sativum oil and MTA in pulpotomy of primary molar teeth. MATERIALS AND METHODS This randomized, controlled, clinical trial was performed on a group of children with at least two symptom-free primary molars requiring pulpotomy. A total of 90 teeth were randomly assigned into two groups: After pulp amputation and hemostasis, Group I received MTA as medication in the pulp chamber and Group II received Allium sativum oil over the pulp stumps. Pulp chamber was then filled with reinforced ZOE paste (zinc oxide eugenol) and teeth were restored using stainless steel crowns. The follow-up scheme of 6, 12, and 18 months was set, and teeth evaluation was conducted by a calibrated pediatric dentist based on the modified criteria proposed by Zurn and Seale. The results were analyzed using the generalized estimating equation analysis with the P = 0.05 as the level of significance. RESULTS The clinical success rate was 100% in both groups after all follow-ups. The radiographic success rate was, however, 91.1% after 6.75. 6% after 12 and 18 months in Group II while it was 95.6% after 6, 91.1% after 12 and 18 months in Group I in those follow-up points. The difference between the two groups was not statistically significant. CONCLUSION According to the results, Allium sativum oil has a high clinical and radiographic success rate comparable to those of MTA.
Collapse
Affiliation(s)
- Taraneh Faghihi
- Department of Pediatric Dentistry, Faculty of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Roza Haghgoo
- Department of Pediatric Dentistry, Faculty of Dentistry, Shahed University, Tehran, Iran
| | - Fateme Taghizade
- Department of Pediatric Dentistry, Faculty of Dentistry, Shahed University, Tehran, Iran
| | - Mehrshad Zareiyan
- Department of Pediatric Dentistry, Faculty of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Majid Mehran
- Department of Pediatric Dentistry, Faculty of Dentistry, Shahed University, Tehran, Iran
| | - Ghassem Ansari
- Department of Pediatric Dentistry, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Biological Functions of Diallyl Disulfide, a Garlic-Derived Natural Organic Sulfur Compound. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5103626. [PMID: 34745287 PMCID: PMC8570849 DOI: 10.1155/2021/5103626] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/15/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023]
Abstract
Garlic is widely accepted as a functional food and an excellent source of pharmacologically active ingredients. Diallyl disulfide (DADS), a major bioactive component of garlic, has several beneficial biological functions, including anti-inflammatory, antioxidant, antimicrobial, cardiovascular protective, neuroprotective, and anticancer activities. This review systematically evaluated the biological functions of DADS and discussed the underlying molecular mechanisms of these functions. We hope that this review provides guidance and insight into the current literature and enables future research and the development of DADS for intervention and treatment of multiple diseases.
Collapse
|
25
|
Xuan G, Lv C, Xu H, Li K, Liu H, Xia Y, Xun L. Sulfane Sulfur Regulates LasR-Mediated Quorum Sensing and Virulence in Pseudomonas aeruginosa PAO1. Antioxidants (Basel) 2021; 10:antiox10091498. [PMID: 34573130 PMCID: PMC8469610 DOI: 10.3390/antiox10091498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/10/2021] [Accepted: 09/18/2021] [Indexed: 12/18/2022] Open
Abstract
Sulfane sulfur, such as inorganic and organic polysulfide (HSn- and RSn-, n > 2), is a common cellular component, produced either from hydrogen sulfide oxidation or cysteine metabolism. In Pseudomonas aeruginosa PAO1, LasR is a quorum sensing master regulator. After binding its autoinducer, LasR binds to its target DNA to activate the transcription of a suite of genes, including virulence factors. Herein, we report that the production of hydrogen sulfide and sulfane sulfur were positively correlated in P. aeruginosa PAO1, and sulfane sulfur was able to modify LasR, which generated Cys188 persulfide and trisulfide and produced a pentasulfur link between Cys201 and Cys203. The modifications did not affect LasR binding to its target DNA site, but made it several-fold more effective than unmodified LasR in activating transcription in both in vitro and in vivo assays. On the contrary, H2O2 inactivates LasR via producing a disulfide bond between Cys201 and Cys203. P. aeruginosa PAO1 had a high cellular sulfane sulfur and high LasR activity in the mid log phase and early stationary phase, but a low sulfane sulfur and low LasR activity in the declination phase. Thus, sulfane sulfur is a new signaling factor in the bacterium, adding another level of control over LasR-mediated quorum sensing and turning down the activity in old cells.
Collapse
Affiliation(s)
- Guanhua Xuan
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Chuanjuan Lv
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Huangwei Xu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Kai Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
- Correspondence: (Y.X.); (L.X.); Tel.: +86-532-5863-1572 (Y.X.); +1-509-335-2787 (L.X.)
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China; (G.X.); (C.L.); (H.X.); (K.L.); (H.L.)
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
- Correspondence: (Y.X.); (L.X.); Tel.: +86-532-5863-1572 (Y.X.); +1-509-335-2787 (L.X.)
| |
Collapse
|
26
|
Bastaki SMA, Ojha S, Kalasz H, Adeghate E. Chemical constituents and medicinal properties of Allium species. Mol Cell Biochem 2021; 476:4301-4321. [PMID: 34420186 DOI: 10.1007/s11010-021-04213-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
Allium species, belonging to Alliaceae family, are among the oldest cultivated vegetables used as food. Garlic, onions, leeks and chives, which belong to this family, have been reported to have medicinal properties. The Allium species constituents have been shown to have antibacterial and antioxidant activities, and, in addition, other biological properties. These activities are related to their rich organosulfur compounds. These organosulfur compounds are believed to prevent the development of cancer, cardiovascular, neurological, diabetes, liver diseases as well as allergy and arthritis. There have also been reports on toxicities of these compounds. The major active compounds of Allium species includes, diallyl disulfide, diallyl trisulfide, diallyl sulfide, dipropyl disulfide, dipropyl trisulfide, 1-propenylpropyl disulfide, allyl methyl disulfide and dimethyl disulfide. The aim of this review is to focus on a variety of experimental and clinical reports on the effectiveness, toxicities and possible mechanisms of actions of the active compounds of garlic, onions, leek and chives.
