1
|
Nivetha S, Asha KRT, Srinivasan S, Murali R, Kanagalakshmi A. p-Coumaric acid pronounced protective effect against potassium bromate-induced hepatic damage in Swiss albino mice. Cell Biochem Funct 2024; 42:e4076. [PMID: 38895919 DOI: 10.1002/cbf.4076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Potassium bromate (KBrO3) is a common dietary additive, pharmaceutical ingredient, and significant by-product of water disinfection. p-coumaric acid (PCA) is a naturally occurring nutritional polyphenolic molecule with anti-inflammatory and antioxidant activities. The goal of the current investigation was to examine the protective effects of p-coumaric acid against the liver damage caused by KBrO3. The five groups of animals-control, KBrO3 (100 mg/kg bw), treatment with KBrO3 along with Silymarin (100 mg/kg bw), KBrO3, followed by PCA (100 mg/bw, and 200 mg/kg bw) were randomly assigned to the animals. Mice were slaughtered, and blood and liver tissues were taken for assessment of the serum biochemical analysis for markers of liver function (alanine transaminase, aspartate transaminase, alkaline phosphatase, albumin, and protein), lipid markers and antioxidant markers (TBARS), glutathione peroxidase [GSH-Px], glutathione (GSH), and markers of hepatic oxidative stress (CAT), (SOD), as well as histological H&E stain, immunohistochemical stain iNOS, and COX-2 as markers of inflammatory cytokines. PCA protects against acute liver failure by preventing the augmentation of blood biochemical markers and lipid profiles. In mice liver tissues, KBrO3 increases lipid indicators and depletes antioxidants, leading to an increase in JNK, ERK, and p38 phosphorylation. Additionally, PCA inhibited the production of pro-inflammatory cytokines and reduced the histological alterations in KBrO3-induced hepatotoxicity. Notably, PCA effectively mitigated KBrO3-induced hepatic damage by obstructing the TNF-α/NF-kB-mediated inflammatory process signaling system. Additionally, in KBrO3-induced mice, PCA increased the intensities of hepatic glutathione (GSH), SOD, GSH-Px, catalase, and GSH activities. Collectively, we demonstrate the molecular evidence that PCA eliminated cellular inflammatory conditions, mitochondrial oxidative stress, and the TNF-α/NF-κB signaling process, thereby preventing KBrO3-induced hepatocyte damage.
Collapse
Affiliation(s)
- Selvaraj Nivetha
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
- Department of Biochemistry, Government Arts College, Paramakudi, India
| | | | - Subramani Srinivasan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
- Department of Biochemistry, Government Arts College for Women, Krishnagiri, India
| | - Raju Murali
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
- Department of Biochemistry, Government Arts College for Women, Krishnagiri, India
| | - Ambothi Kanagalakshmi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
- Department of Biochemistry, Government Arts College for Women, Krishnagiri, India
| |
Collapse
|
2
|
Mahmoud AA, Zayed Mohamed M, Hassen EZ. Protective effects of Urtica dioica on the cerebral cortex damage induced by Potassium bromate in adult male albino rats. Ultrastruct Pathol 2024; 48:81-93. [PMID: 38017656 DOI: 10.1080/01913123.2023.2287664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Potassium bromate is used in cheese production, beer making and is also used in pharmaceutical and cosmetic. It is a proven carcinogen as it is a strong oxidizing agent that generates free radicals during xenobiotic metabolism. Urtica dioica (Ud) (from the plants' family of Urticaceae) is a plant that has long been used as a medicinal plant in many parts of the world. It has been shown to have anti-inflammatory, antioxidant and immunosuppressive properties. So, this study aimed to clarify the effect of Potassium bromate on the histological structure of cerebral cortex of adult male albino rats, evaluate the possible protective role of Urtica dioica. Thirty adult healthy male albino rats were divided into three groups; group I (Control group), group II (KBrO3 treated group). Group III (KBrO3 and Urtica dioica treated group).At the end of the experiment, rats in all groups were anesthetized and specimens were processed for light and electron microscope. Morphometric and statistical analyses were also performed. Nerve cells of the treated group showed irregular contours, dark nuclei, irregular nuclear envelopes, dilated RER cisternae, and mitochondria with ruptured cristae. Vacuolated neuropil was also observed. Immunohistochemically, stained sections for GFAP showed strong positive reaction in the processes of astrocytes. Recovery group showed revealed nearly the same as the histological picture as the control group. In conclusion, potassium bromate induces degenerative effects on neurons of cerebral cortex and urtica dioica provide an important neuroprotective effects against these damaging impacts through their antioxidant properties.