Collapse
Affiliation(s)
- Salim M A Bastaki
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE
| | - Huba Kalasz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1445 Budapest, Hungary
| | - E Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, UAE
| |
Collapse
|
27
|
Cuchet A, Anchisi A, Telouk P, Yao Y, Schiets F, Fourel F, Clément Y, Lantéri P, Carénini E, Jame P, Casabianca H. Multi-element (13C, 2H and 34S) bulk and compound-specific stable isotope analysis for authentication of Allium species essential oils. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Diallyl disulfide, the antibacterial component of garlic essential oil, inhibits the toxicity of Bacillus cereus ATCC 14579 at sub-inhibitory concentrations. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
29
|
Bhatwalkar SB, Mondal R, Krishna SBN, Adam JK, Govender P, Anupam R. Antibacterial Properties of Organosulfur Compounds of Garlic ( Allium sativum). Front Microbiol 2021; 12:613077. [PMID: 34394014 PMCID: PMC8362743 DOI: 10.3389/fmicb.2021.613077] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Garlic (Allium sativum), a popular food spice and flavoring agent, has also been used traditionally to treat various ailments especially bacterial infections for centuries in various cultures around the world. The principal phytochemicals that exhibit antibacterial activity are oil-soluble organosulfur compounds that include allicin, ajoenes, and allyl sulfides. The organosulfur compounds of garlic exhibit a range of antibacterial properties such as bactericidal, antibiofilm, antitoxin, and anti-quorum sensing activity against a wide range of bacteria including multi-drug resistant (MDR) strains. The reactive organosulfur compounds form disulfide bonds with free sulfhydryl groups of enzymes and compromise the integrity of the bacterial membrane. The World Health Organization (WHO) has recognized the development of antibiotic resistance as a global health concern and emphasizes antibiotic stewardship along with the urgent need to develop novel antibiotics. Multiple antibacterial effects of organosulfur compounds provide an excellent framework to develop them into novel antibiotics. The review provides a focused and comprehensive portrait of the status of garlic and its compounds as antibacterial agents. In addition, the emerging role of new technologies to harness the potential of garlic as a novel antibacterial agent is discussed.
Collapse
Affiliation(s)
- Sushma Bagde Bhatwalkar
- Department of Biotechnology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Rajesh Mondal
- Indian Council of Medical Research, Bhopal Memorial Hospital & Research Centre, Bhopal, India
| | - Suresh Babu Naidu Krishna
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban, South Africa
| | - Jamila Khatoon Adam
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban, South Africa
| | - Patrick Govender
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rajaneesh Anupam
- Department of Biotechnology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
30
|
Mixing Oil-Based Microencapsulation of Garlic Essential Oil: Impact of Incorporating Three Commercial Vegetable Oils on the Stability of Emulsions. Foods 2021; 10:foods10071637. [PMID: 34359508 PMCID: PMC8305996 DOI: 10.3390/foods10071637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/28/2022] Open
Abstract
The active components in garlic essential oil are easily degradable, which limits its application in the food industry. Vegetable oils (VOs) were used to improve the stability of garlic essential oil (GEO) emulsion. The volatile compounds of GEO and its mixtures with vegetable oils (VOs), including corn oil (CO), soybean oil (SO), and olive oil (OO) indicated that GEO-VO mixtures had a higher percentage of Diallyl disulfide and Diallyl trisulfide than pure GEO. Adding an appropriate amount of VOs promoted the GEO emulsion (whey protein concentrate and inulin as the wall materials) stability in order of CO > SO > OO. Evaluation of the encapsulation efficiency, controlled release, and antimicrobial activity of GEO-VO microcapsules showed that the GEO was successfully entrapped and slowly released with active antibacterial activities on both E. coli and S. aureus. Collectively, these results implied that VOs, especially for 20% CO, improved the stability of GEO emulsions and the encapsulation efficiency of GEO microcapsules. The mechanism might be related to (1) the regulating effect of density difference between oil and water phases on prevention to gravitational separation, (2) the promotion to the compatibility of GEO and VOs to inhibit the phase separation caused by Ostwald ripening.