Collapse
Affiliation(s)
- Abeer A Mahmoud
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Maha Zayed Mohamed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ebtehal Z Hassen
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Nivetha S, Asha KRT, Srinivasan S, Murali R, Kanagalakshmi A. Hepatoprotective effect of p-Coumaric acid against KBrO 3 -induced apoptosis in HepG2 cells. Cell Biochem Funct 2023; 41:868-875. [PMID: 37573567 DOI: 10.1002/cbf.3837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
In the present study, we investigated the effect of the p-Coumaric acid (PCA), a phenolic acid, on potassium bromate (KBrO3 ) induced oxidative damage, Ras/Raf/MEK signaling, and apoptosis in HepG2 cells. Our findings showed that PCA-treated cells prevented cytotoxicity compared with KBrO3- treated cells. Furthermore, KBrO3 -induced oxidative stress and lipid peroxidation was attenuated by PCA and it also increased the antioxidant levels such as SOD, CAT, and GPX. Additionally, PCA inhibited the KBrO3 -induced DNA damage in HepG2 cells. Moreover, PCA treatment suppressed the activation of Ras/Raf/MEK signaling and increased the expression of PRDX-1. In addition, PCA prevented the KBrO3 -induced apoptosis cascade by altering the expression of proapoptotic, Bax, caspase-3, and antiapoptotic, Bcl-2 proteins. The present study proves that PCA inhibited the KBrO3 -induced oxidative stress, DNA damage, and apoptotic signaling cascade in HepG2 cells.
Collapse
Affiliation(s)
- Selvaraj Nivetha
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
- Department of Biochemistry, Government Arts College, Paramakudi, Tamil Nadu, India
| | | | - Subramani Srinivasan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
- Department of Biochemistry, Government Arts College for Women, Krishnagiri, Tamil Nadu, India
| | - Raju Murali
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
- Department of Biochemistry, Government Arts College for Women, Krishnagiri, Tamil Nadu, India
| | - Ambothi Kanagalakshmi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
- Department of Biochemistry, Government Arts College for Women, Krishnagiri, Tamil Nadu, India
| |
Collapse
|
4
|
Ncheuveu Nkwatoh T, Fon TP, Navti LK. Potassium bromate in bread, health risks to bread consumers and toxicity symptoms amongst bakers in Bamenda, North West Region of Cameroon. Heliyon 2023; 9:e13146. [PMID: 36747561 PMCID: PMC9898660 DOI: 10.1016/j.heliyon.2023.e13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
This study evaluated the occurrence of potassium bromate in bread, its overall health risks to bread consumers, and its toxicity symptoms amongst bakers in Bamenda. Thirteen bakeries were included in a cross-sectional survey to gather information about the quantities of bread produced and the symptoms of potassium-bromated toxicity experienced by bakers during baking. The concentration of potassium bromate in the most consumed bread types was determined using a spectrophotometric method. The hazard quotient and hazard ratio were computed for each bread type to determine its chemical and carcinogenic risks. Results showed that all bakers had experienced symptoms of potassium bromate toxicity, and painful eyes, cough, diarrhea, and sore throat were the most recurrent symptoms of toxicity. The concentration of potassium bromate in all bread samples (100%) ranged from 48.50 mg/kg to 10148.50 mg/kg, exceeding the maximum acceptable limits by 9-203 times the dose (50 mg/kg) recommended by Food and Drug Administration. There was no significant difference (p = 0.109) in potassium bromate concentration between bread types, and simple bread, milk bread, and French bread had the highest concentration of potassium bromate. The chronic hazard quotient ranged from 277.93 to 2459.36, and the hazard ratio ranged from 251434.30 to 32862.86, indicative of possible chemical and carcinogenic risks after prolonged regular consumption. From the hazard ratios, the chances of having cancer from an average daily consumption of either simple bread or milk bread, or French bread are approximately 290,000 in 1,000,000 or 220,000 in 1,000,000 or 190,000 in 1,000,000. Thus regulatory authorities need to monitor, control or prohibit the use of potassium bromate as a flour additive.
Collapse
Affiliation(s)
- Therese Ncheuveu Nkwatoh
- Department of Microbiology, Catholic University of Cameroon (CATUC), Bamenda P.O. 782, Big Mankon, Bamenda, North West Region, Cameroon
- Faculty of Agronomy and Agricultural Science, University of Dschang (CRESA Forêt-Bois), Cameroon
| | - Tayebatu Percline Fon
- Department of Biochemistry, Catholic University of Cameroon (CATUC), Bamenda P.O. 782, Big Mankon, Bamenda, North West Region, Cameroon
| | - Lifoter Kenneth Navti
- Department of Biochemistry, The University of Bamenda (UBa), P.O. Box 39, Bambili, North West Region, Cameroon
| |
Collapse
|
5
|
Abu-Taweel GM, Al-Mutary MG. Pomegranate juice reverses AlCl 3-Induced neurotoxicity and improves learning and memory in female mice. ENVIRONMENTAL RESEARCH 2021; 199:111270. [PMID: 33992638 DOI: 10.1016/j.envres.2021.111270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Aluminum is a neurotoxic element that can accumulate in the brain and cause neurodegenerative disorders. In addition, the antioxidants found in pomegranate juice (PJ) are much more than those existing in other fruits. It was proven to provide protection against neurodegenerative diseases. OBJECTIVES This experiment aimed to clarify the amelioration efficiency of PJ against aluminum chloride-induced neurobehavioral and biochemical disorders in female mice. METHODS The female mice were given oral administrations for 35 days as follows. The control group received tap water, the PJ groups received 20% and 40% pomegranate juice, the aluminum chloride (AlCl3) group was treated with 400 mg/kg AlCl3, and the last two groups received AlCl3 + 20% PJ and AlCl3 + 40% PJ, respectively. The neurobehavioral features were assessed by shuttle box, T-maze, and Morris water maze devices. Furthermore, the neurotransmitters and oxidative indicators in the brains of the female mice were determined at the end of experiment. RESULTS Significant effects of AlCl3 were observed on female mice in the body weight, during the behavioral tasks (shuttle box, T-maze, and Morris water maze), and in neurotransmitters and oxidative stress parameters. Pomegranate juice, especially at low concentrations, induced remarkable improvements in body weight, spatial memory and learning during T-maze, Morris water maze and shuttle box tasks, as well as in neurotransmitters and oxidative biomarkers in the AlCl3-treated female mice. CONCLUSION PJ reversed AlCl3-induced neurotoxicity and improved learning and memory in female mice. However, PJ contains a group of antioxidants that may be considered double-edged swords in the cellular redox status especially at high doses.
Collapse
Affiliation(s)
- Gasem M Abu-Taweel
- Department of Biology, College of Sciences, Jazan University, P.O. Box 2079, Jazan, 45142, Saudi Arabia
| | - Mohsen G Al-Mutary
- Department of Basic Sciences, College of Education, Imam Abdulrahman Bin Faisal University, P.O. Box 2375, Dammam, 14513, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
6
|
Salami AT, Okotie GE, Echendu PN, Akpamu U, Olaleye SB. Potassium bromate (KBrO 3) modulates oxidative stress and inflammatory biomarkers in sodium hydroxide (NaOH) - induced Crohn's colitis in Wistar rats. Can J Physiol Pharmacol 2021; 99:989-999. [PMID: 33848442 DOI: 10.1139/cjpp-2020-0678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Potassium bromate (KBrO3) present in consumed ozonised water was recently documented to exacerbate experimental gastric ulcer. Information, however, is vague as regards its effects in the colon where water reabsorption occurs. In this study, we observed the possible effects of KBrO3 on oxidative stress and inflammatory biomarkers in sodium hydroxide (NaOH) - induced Crohn's colitis (CC). Wistar rats (180-200 g) were divided into six groups (n = 10): (i) control; (ii) untreated CC (induced by 1.4% NaOH; intra-rectal administration); and (iii-vi) CC treated with vitamin E, KBrO3, vitamin E+KBrO3, and sulphazalazine, respectively, for 7 days. Body weight and stool score were monitored daily. By day 3 and 7, excised colon was evaluated for ulcer scores and biochemical and histological analysis. Blood samples collected on days 3 and 7 were assayed for haematological indices using standard methods. Data were subjected to analysis of variance (ANOVA) and p ≤ 0.05 considered significant. Platelet/lymphocyte ratio, colonic ulcer score, malondialdehyde, and mast cells were significantly decreased while colonic sulfhydryl, and Ca2+- and Na+/K+-ATPase activities were increased following KBrO3 treatment compared with untreated CC. These findings suggest that KBrO3 may mitigate against NaOH-induced CC via inhibiting mast cell population and oxidative and inflammatory content but stimulating colonic sulfhydryl and Ca2+- and Na+/K+-ATPase activities.