Collapse
|
31
|
Youssef AM, El-Sayed HS, El-Nagar I, El-Sayed SM. Preparation and characterization of novel bionanocomposites based on garlic extract for preserving fresh Nile tilapia fish fillets. RSC Adv 2021; 11:22571-22584. [PMID: 35480459 PMCID: PMC9034308 DOI: 10.1039/d1ra03819b] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/19/2021] [Indexed: 01/11/2023] Open
Abstract
In this paper we describe the preparation of a new bionanocomposite based on carboxymethyl cellulose (CMC), Arabic gum (AG) and gelatin (GL), incorporating garlic extract (GE) and TiO2 nanoparticles (TiO2-NPs). The prepared bionanocomposites were evaluated using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Energy Dispersive X-ray Analysis (EDX), and scanning electron microscopy (SEM), and were evaluated for their antimicrobial effect. The permeability and thermal and mechanical properties of the films were assessed. The water vapor transmission rate (WVTR), oxygen transmission rate (OTR), and mechanical, thermal and antimicrobial properties of the prepared bionanocomposite films were enhanced by the addition of GE and TiO2-NPs. The effects of GE and TiO2-NPs in combination incorporated into a CMC/AG/GL blend as an edible coating on the quality of fresh Nile tilapia fish fillets during refrigerated storage were evaluated. The microbiological status and weight loss of fresh Nile tilapia fish fillets were periodically tested for 21 days during storage at 4 °C. The results indicated that GE combined with TiO2-NPs has a synergistic influence on the enhancement of the preservation properties of CMC/AG/GL/GE–TiO2 bionanocomposites for refrigerated tilapia fish fillets, which could control microbial growth, and decrease weight loss during the storage of tilapia fish fillets. In current work a new bionanocomposite based on carboxymethyl cellulose, Arabic gum and gelatin, incorporating garlic extract and TiO2 nanoparticles as an edible coating for preserving the fresh Nile tilapia fish fillets during cold storage.![]()
Collapse
Affiliation(s)
- Ahmed M Youssef
- Packaging Materials Department, National Research Centre 33 El Bohouth St. (former El Tahrir St.), Dokki Giza 12622 Egypt +20 33370931 +20 33322418
| | - Hoda S El-Sayed
- Dairy Science Department, National Research Centre 33 El Bohouth St. (former El Tahrir St.), Dokki Giza 12622 Egypt
| | - Islam El-Nagar
- Packaging Materials Department, National Research Centre 33 El Bohouth St. (former El Tahrir St.), Dokki Giza 12622 Egypt +20 33370931 +20 33322418
| | - Samah M El-Sayed
- Dairy Science Department, National Research Centre 33 El Bohouth St. (former El Tahrir St.), Dokki Giza 12622 Egypt
| |
Collapse
|
32
|
Antimicrobial Effect and the Mechanism of Diallyl Trisulfide against Campylobacter jejuni. Antibiotics (Basel) 2021; 10:antibiotics10030246. [PMID: 33801353 PMCID: PMC7999961 DOI: 10.3390/antibiotics10030246] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
Campylobacter jejuni is an important foodborne pathogen causing campylobacteriosis. It can infect humans through the consumption of contaminated chicken products or via the direct handling of animals. Diallyl trisulfide (DATS) is a trisulfide compound from garlic extracts that has a potential antimicrobial effect on foodborne pathogens. This study investigated the antimicrobial activity of DATS on C. jejuni by evaluating the minimal inhibitory concentrations (MICs) of C. jejuni 81-168, and fourteen C. jejuni isolates from chicken carcasses. Thirteen of 14 C. jejuni isolates and 81-176 had MICs ≤ 32 μg/mL, while one isolate had MIC of 64 μg/mL. Scanning electron microscopy (SEM) analysis showed the disruption and shrink of C. jejuni bacterial cell membrane after the DATS treatment. A time-killing analysis further showed that DATS had a dose-dependent in vitro antimicrobial effect on C. jejuni during the 24 h treatment period. In addition, DATS also showed an antimicrobial effect in chicken through the decrease of C. jejuni colony count by 1.5 log CFU/g (cloacal sample) during the seven-day DATS treatment period. The transcriptional analysis of C. jejuni with 16 μg/mL (0.5× MIC) showed 210 differentially expression genes (DEGs), which were mainly related to the metabolism, bacterial membrane transporter system and the secretion system. Fourteen ABC transporter-related genes responsible for bacterial cell homeostasis and oxidative stress were downregulated, indicating that DATS could decrease the bacterial ability to against environmental stress. We further constructed five ABC transporter deletion mutants according to the RNA-seq analysis, and all five mutants proved less tolerant to the DATS treatment compared to the wild type by MIC test. This study elucidated the antimicrobial activity of DATS on C. jejuni and suggested that DATS could be used as a potential antimicrobial compound in the feed and food industry.
Collapse
|
33
|
Li WR, Zeng TH, Yao JW, Zhu LP, Zhang ZQ, Xie XB, Shi QS. Diallyl sulfide from garlic suppresses quorum-sensing systems of Pseudomonas aeruginosa and enhances biosynthesis of three B vitamins through its thioether group. Microb Biotechnol 2020; 14:677-691. [PMID: 33377615 PMCID: PMC7936293 DOI: 10.1111/1751-7915.13729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 01/06/2023] Open
Abstract
Diallyl sulfide (DAS) and diallyl disulfide (DADS), two constituents of garlic, can inhibit quorum sensing (QS) systems of Pseudomonas aeruginosa. However, the differences in the mechanism of QS inhibition between DAS and DADS, and the functional chemical groups of these sulfides that contribute in QS inhibition have not been elucidated yet. We assumed that the sulfide group might play a key role in QS inhibition. To prove this hypothesis and to clarify these unsolved problems, in this study, we synthesized diallyl ether (DAE), and compared and investigated the effects of DAS and DAE on the growth and production of virulence factors, including Pseudomonas quinolone signal (PQS), elastase and pyocyanin, of P. aeruginosa PAO1. Transcriptome analysis and qRT‐PCR were used to compare and analyse the differentially expressed genes between the different treatment groups (DAS, DAE and control). The results indicated that DAS did not affect the growth dynamics of P. aeruginosa PAO1; however, DAS inhibited transcription of most of the QS system genes, including lasR, rhlI/rhlR and pqsABCDE/pqsR; thus, biosynthesis of the signal molecules C4‐HSL (encoded by rhlI) and PQS (encoded by pqsABCDE) was inhibited. Furthermore, DAS inhibited the transcription of virulence genes regulated by the QS systems, including rhlABC, lasA, lasB, lecA and phzAB, phzDEFG, phzM and phzS that encode for rhamnolipid, exoprotease, elastase, lectin and pyocyanin biosynthesis respectively. DAS also enhanced the expression of the key genes involved in the biosynthesis of three B vitamins: folate, thiamine and riboflavin. In conclusion, DAS suppressed the production of some virulence factors toxic to the host and enhanced the production of some nutrition factors beneficial to the host. These actions of DAS may be due to its thioether group. These findings would be significant for development of an effective drug to control the virulence and pathogenesis of the opportunistic pathogen P. aeruginosa.