Collapse
Affiliation(s)
- Adeola Temitope Salami
- Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria.,Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Gloria Enevwo Okotie
- Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria.,Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Precious Nekachi Echendu
- Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria.,Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Uwaifoh Akpamu
- Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria.,Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Samuel Babafemi Olaleye
- Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria.,Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
7
|
Kurpik M, Zalewski P, Kujawska M, Ewertowska M, Ignatowicz E, Cielecka-Piontek J, Jodynis-Liebert J. Can Cranberry Juice Protect against Rotenone-Induced Toxicity in Rats? Nutrients 2021; 13:1050. [PMID: 33805023 PMCID: PMC8063919 DOI: 10.3390/nu13041050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/12/2022] Open
Abstract
The high polyphenols content of cranberry accounts for its strong antioxidant activity underlying the beneficial health effects of this fruit. Rotenone (ROT) is a specific inhibitor of mitochondrial complex I in the brain which leads to the generation of oxidative stress. To date, there are few data indicating that toxicity of ROT is not limited to the brain but can also affect other tissues. We aimed to examine whether ROT-induced oxidative stress could be counteracted by cranberry juice not only in the brain but also in the liver and kidney. Wistar rats were given the combined treatment with ROT and cranberry juice (CJ) for 35 days. Parameters of antioxidant status were determined in the organs. ROT enhanced lipid peroxidation solely in the brain. The increase in the DNA damage was noticed in all organs examined and in leukocytes. The beneficial effect of CJ on these parameters appeared only in the brain. Additionally, CJ decreased the activity of serum hepatic enzymes. The effect of CJ on antioxidant enzymes was not consistent, however, in some organs, CJ reversed changes evoked by ROT. Summing up, ROT can cause oxidative damage not only in the brain but also in other organs. CJ demonstrated a protective effect against ROT-induced toxicity.
Collapse
Affiliation(s)
- Monika Kurpik
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (M.E.); (J.J.-L.)
| | - Przemysław Zalewski
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland; (P.Z.); (J.C.-P.)
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (M.E.); (J.J.-L.)
| | - Małgorzata Ewertowska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (M.E.); (J.J.-L.)
| | - Ewa Ignatowicz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland; (P.Z.); (J.C.-P.)
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.); (M.E.); (J.J.-L.)
| |
Collapse
|
8
|
Shi K, Wang P, Zhang C, Lu Z, Chen M, Lu F. Effects of anabaena lipoxygenase on whole wheat dough properties and bread quality. Food Sci Nutr 2020; 8:5434-5442. [PMID: 33133546 PMCID: PMC7590336 DOI: 10.1002/fsn3.1782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 11/11/2022] Open
Abstract
The effects of the purified recombinant anabaena lipoxygenase (ana-rLOX) on the rheological characteristics of whole wheat dough and the quality of bread were investigated. The lightness of whole wheat dough supplemented with ana-rLOX was improved, which is superior to that of dough treated with benzoyl peroxide. The effect of ana-rLOX on the strength of dough was analyzed by farinograph, extensograph, and dynamic rheological tests. Compared with the control, the stability time of dough treated with 40 IU/g ana-rLOX increased by 35.4% and the farinograph quality number increased by 27.4%. In addition, the resistance to extension, as well as the elastic and viscous modulus, was improved by ana-rLOX in a dose-dependent manner. The height and specific volume of bread treated with ana-rLOX increased by 17.3 and 15.2%, respectively, compared with the control, and the lightless, whiteness, and other textural parameters, such as hardness, springiness, chewiness, resilience, and gumminess, were significantly improved. Overall, the results of this study suggest the promising application of ana-rLOX in enhancing quality of whole wheat flour.
Collapse
Affiliation(s)
- Kexin Shi
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Pei Wang
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Chong Zhang
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Zhaoxin Lu
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Meirong Chen
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Fengxia Lu
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| |
Collapse
|
9
|
Kujawska M, Jourdes M, Kurpik M, Szulc M, Szaefer H, Chmielarz P, Kreiner G, Krajka-Kuźniak V, Mikołajczak PŁ, Teissedre PL, Jodynis-Liebert J. Neuroprotective Effects of Pomegranate Juice against Parkinson's Disease and Presence of Ellagitannins-Derived Metabolite-Urolithin A-In the Brain. Int J Mol Sci 2019; 21:202. [PMID: 31892167 PMCID: PMC6981883 DOI: 10.3390/ijms21010202] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/12/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022] Open
Abstract
Pomegranate juice is a rich source of ellagitannins (ETs) believed to contribute to a wide range of pomegranate's health benefits. While a lot of experimental studies have been devoted to Alzheimer disease and hypoxic-ischemic brain injury, our knowledge of pomegranate's effects against Parkinson's disease (PD) is very limited. It is suggested that its neuroprotective effects are mediated by ETs-derived metabolites-urolithins. In this study, we examined the capability of pomegranate juice for protection against PD in a rat model of parkinsonism induced by rotenone. To evaluate its efficiency, assessment of postural instability, visualization of neurodegeneration, determination of oxidative damage to lipids and α-synuclein level, as well as markers of antioxidant defense status, inflammation, and apoptosis, were performed in the midbrain. We also check the presence of plausible active pomegranate ETs-derived metabolite, urolithin A, in the plasma and brain. Our results indicated that pomegranate juice treatment provided neuroprotection as evidenced by the postural stability improvement, enhancement of neuronal survival, its protection against oxidative damage and α-synuclein aggregation, the increase in mitochondrial aldehyde dehydrogenase activity, and maintenance of antiapoptotic Bcl-xL protein at the control level. In addition, we have provided evidence for the distribution of urolithin A to the brain.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.)
| | - Michael Jourdes
- Université de Bordeaux, ISVV, EA 4577, Œnologie, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
- INRA, ISVV, USC 1366 INRA, IPB, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
| | - Monika Kurpik
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.)
| | - Michał Szulc
- Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland
| | - Hanna Szaefer
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland
| | - Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland
| | | | - Pierre-Louis Teissedre
- Université de Bordeaux, ISVV, EA 4577, Œnologie, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
- INRA, ISVV, USC 1366 INRA, IPB, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (M.K.)
| |
Collapse
|
10
|
Shanmugavel V, Komala Santhi K, Kurup AH, Kalakandan S, Anandharaj A, Rawson A. Potassium bromate: Effects on bread components, health, environment and method of analysis: A review. Food Chem 2019; 311:125964. [PMID: 31865111 DOI: 10.1016/j.foodchem.2019.125964] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/04/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
Potassium bromate, is an oxidizing agent and one of the best and cheapest dough improvers in the baking industry. Due to its positive effects it plays a major role in the bread-making industry. Potassium bromate has significant effect on food biomolecules, such as starch and protein, as it affects the extent of gelatinization, viscosity, swelling characteristics as well as gluten proteins; it removes the sulfhydryl group and leads to the formation of disulfide linkages and thus improves the bread properties. However, there are many reports elucidating its negative impact on human health. It is deemed as a potential human carcinogen by IARC and classified under class 2B. Due to this, countries across world have either partially or completely banned it. Numerous techniques have evolved to determine the concentration of potassium bromate in bread. This review explains in detail, the effects of potassium bromate on biomolecules, human health, environment and various methods of analysis.
Collapse
Affiliation(s)
- Venu Shanmugavel
- Department of Food Safety and Quality Testing, Indian Institute of Food Processing Technology, Thanjavur, Tamil Nadu, India
| | - Kotturu Komala Santhi
- Department of Food Safety and Quality Testing, Indian Institute of Food Processing Technology, Thanjavur, Tamil Nadu, India
| | - Anjali H Kurup
- Department of Food Safety and Quality Testing, Indian Institute of Food Processing Technology, Thanjavur, Tamil Nadu, India
| | - Sureshkumar Kalakandan
- Department of Food Safety and Quality Testing, Indian Institute of Food Processing Technology, Thanjavur, Tamil Nadu, India
| | - Arunkumar Anandharaj
- Department of Food Safety and Quality Testing, Indian Institute of Food Processing Technology, Thanjavur, Tamil Nadu, India
| | - Ashish Rawson
- Department of Food Safety and Quality Testing, Indian Institute of Food Processing Technology, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
11
|
Mukherjee D, Ahmad R. COX-2/iNOS regulation during experimental hepatic injury and its mitigation by cloudy apple juice. Int J Biol Macromol 2019; 140:1006-1017. [PMID: 31445146 DOI: 10.1016/j.ijbiomac.2019.08.180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
Abstract
A number of enzymes and transcription factors have been correlated with disease etiology. In this study, involvement of cyclooxygenase-2 and inducible-nitric oxide synthase is examined during diethylnitrosamine (DEN)-induced hepatic injury and cloudy apple juice (CAJ) supplementation. Liver injury was administered in rats by single dose of DEN (10 ml/kg bwt of 1% DEN), while 10 ml/kg bwt CAJ daily was given after 2 h of latency in DEN-treated animals for two weeks. CAJ was characterized by HPLC and subsequently examined for antioxidant power. During the course of treatment liver function, collagen (hydroxyproline), malondialdehyde, protein oxidation, antioxidant enzymes, ATPases, nitrite levels were investigated along with liver histopathology and electron microscopy. COX-2 and iNOS proteins were also localized in liver specimens. The results demonstrated rich polyphenols and antioxidant activity in CAJ. CAJ supplementation significantly restored liver biochemistry and anatomy as revealed by the refurbished investigated parameters. CAJ treatment also declined COX-2 and iNOS activities in injured animals. Electron microscopy demonstrated rejuvenated hepatocytes, Kupffer cells, RER, mitochondria and nucleus in CAJ supplemented animals. The novel outcomes of this study suggest that CAJ potentiates hepatoprotection by stimulating antioxidant power and regulating the COX-2 and iNOS proteins in the liver during experimental liver injury.