Collapse
Affiliation(s)
- Wen-Ru Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Tao-Hua Zeng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Jun-Wei Yao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Li-Ping Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Zhi-Qing Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiao-Bao Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qing-Shan Shi
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| |
Collapse
|
34
|
WITHDRAWN: Chemical Composition and Antibacterial Activity of the Essential Oil of Allium sativum L. from Morocco. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Inhibition of Bacillus cereus by garlic (Allium sativum) essential oil during manufacture of white sufu, a traditional Chinese fermented soybean curd. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Mancini S, Mattioli S, Nuvoloni R, Pedonese F, Dal Bosco A, Paci G. Effects of Garlic Powder and Salt on Meat Quality and Microbial Loads of Rabbit Burgers. Foods 2020; 9:foods9081022. [PMID: 32751777 PMCID: PMC7466223 DOI: 10.3390/foods9081022] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 01/09/2023] Open
Abstract
The aim of the research study was to evaluate the effects of a common culinary spice such as garlic powder and salt addition on the quality and microbial shelf life of rabbit meat burgers. Rabbit burgers were evaluated for pH, the colour parameters, the water holding capacity and microbial loads during storage time of seven days at 4 °C. Four different formulations of burgers (n = 180 in total) were tested as control samples (only meat, C), burgers with garlic powder (at 0.25%, G), burgers with salt (at 1.00%, S) and burgers with both garlic powder and salt (0.25% and 1.00%, respectively, GS). As results, it was highlighted that garlic powder and salt addition significant affected pH, water holding capacity and some colour parameters of burgers. In particular, salt affected the pH of the raw burgers, leading to lower values that partially influenced all the colour parameters with higher a* values of S burgers. The mix of garlic powder and salt (GS burgers) showed mixed effects even if more closed to the G burgers than S ones. Salt expressed its properties of binding water molecules reducing drip and cooking losses in S and GS burgers. No variations in microbial loads were highlighted in relation to the formulations. Storage time affected all the parameters, highlighting a deterioration of the burgers’ quality and an increase of the microbial loads.
Collapse
Affiliation(s)
- Simone Mancini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (R.N.); (F.P.); (G.P.)
- Correspondence:
| | - Simona Mattioli
- Department of Agricultural, Food and Environmental Science, University of Perugia, Borgo XX Giugno 74, 06100 Perugia, Italy; (S.M.); (A.D.B.)
| | - Roberta Nuvoloni
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (R.N.); (F.P.); (G.P.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Francesca Pedonese
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (R.N.); (F.P.); (G.P.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Alessandro Dal Bosco
- Department of Agricultural, Food and Environmental Science, University of Perugia, Borgo XX Giugno 74, 06100 Perugia, Italy; (S.M.); (A.D.B.)
| | - Gisella Paci
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (R.N.); (F.P.); (G.P.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
37
|
Controlled Fermentation Using Autochthonous Lactobacillus plantarum Improves Antimicrobial Potential of Chinese Chives against Poultry Pathogens. Antibiotics (Basel) 2020; 9:antibiotics9070386. [PMID: 32645847 PMCID: PMC7400581 DOI: 10.3390/antibiotics9070386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022] Open
Abstract
Chinese chives (CC) are rich in several antimicrobial constituents including organosulfur compounds, phenolics, and saponins, among others. Herein, we fermented CC juice using an autochthonous isolate, Lactobacillus plantarum having antimicrobial effects against poultry pathogens toward formulating an antimicrobial feed additive. Following 24 h of fermentation, the antimicrobial and antiviral activities of CC juice were significantly enhanced against poultry pathogens. However, the antioxidant activity of CC juice was significantly decreased following fermentation. Meanwhile, the compositional changes of CC juice following fermentation were also investigated. The total polyphenol, thiol, and allicin contents were significantly decreased in L. plantarum 24 h-fermented CC juice (LpCC) extract; however, total flavonoids increased significantly following fermentation. The untargeted metabolite profiling of nonfermented CC juice (NCC) and LpCC extracts was carried out using the ultra-high-performance liquid chromatography-linear trap quadrupole-orbitrap-tandem mass spectrometry (UHPLC-LTQ-Orbitrap-MS/MS) followed by multivariate analyses. The score plots of principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) based on UHPLC-LTQ-Orbitrap-MS/MS datasets displayed a clear segregation between the LpCC and NCC samples, which suggests their marked metabolomic disparity. Based on the multivariate analysis, we selected 17 significantly discriminant metabolites belonging to the different chemical classes including alkaloid, flavonols, saponins, fatty acids, amino acids, and organic acids. Notably, the flavonols including the glycosides of quercetin, kaempferol, and isorhamnetin as well as the saponins displayed significantly higher relative abundance in LpCC as compared with NCC. This study provides useful insights for the development of a fermented CC juice based antimicrobial feed additive to combat poultry infections.
Collapse
|
38
|
Mancini S, Mattioli S, Nuvoloni R, Pedonese F, Dal Bosco A, Paci G. Effects of garlic powder and salt additions on fatty acids profile, oxidative status, antioxidant potential and sensory properties of raw and cooked rabbit meat burgers. Meat Sci 2020; 169:108226. [PMID: 32599418 DOI: 10.1016/j.meatsci.2020.108226] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
Rabbit burgers were evaluated for fatty acids profile, oxidative status, antioxidant potential and sensory during storage time of seven days at 4 °C. The aim of the research study was to evaluate if a common culinary spice as garlic could overcome the controversy effects of salt (mostly related to a pro-oxidant effect). Therefore, four formulations were made: only meat (control, C) meat added with garlic powder at 0.25% (G), meat added with salt at 1.00% (S) and meat added with garlic powder (0.25%) and salt (1.00%) (GS). As results, it was highlighted that garlic powder was not capable to reduce significantly the negative effect related to the salt addition. Salt induced different modifications to burgers leading to a more liked product due to its properties to enhance sensory characteristics, on the other hand, induced different oxidation processes that could decrease the nutritional value. Further studies are needed to better elucidate if different garlic products/concentrations could apport higher beneficial effects.