Collapse
Affiliation(s)
- Devoshree Mukherjee
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Riaz Ahmad
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
12
|
Hassan I, Husain FM, Khan RA, Ebaid H, Al-Tamimi J, Alhazza IM, Aman S, Ibrahim KE. Ameliorative effect of zinc oxide nanoparticles against potassium bromate-mediated toxicity in Swiss albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9966-9980. [PMID: 30739294 DOI: 10.1007/s11356-019-04443-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Potassium bromate (PB) is a commonly used food additive, a prominent water disinfection by-product, and a class IIB carcinogen. It exerts a various degree of toxicity depending on its dose and exposure duration consumed with food and water in the living organisms. The present investigation aims to demonstrate the protective efficacy of zinc oxide nanoparticles (ZnO NPs) derived from Ochradenus arabicus (OA) leaf extract by green technology in PB-challenged Swiss albino rats. The rodents were randomly distributed, under the lab-standardized treatment strategy, into the following six treatment groups: control (group I), PB alone (group II), ZnO alone (group III), ZnO NP alone (group IV), PB + ZnO (group V), and PB + ZnO NPs (group VI). The rats were sacrificed after completion of the treatment, and their blood and liver samples were collected for further analysis. Group II showed extensive toxic effects with altered liver function markers (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, gamma-glutamyl transferase, glutathione-S-transferase, and thioredoxin reductase) and compromised redox status (SOD, CAT, GR, GPx, GSH, MDA, and total carbonyl content). The histopathological analysis and comet assay further supported the biochemical results of the same group. Besides, group III also showed moderate toxicity evidenced by an alteration in most of the studied parameters while group IV demonstrated mild toxicity after biochemical analysis indicating the excellent biocompatibility of the NPs. However, group VI exhibited attenuation of the PB-induced toxic insults to a significant level as compared to group II, whereas group V failed to show similar improvement in the studied parameters. All these findings entail that the ZnO NPs prepared by green synthesis have significant ameliorative property against PB-induced toxicity in vivo. Moreover, administration of the NPs improved the overall health of the treated animals profoundly. Hence, these NPs have significant therapeutic potential against the toxic effects of PB and similar compounds in vivo, and they are suitable to be used at the clinical and industrial levels.
Collapse
Affiliation(s)
- Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, Building 05, Riyadh, 11451, Saudi Arabia.
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, Building 05, Riyadh, 11451, Saudi Arabia
| | - Jameel Al-Tamimi
- Department of Zoology, College of Science, King Saud University, Building 05, Riyadh, 11451, Saudi Arabia
| | - Ibrahim M Alhazza
- Department of Zoology, College of Science, King Saud University, Building 05, Riyadh, 11451, Saudi Arabia
| | - Shazia Aman
- Department of Biochemistry, J N Medical College and Hospital, Aligarh Muslim University, Aligarh, 202002, India
| | - Khalid Elfaki Ibrahim
- Department of Zoology, College of Science, King Saud University, Building 05, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
13
|
Kuo SC, Li Y, Cheng YZ, Lee WJ, Cheng JT, Cheng KC. Molecular mechanisms regarding potassium bromate‑induced cardiac hypertrophy without apoptosis in H9c2 cells. Mol Med Rep 2018; 18:4700-4708. [PMID: 30221729 DOI: 10.3892/mmr.2018.9470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/16/2018] [Indexed: 11/05/2022] Open
Abstract
Cardiac hypertrophy is commonly involved in cardiac injury. Oxidative stress can induce cardiac hypertrophy with apoptosis. Potassium bromate (KBrO3) has been widely used as a food additive due to its oxidizing properties. In the present study, the rat‑derived heart cell line H9c2 was used to investigate the effect of KBrO3 on cell size. KBrO3 increased cell size at concentrations <250 µM, in a dose‑dependent manner. Additionally, KBrO3 also promoted the gene expression of two biomarkers of cardiac hypertrophy, brain/B‑type natriuretic peptides (BNP) and β‑Myosin Heavy Chain (β‑MHC). However, apoptosis remained unobserved in these cells. Moreover, mediation of free radicals was investigated using a fluorescence assay, and it was observed that superoxide and reactive oxygen species (ROS) levels increased with KBrO3. Effects of KBrO3 were significantly reduced by tiron at concentrations sufficient to produce antioxidant‑like action. Additionally, signals involved in cardiac hypertrophy such as calcineurin and nuclear factor of activated T‑cells (NFAT) were also determined using western blot analysis. KBrO3 increased the protein levels of both these molecules which were decreased by tiron in a dose‑dependent manner. Additionally, cyclosporine A attenuated the cardiac hypertrophy induced by KBrO3 in H9c2 cells at concentrations effective to inhibit calcineurin, in addition to reducing mRNA levels of BNP or β‑MHC. Finally, apoptosis was also identified in H9c2 cells incubated with KBrO3 at concentrations >300 µM. Collectively, these results provided a novel perspective that KBrO3 induces cardiac hypertrophy without apoptosis at a low dose through the generation of ROS, activating the calcineurin/NFAT signaling pathway in H9c2 cells. Therefore, at a dose <250 µM, KBrO3 can be applied as an inducer of cardiac hypertrophy without apoptosis in H9c2 cells. KBrO3 can also be developed as a tool to induce cardiac hypertrophy in animals.