Collapse
Affiliation(s)
- Simone Mancini
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, Pisa 56124, Italy.
| | - Simona Mattioli
- Department of Agricultural, Food and Environmental Science, University of Perugia, Borgo XX Giugno 74, Perugia 06100, Italy
| | - Roberta Nuvoloni
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, Pisa 56124, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Francesca Pedonese
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, Pisa 56124, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Alessandro Dal Bosco
- Department of Agricultural, Food and Environmental Science, University of Perugia, Borgo XX Giugno 74, Perugia 06100, Italy
| | - Gisella Paci
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, Pisa 56124, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| |
Collapse
|
39
|
Sut S, Maggi F, Bruno S, Badalamenti N, Quassinti L, Bramucci M, Beghelli D, Lupidi G, Dall’Acqua S. Hairy Garlic ( Allium subhirsutum) from Sicily (Italy): LC-DAD-MS n Analysis of Secondary Metabolites and In Vitro Biological Properties. Molecules 2020; 25:molecules25122837. [PMID: 32575531 PMCID: PMC7355662 DOI: 10.3390/molecules25122837] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Allium subhirsutum, known as hairy garlic, is a bulbous plant widespread in the Mediterranean area and locally used as a food and spice. In the present study, the chemical profile of the ethanolic extracts from bulbs (BE) and aerial parts (APE) were analyzed by HPLC-ESI-MSn, and antioxidant properties were evaluated by DPPH, ABTS and TEAC assays. The traditional use in the diet, and the well documented biological activity of Allium species suggest a potential as a new nutraceutical. For this reason, the potential usefulness of this food can be considered in the treatment and prevention of degenerative Alzheimer disease. For this reason, acetylcholinesterase inhibitory property was investigated. Furthermore, due to the observed presence of sulfur-containing and phenolic constituents, the cytotoxicity on tumor cells line was investigated. Results revealed significant AChE inhibitory activity for BE and APE. Both extracts exhibited also moderate antioxidant properties in the in vitro assays. Finally, limited cytotoxic activity was observed towards Human colon carcinoma and adenocarcinoma cell line, with differences between the individual parts tested. HPLC-ESI-MSn analysis showed that hairy garlic is a good source of sulphur compounds, flavonoids and phenylpropanoids derivatives, thus being a valid alternative to the common garlic (A. sativum). This work opens new opportunities for the application of A. subhirsutum as a health-promoting food.
Collapse
Affiliation(s)
- Stefania Sut
- Department of Agronomy Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Italy;
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, I-62032 Camerino, Italy; (F.M.); (L.Q.); (M.B.); (G.L.)
| | - Sara Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, IT-90128 Palermo, Italy; (S.B.); (N.B.)
| | - Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, IT-90128 Palermo, Italy; (S.B.); (N.B.)
| | - Luana Quassinti
- School of Pharmacy, University of Camerino, I-62032 Camerino, Italy; (F.M.); (L.Q.); (M.B.); (G.L.)
| | - Massimo Bramucci
- School of Pharmacy, University of Camerino, I-62032 Camerino, Italy; (F.M.); (L.Q.); (M.B.); (G.L.)
| | - Daniela Beghelli
- School of Biosciences and Veterinary Medicine, University of Camerino, I-62032 Camerino, Italy;
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, I-62032 Camerino, Italy; (F.M.); (L.Q.); (M.B.); (G.L.)
| | - Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35128 Padova, Italy
- Correspondence:
| |
Collapse
|
40
|
Cilia G, Fratini F, Tafi E, Turchi B, Mancini S, Sagona S, Nanetti A, Cerri D, Felicioli A. Microbial Profile of the Ventriculum of Honey Bee ( Apis mellifera ligustica Spinola, 1806) Fed with Veterinary Drugs, Dietary Supplements and Non-Protein Amino Acids. Vet Sci 2020; 7:E76. [PMID: 32517254 PMCID: PMC7357006 DOI: 10.3390/vetsci7020076] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 11/17/2022] Open
Abstract
The effects of veterinary drugs, dietary supplements and non-protein amino acids on the European honey bee (Apis mellifera ligustica Spinola, 1806) ventriculum microbial profile were investigated. Total viable aerobic bacteria, Enterobacteriaceae, staphylococci, Escherichia coli, lactic acid bacteria, Pseudomonas spp., aerobic bacterial endospores and Enterococcus spp. were determined using a culture-based method. Two veterinary drugs (Varromed® and Api-Bioxal®), two commercial dietary supplements (ApiHerb® and ApiGo®) and two non-protein amino acids (GABA and beta-alanine) were administered for one week to honey bee foragers reared in laboratory cages. After one week, E. coli and Staphylococcus spp. were significantly affected by the veterinary drugs (p < 0.001). Furthermore, dietary supplements and non-protein amino acids induced significant changes in Staphylococcus spp., E. coli and Pseudomonas spp. (p < 0.001). In conclusion, the results of this investigation showed that the administration of the veterinary drugs, dietary supplements and non-protein amino acids tested, affected the ventriculum microbiological profile of Apis mellifera ligustica.GABA; beta-alanine; oxalic acid; diet effect; microbiota.
Collapse
Affiliation(s)
- Giovanni Cilia
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (E.T.); (B.T.); (S.M.); (S.S.); (D.C.); (A.F.)
| | - Filippo Fratini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (E.T.); (B.T.); (S.M.); (S.S.); (D.C.); (A.F.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Elena Tafi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (E.T.); (B.T.); (S.M.); (S.S.); (D.C.); (A.F.)
- Department of Science, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Barbara Turchi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (E.T.); (B.T.); (S.M.); (S.S.); (D.C.); (A.F.)
| | - Simone Mancini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (E.T.); (B.T.); (S.M.); (S.S.); (D.C.); (A.F.)
| | - Simona Sagona
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (E.T.); (B.T.); (S.M.); (S.S.); (D.C.); (A.F.)