Collapse
Affiliation(s)
- Shu-Chun Kuo
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan 7170, Taiwan R.O.C
| | - Yingxiao Li
- Department of Medical Research, Chi‑Mei Medical Center, Tainan 71003, Taiwan R.O.C
| | - Yung-Ze Cheng
- Department of Emergency Medicine, Chi‑Mei Medical Center, Tainan 71003, Taiwan, R.O.C
| | - Wei-Jing Lee
- Department of Emergency Medicine, Chi‑Mei Medical Center, Tainan 71003, Taiwan, R.O.C
| | - Juei-Tang Cheng
- Department of Medical Research, Chi‑Mei Medical Center, Tainan 71003, Taiwan R.O.C
| | - Kai-Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890, Japan
| |
Collapse
|
14
|
Zhang T, Cui Q, Zhang F, Zhang L, Wang X. Effects of microencapsulated glucose oxidase on wheat flour dough properties and Chinese steamed bread quality. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Tianliang Zhang
- Experimental Center for Medical Research; Weifang Medical University; Weifang 261053 China
| | - Qun Cui
- School of Public Health and Management; Weifang Medical University; Weifang 261053 China
| | - Fengxiang Zhang
- School of Public Health and Management; Weifang Medical University; Weifang 261053 China
| | - Lili Zhang
- School of Public Health and Management; Weifang Medical University; Weifang 261053 China
| | - Xia Wang
- School of Public Health and Management; Weifang Medical University; Weifang 261053 China
- Collaborative Innovation Center of Prediction and Governance of Major Social Risks in Shandong; Weifang Medical University; Weifang 261053 China
| |
Collapse
|
15
|
Altoom NG, Ajarem J, Allam AA, Maodaa SN, Abdel-Maksoud MA. Deleterious effects of potassium bromate administration on renal and hepatic tissues of Swiss mice. Saudi J Biol Sci 2017; 25:278-284. [PMID: 29472778 PMCID: PMC5816001 DOI: 10.1016/j.sjbs.2017.01.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 01/29/2017] [Accepted: 01/30/2017] [Indexed: 11/12/2022] Open
Abstract
Potassium bromate (KBrO3) is widely used as a food additive and is a major water disinfection by-product. The present study reports the side effects of KBrO3 administration in Swiss mice. Animals were randomly divided into three groups: control, low dose KBrO3 (100 mg/kg/day) and high dose KBrO3 (200 mg/kg/day) groups. Administration of KBrO3 led to decreased white blood corpuscles (WBCs), red blood corpuscles (RBCs) and platelets count in the animals of both the high and the low dose groups. Altered lipid profile represented as low density lipoprotein (LDL), high density lipoprotein (HDL) and cholesterol levels were observed in plasma samples of both KBrO3 treated groups of mice. Also, an increased plasma level of LDH was detected in both KBrO3 treated groups. Histological investigations showed impaired renal and hepatic histology that was concomitant with increased plasma Creatinine level in both of KBrO3-treated groups. Nevertheless, decreased glutathione (GSH) level in both renal and hepatic tissue of mice after KBrO3 intake was detected. These results show that KBrO3 has serious damaging effects and therefore, its use should be avoided.
Collapse
Affiliation(s)
- Naif G Altoom
- King Saud University, College of Science, Department of Zoology, Riyadh 11451, Saudi Arabia
| | - Jamaan Ajarem
- King Saud University, College of Science, Department of Zoology, Riyadh 11451, Saudi Arabia
| | - Ahmed A Allam
- King Saud University, College of Science, Department of Zoology, Riyadh 11451, Saudi Arabia.,Beni-suef University, Faculty of Science, Department of Zoology, Beni-Suef, Egypt
| | - Saleh N Maodaa
- King Saud University, College of Science, Department of Zoology, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
16
|
Ajarem J, Altoom NG, Allam AA, Maodaa SN, Abdel-Maksoud MA, Chow BK. Oral administration of potassium bromate induces neurobehavioral changes, alters cerebral neurotransmitters level and impairs brain tissue of swiss mice. Behav Brain Funct 2016; 12:14. [PMID: 27169539 PMCID: PMC4865012 DOI: 10.1186/s12993-016-0098-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/08/2016] [Indexed: 11/25/2022] Open
Abstract
Background Potassium bromate (KBrO3) is widely used as a food additive and is a major water disinfection by-product. The present study reports the side effects of KBrO3 administration on the brain functions and behaviour of albino mice. Methods Animals were divided into three groups: control, low dose KBrO3 (100 mg/kg/day) and high dose KBrO3 (200 mg/kg/day) groups. Results Administration of KBrO3 led to a significant change in the body weight in the animals of the high dose group in the first, second and the last weeks while water consumption was not significantly changed. Neurobehavioral changes and a reduced Neurotransmitters levels were observed in both KBrO3 groups of mice. Also, the brain level of reduced glutathione (GSH) in KBrO3 receiving animals was decreased. Histological studies favoured these biochemical results showing extensive damage in the histological sections of brain of KBrO3-treated animals. Conclusions These results show that KBrO3 has serious damaging effects on the central nervous system and therefore, its use should be avoided.