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Antonio Nanetti
- CREA Research Centre for Agriculture and Environment, Via di Saliceto 80, 40128 Bologna, Italy;
| | - Domenico Cerri
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (E.T.); (B.T.); (S.M.); (S.S.); (D.C.); (A.F.)
| | - Antonio Felicioli
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (E.T.); (B.T.); (S.M.); (S.S.); (D.C.); (A.F.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
41
|
Bin C, Al-Dhabi NA, Esmail GA, Arokiyaraj S, Arasu MV. Potential effect of Allium sativum bulb for the treatment of biofilm forming clinical pathogens recovered from periodontal and dental caries. Saudi J Biol Sci 2020; 27:1428-1434. [PMID: 32489278 PMCID: PMC7254026 DOI: 10.1016/j.sjbs.2020.03.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 11/14/2022] Open
Abstract
Biofilm producing clinical bacterial isolates were isolated from periodontal and dental caries samples and identified as, Lactobacillus acidophilus, Streptococcus sanguis, S. salivarius, S. mutansand Staphylococcus aureus. Among the identified bacterial species, S. aureus and S. mutansshowed strong biofilm producing capacity. The other isolated bacteria, Streptococcus sanguis, S. salivarius showed moderate biofilm formation. These pathogens were subjected for the production of extracellular polysaccharides (EPS) in nutrient broth medium and the strain S. aureus synthesized more amounts of EPS (610 ± 11.2 µg/ml) than S. sanguis (480 ± 5.8 µg/ml).EPS production was found to be less in S. salivarius (52 ± 3.8 µg/ml).The solvent extract of A. sativum bulb showed the phytochemicals such as, carbohydrate, total protein, alkaloids, saponins, flavonoids, tannins and sterioids. The solvent extract of A. sativum bulb showed wide ranges of activity against the selected dental pathogens. The difference in antibacterial activity of the solvent extract revealed differences in solubility of phytochemicals in organic solvents. Ethanol extract was highly active againstS. aureus (25 ± 2 mm). The Minimum Inhibitory Concentration (MIC) of crude garlic bulb varied widely and this clearly showed that bacteria exhibits different level of susceptibility to secondary metabolites. MIC value ranged between 20 ± 2 mg/ml and 120 ± 6 mg/ml and Minimum Bactericidal Concentration (MBC) value ranged from 60 ± 5 mg/l to 215 ± 7 mg/ml. To conclude, A. sativum bulb can be effectively used to treat periodontal and dental caries infections.
Collapse
Affiliation(s)
- Chen Bin
- Department of Stomatology, The Ninth People’S Hospital Of ChongQing, Beibei District, Chongqing 400700, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Galal Ali Esmail
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science and Technology, Sejong University, Republic of Korea
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
42
|
Abstract
With the increasing use of joint replacement surgery, the prevalence of periprosthetic joint infections (PJI) has also increased. However, treating PJI has become a challenge for orthopaedic surgeons because of the prevalence of multi-drug resistant (MDR) bacteria and the formation of protective biofilms. Numerous studies have shown that garlic extract (GE) has antibacterial activities and might be a good candidate for PJI treatment. This review explores the antibacterial and antibiofilm activities of GE and its potential to be used in the treatment of PJI.
Collapse
Affiliation(s)
- Xing-Yang Zhu
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China.,Department of Orthopaedics, Yichuan People's Hospital, Luoyang, Henan Province, China
| | - Yi-Rong Zeng
- Department of Orthopaedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
43
|
Panyod S, Wu WK, Lu KH, Liu CT, Chu YL, Ho CT, Hsiao WLW, Lai YS, Chen WC, Lin YE, Lin SH, Wu MS, Sheen LY. Allicin Modifies the Composition and Function of the Gut Microbiota in Alcoholic Hepatic Steatosis Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3088-3098. [PMID: 32050766 DOI: 10.1021/acs.jafc.9b07555] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The intestinal microbiome plays an important role in the pathogenesis of liver diseases. Alcohol intake induces gut microbiota dysbiosis and alters its function. This study investigated the antibiotic effect of allicin in mice with hepatic steatosis. Male C57BL/6 mice were administered an ethanol diet supplemented with allicin (5 and 20 mg/(kg bw day)) for 4 weeks. Allicin modified the gut microbiota composition. Cecal microbiota exhibited a positive correlation with alcohol and hepatic triacylglycerol, but were suppressed with allicin. Ethanol diet with 5 mg of allicin induced a lower intestinal permeability compared to the ethanol diet alone. Allicin mediated the lipopolysaccharide (LPS)-CD14-toll-like receptor 4 (TLR4)-induced hepatic inflammation pathway by reducing LPS, CD14, TLR4, and pro-inflammatory cytokines-tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6. However, hepatic inflammation primarily resulted from alcohol toxicity rather than LPS production in the gut. The prediction of functional profiles from metagenomic 16S ribosomal RNA (rRNA) data revealed different functional profiles in each group. The predicted aldehyde dehydrogenase tended to increase in alcoholic mice administered allicin. The predicted LPS-related pathway and LPS biosynthesis protein results exhibited a similar trend as plasma LPS levels. Thus, alcohol and allicin intake shapes the gut microbiota and its functional profile and improves the CD14-TLR4 pathway to alleviate inflammation in the liver.
Collapse
Affiliation(s)
- Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Kai Wu
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital Bei-Hu Branch, Taipei 10800, Taiwan
| | - Kuan-Hung Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Ting Liu
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu 30062, Taiwan
| | - Yung-Lin Chu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Wen-Luan Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Yi-Syuan Lai
- Department of Hospitality Management, Yu Da University of Science and Technology, Miaoli 36143, Taiwan
| | - Wei-Cheng Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-En Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Shi-Hang Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Center for Food and Biomolecules, National Taiwan University, Taipei 10617, Taiwan
- National Center for Food Safety Education and Research, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
44
|
Guerrero A, Ferrero S, Barahona M, Boito B, Lisbinski E, Maggi F, Sañudo C. Effects of active edible coating based on thyme and garlic essential oils on lamb meat shelf life after long-term frozen storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:656-664. [PMID: 31577841 DOI: 10.1002/jsfa.10061] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND The frozen preservation of lamb meat could be crucial for successful international trade. The shelf life of thawed meat is shorter than that of fresh meat, so techniques or procedures are required to improve post-thawing meat quality attributes. This study investigated the effect of alginate-based edible coatings after the incorporation of essential oils of thyme (Thymus vulgaris L.) and garlic (Allium sativum L.) on thawed lamb meat (longissimus thoracis et lumborum muscle) quality after long-term frozen storage. Meat samples came from ten light lambs and the evolution of attributes related to shelf life, such as water-holding capacity, color stability, and lipid oxidation, was monitored during display (1, 4 and 7 days). Four meat treatments were evaluated: control (CON, uncoated meat), edible coat of alginate meat (ECA), and ECA with thyme or garlic essential oils (0.05%) (THY and GAR). RESULTS The alginate-based edible coatings decreased exudative losses (P < 0.001) and modified color characteristics, especially increasing yellowness (P < 0.001) and chrome (P < 0.001). GAR decreased redness (P < 0.001) and the oxy/met ratio [R (630/580) wavelength light reflectance] or discoloration [R (630-580)]. THY was the treatment that best retained color during display and also showed a significantly lower lipid oxidation (P < 0.05) than CON and ECA, whereas GAR presented intermediate values. CONCLUSION The addition of bioactive essential oils to alginate-based edible coatings improved preservation and shelf life of lamb meat after thawing. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ana Guerrero
- Department of Animal Production and Food Science, Instituto Agroalimentario de Aragón- IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Sofía Ferrero
- Department of Animal Production and Food Science, Instituto Agroalimentario de Aragón- IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Marta Barahona
- Department of Animal Production and Food Science, Instituto Agroalimentario de Aragón- IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Bruna Boito
- Department of Animal Production and Food Science, Instituto Agroalimentario de Aragón- IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Eduardo Lisbinski
- Department of Animal Production and Food Science, Instituto Agroalimentario de Aragón- IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Carlos Sañudo
- Department of Animal Production and Food Science, Instituto Agroalimentario de Aragón- IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| |
Collapse
|
45
|
Sun HY, Kim IH. Effect of yeast culture (Saccharomyces cerevisiae) and garlic (Allium sativum) product mixture on growth performance, nutrient digestibility, faecal microflora, faecal noxious-gas emission and meat quality in finishing pigs. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an18722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Dietary supplementation with a single feed additive or a combination of different feed additives as growth promoters has been researched extensively. However, few studies have tested the combined use of probiotics (yeast culture) and phytogenics (garlic products) in pigs.
Aims
The present study was conducted to evaluate the effect of supplementation of a mixture of yeast culture, garlic extract and garlic essential oil (YGM) on growth performance, nutrient digestibility, faecal microflora, faecal noxious-gas emission and meat quality in finishing pigs.
Methods
Two hundred [(Landrace×Yorkshire)×Duroc] finishing pigs (50.37 ± 1.89 kg) were randomly allotted into two dietary treatments on the basis of bodyweight (BW) and sex for a 10-week feeding trial. Dietary treatments consisted of a basal diet (CON) and CON containing 0.1% of YGM. The YGM was composed of 54.5% of yeast culture, 40% of garlic extract powder and 5.5% of garlic essential oil. There were 20 replicated pens per treatment, with five pigs (3 barrows and 2 gilts) per pen. Pig BW was measured at the beginning and at the end of the experiment. Feed consumption was recorded daily during the experiment, on a pen basis, to calculate average daily gain (ADG).
Key results
Dietary YGM supplementation resulted in a higher (P < 0.05) final BW and ADG than in the control groups. Pigs fed YGM supplementation diet led to a higher (P < 0.05) digestibility of dry matter (DM) than in CON. The emission of hydrogen sulfide gas from faeces was significantly (P < 0.05) decreased in pigs fed YGM diets; however, ammonia and total mercaptan emissions were not influenced. There were no differences in meat-quality parameters between the two treatments.
Conclusions
Dietary YGM supplementation exerted beneficial effects on BW and ADG and DM digestibility, reduced hydrogen sulfide gas emission, and did not have any adverse effects on meat-quality parameters that are related to consumer acceptance.
Implications
The study has provided a basis and insight for future research on application of a combination of yeast culture, garlic extract and garlic essential oils, as an alternative to antibiotics in finishing pig diets.
Collapse
|
46
|
Ghajarbeygi P, Hajhoseini A, Hosseini MS, Sharifan A. An In Vitro and In Vivo Cholinesterase Inhibitory Activity of Pistacia khinjuk and Allium sativum Essential Oils. J Pharmacopuncture 2019; 22:231-238. [PMID: 31970020 PMCID: PMC6970573 DOI: 10.3831/kpi.2019.22.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/12/2019] [Accepted: 11/26/2019] [Indexed: 01/16/2023] Open
Abstract
Objectives Alzheimer’s disease (AD), an overwhelming neurodegenerative disease, has deleterious effects on the brain that consequently causes memory loss and language impairment. This study was intended to investigate the neuroprotective activity of the two essential oils (EOs) from Iranian Pistacia khinjuk (PK) leaves and Allium sativum (AS) cloves against β-Amyloid 25–35 (Aβ25-35) induced elevation of cholinesterase enzymes in AD. Methods The EOs of PK (PKEO) and AS (ASEO) were prepared and analyzed in terms of extraction yield, phenolic content, and cholinergic markers in vitro. Moreover, both were administered orally to adult male Wistar rats at concentrations of 1, 2, and 3%. The inhibitory potential of PKEO and ASEO was compared with Donepezil (0.75 mg/kg) against the high activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Results PKEO reached an inhibition rate of 83.6% and 81.4% against AChE and BChE, respectively. ASEO had lower anti-cholinesterase activity (65.4% and 31.5% for the inhibition AChE and BChE). PKEO was found to have more phenolic content than ASEO. A significantly positive correlation was observed between the total phenolics and anti-cholinesterase potential. In rats, both EOs decreased the enzyme activity in a concentration-dependent manner. As compared with Donepezil, the significant difference in the AChE and BChE inhibition occurred as rats were treated with PKEO 3% (p < 0.05). Conclusion It could be concluded that PKEO and ASEO are potent inhibitors of AChE and BChE in rats that hold promise to be used for the treatment of AD.