Collapse
Affiliation(s)
- Jamaan Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif G Altoom
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,Department of Zoology, Faculty of Science, Beni-suef University, Beni-Suef, Egypt
| | - Saleh N Maodaa
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Billy Kc Chow
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| |
Collapse
|
17
|
El-Deeb MEE, Abd-El-Hafez AAA. Can vitamin C affect the KBrO 3 induced oxidative stress on left ventricular myocardium of adult male albino rats? A histological and immunohistochemical study. J Microsc Ultrastruct 2015; 3:120-136. [PMID: 30023191 PMCID: PMC6014280 DOI: 10.1016/j.jmau.2015.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/10/2015] [Accepted: 03/09/2015] [Indexed: 11/02/2022] Open
Abstract
Potassium bromate (KBrO3) cardiotoxicity is not widely recognized, in spite of its well known oxidative cell and tissue damage. The wide exposure to KBrO3 in food and water necessitates finding of a simple and available antidote for its hazards like vitamin C. There are growing evidences that the regulation of redox reactions in cells is intimately tied to the levels of antioxidants. As the heart is highly vulnerable for oxidative damage, left ventricle muscle was the spotlight of our study. For this purpose 20 adult male albino rats were categorized into four groups (five rats each). Group 1 served as control; group 2 received 30 mg/kg/day vitamin C for 4 weeks. Group 3 was injected intraperitoneally with KBrO3 20 mg/kg/dose twice weekly for 4 weeks, and group 4 received both vitamin C and KBrO3 in the same scheme. Heart specimens were processed for various histological examinations. Sections from KBrO3 treated animals showed focal disruption of cardiac myocytes, deeply stained nuclei and dilated congested blood vessels. Ultrastructurally, irregular indented nuclei, focal lysis of the myofibrils and swelling of mitochondria were also observed. In contrast, minimal changes were observed in rats treated concomitantly with both vitamin C and KBrO3. Caspase 3 immunohistochemical reaction was nonsignificantly increased in group 3 cardiomyocytes. Semiquantitative morphological mitochondrial scoring and statistical analyses revealed significant changes between the studied groups. Finally, KBrO3 induced structural changes in rat cardiac muscle could be ameliorated by concomitant treatment with vitamin C.
Collapse
Affiliation(s)
| | - Amal A A Abd-El-Hafez
- Department of Histology, Faculty of Medicine, Tanta University, El Geesh street, Tanta, Egypt
| |
Collapse
|
18
|
Takahashi A, Watanabe J, Sakaguchi H, Okazaki Y, Suzuki T, Chiji H. Anthocyanin-enriched Extracts from Aronia ( Aronia melanocarpa E.) and Haskap ( Lonicera caerulea L.) Suppressed KBrO 3-induced Renal Damage in Rats. J JPN SOC FOOD SCI 2015. [DOI: 10.3136/nskkk.62.235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Azusa Takahashi
- Division of Agrobiology, Graduate School of Agriculture, Hokkaido University
| | - Jun Watanabe
- Food Function Division, National Food Research Institute, National Agriculture and Food Research Organization
| | | | - Yukako Okazaki
- Department of Human Life Science Faculty of Human Life Science, Fuji Women’s University
| | - Takashi Suzuki
- Division of Agrobiology, Graduate School of Agriculture, Hokkaido University
| | - Hideyuki Chiji
- Department of Food Science and Human Nutrition Faculty of Human Life Science, Fuji Women’s University
| |
Collapse
|
19
|
Szaefer H, Krajka-Kuźniak V, Ignatowicz E, Adamska T, Markowski J, Baer-Dubowska W. The effect of cloudy apple juice on hepatic and mammary gland phase I and II enzymes induced by DMBA in female Sprague-Dawley rats. Drug Chem Toxicol 2014; 37:472-9. [DOI: 10.3109/01480545.2014.893442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|