Collapse
Affiliation(s)
- Peyman Ghajarbeygi
- Health Products Safety Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ashraf Hajhoseini
- Health Products Safety Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Motahare-Sadat Hosseini
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Anoosheh Sharifan
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
47
|
Alirezaei S, Godarzi H, Moezi ghadim N, Maheri A. Antimicrobial Activity of Aqueous Garlic Extract (Allium sativum) Against Porphyromonas gingivalis: An In-Vitro Study. JOURNAL OF RESEARCH IN DENTAL AND MAXILLOFACIAL SCIENCES 2019. [DOI: 10.29252/jrdms.4.4.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
48
|
Kahvand M, Mehran M, Haghgoo R, Faghihi T. Clinical and Radiographic Evaluation of Allium sativum Oil (Garlic Oil) in Comparison with Formocresol in Primary Molar Pulpotomy. J Int Soc Prev Community Dent 2019; 9:390-395. [PMID: 31516873 PMCID: PMC6714413 DOI: 10.4103/jispcd.jispcd_145_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Given the side effects of formocresol as a common substance in dental pulpotomy, its substitution with a safe substance seems mandatory. AIM To compare the clinical and radiographic success of Allium sativum oil and formocresol in the pulpotomy of the primary molars. MATERIALS AND METHODS A randomized, split-mouth, double-blind, controlled clinical trial was conducted on children with at least two asymptomatic primary molars requiring pulpotomy. A total of 90 teeth were examined in this study. They were randomly divided into two groups: the A. sativum (ALL) group (n = 45) and the formocresol (FC) group (n = 45). After pulpotomy, A. sativum oil was applied to the radicular pulp in the ALL groups and formocresol in the FC group. The pulp chamber was then filled with reinforced Zinc oxide Eugenol and finally restored by a stainless steel crown. Three and six months after the intervention, the teeth were evaluated by a colleague based on a modified criteria system. The results were analyzed using Wilcoxon's test. RESULTS The clinical success rate was 100% in both groups after 3 and 6 months. The radiographic success rate in the ALL group and the FC group after 3 and 6 months was 82.2% and 80% and 88.9% and 84.4%, respectively. The difference between the two groups was not statistically significant (P = 0.46). CONCLUSION According to the results of this study, A. sativum oil can be used in the pulpotomy of the primary molars.
Collapse
Affiliation(s)
- Mehrdad Kahvand
- Department of Pediatric Dentistry, Qom Dental University, Qom, Iran
| | - Majid Mehran
- Department of Pediatric Dentistry, Dental School, Shahed University, Tehran, Iran
| | - Roza Haghgoo
- Department of Pediatric Dentistry, Dental School, Shahed University, Tehran, Iran
| | - Taraneh Faghihi
- Department of Pediatric Dentistry, Dental School, Shahed University, Tehran, Iran
| |
Collapse
|
49
|
Schepetkin IA, Kirpotina LN, Khlebnikov AI, Balasubramanian N, Quinn MT. Neutrophil Immunomodulatory Activity of Natural Organosulfur Compounds. Molecules 2019; 24:molecules24091809. [PMID: 31083328 PMCID: PMC6539273 DOI: 10.3390/molecules24091809] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/29/2022] Open
Abstract
Organosulfur compounds are bioactive components of garlic essential oil (EO), mustard oil, Ferula EOs, asafoetida, and other plant and food extracts. Traditionally, garlic (Allium sativum) is used to boost the immune system; however, the mechanisms involved in the putative immunomodulatory effects of garlic are unknown. We investigated the effects of garlic EO and 22 organosulfur compounds on human neutrophil responses. Garlic EO, allyl propyl disulfide, dipropyl disulfide, diallyl disulfide, and allyl isothiocyanate (AITC) directly activated Ca2+ flux in neutrophils, with the most potent being AITC. Although 1,3-dithiane did not activate neutrophil Ca2+ flux, this minor constituent of garlic EO stimulated neutrophil reactive oxygen species (ROS) production. In contrast, a close analog (1,4-dithiane) was unable to activate neutrophil ROS production. Although 1,3-dithiane-1-oxide also stimulated neutrophil ROS production, only traces of this oxidation product were generated after a 5 h treatment of HL60 cells with 1,3-dithiane. Evaluation of several phosphatidylinositol-3 kinase (PI3K) inhibitors with different subtype specificities (A-66, TGX 221, AS605240, and PI 3065) showed that the PI3K p110δ inhibitor PI 3065 was the most potent inhibitor of 1,3-dithiane-induced neutrophil ROS production. Furthermore, 1,3-dithiane enhanced the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), glycogen synthase kinase 3 α/β (GSK-3α/β), and cAMP response element binding (CREB) protein in differentiated neutrophil-like HL60 cells. Density functional theory (DFT) calculations confirmed the reactivity of 1,3-dithiane vs. 1,4-dithiane, based on the frontier molecular orbital analysis. Our results demonstrate that certain organosulfur compounds can activate neutrophil functional activity and may serve as biological response modifiers by augmenting phagocyte functions.
Collapse
Affiliation(s)
- Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| | - Andrei I Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia.
- Faculty of Chemistry, National Research Tomsk State University, Tomsk 634050, Russia.
| | | | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
50
|
Mancini S, Nuvoloni R, Pedonese F, Paci G. Effects of garlic powder and salt additions in rabbit meat burgers: Preliminary evaluation. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Simone Mancini
- Department of Veterinary Science University of Pisa Pisa Italy
| | - Roberta Nuvoloni
- Department of Veterinary Science University of Pisa Pisa Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health” University of Pisa Pisa Italy
| | - Francesca Pedonese
- Department of Veterinary Science University of Pisa Pisa Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health” University of Pisa Pisa Italy
| | - Gisella Paci
- Department of Veterinary Science University of Pisa Pisa Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health” University of Pisa Pisa Italy
| |
Collapse
|