1
|
Fallon MA, Tadfie H, Watson AP, Dyke MM, Flores C, Cook N, Fei Z, Holland CK. Molecular basis of one-step methyl anthranilate biosynthesis in grapes, sweet orange, and maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2363-2374. [PMID: 38976445 DOI: 10.1111/tpj.16922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Plants synthesize an array of volatile compounds, many of which serve ecological roles in attracting pollinators, deterring herbivores, and communicating with their surroundings. Methyl anthranilate (MeAA) is an anti-herbivory defensive volatile responsible for grape aroma that is emitted by several agriculturally relevant plants, including citrus, grapes, and maize. Unlike maize, which uses a one-step anthranilate methyltransferase (AAMT), grapes have been thought to use a two-step pathway for MeAA biosynthesis. By mining available transcriptomics data, we identified two AAMTs in Vitis vinifera (wine grape), as well as one ortholog in "Concord" grape. Many angiosperms methylate the plant hormone salicylic acid (SA) to produce methyl salicylate, which acts as a plant-to-plant communication molecule. Because the Citrus sinensis (sweet orange) SA methyltransferase can methylate both anthranilate (AA) and SA, we used this enzyme to examine the molecular basis of AA activity by introducing rational mutations, which identified several active site residues that increase activity with AA. Reversing this approach, we introduced mutations that imparted activity with SA in the maize AAMT, which uncovered different active site residues from those in the citrus enzyme. Sequence and phylogenetic analysis revealed that one of the Vitis AAMTs shares an ancestor with jasmonic acid methyltransferases, similar to the AAMT from strawberry (Frageria sp.). Collectively, these data demonstrate the molecular mechanisms underpinning AA activity across methyltransferases and identify one-step enzymes by which grapes synthesize MeAA.
Collapse
Affiliation(s)
- Michael A Fallon
- Department of Biology, Williams College, Williamstown, Massachusetts, 01267, USA
| | - Hisham Tadfie
- Department of Biology, Williams College, Williamstown, Massachusetts, 01267, USA
| | - Aracely P Watson
- Department of Biology, Williams College, Williamstown, Massachusetts, 01267, USA
| | - Madeline M Dyke
- Department of Biology, Williams College, Williamstown, Massachusetts, 01267, USA
| | - Christopher Flores
- Department of Biology, Williams College, Williamstown, Massachusetts, 01267, USA
| | - Nathan Cook
- Department of Chemistry, Williams College, Williamstown, Massachusetts, 01267, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, New York, 14850, USA
| | - Cynthia K Holland
- Department of Biology, Williams College, Williamstown, Massachusetts, 01267, USA
| |
Collapse
|
2
|
Li T, Chen K, Wang X, Wang Y, Su Y, Guo Y. Mass Spectrometry Rearrangement Ions and Metabolic Pathway-Based Discovery of Indole Derivatives during the Aging Process in Citrus reticulata 'Chachi'. Foods 2023; 13:8. [PMID: 38201037 PMCID: PMC10778486 DOI: 10.3390/foods13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The rapid analysis and characterization of compounds using mass spectrometry (MS) may overlook trace compounds. Although targeted analysis methods can significantly improve detection sensitivity, it is hard to discover novel scaffold compounds in the trace. This study developed a strategy for discovering trace compounds in the aging process of traditional Chinese medicine based on MS fragmentation and known metabolic pathways. Specifically, we found that the characteristic component of C. reticulata 'Chachi', methyl N-methyl anthranilate (MMA), fragmented in electrospray ionization coupled with collision-induced dissociation (CID) to produce the rearrangement ion 3-hydroxyindole, which was proven to exist in trace amounts in C. reticulata 'Chachi' based on comparison with the reference substance using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Combining the known metabolic pathways of 3-hydroxyindole and the possible methylation reactions that may occur during aging, a total of 10 possible indole derivatives were untargeted predicted. These compounds were confirmed to originate from MMA using purchased or synthesized reference substances, all of which were detected in C. reticulata 'Chachi' through LC-MS/MS, achieving trace compound analysis from untargeted to targeted. These results may contribute to explaining the aging mechanism of C. reticulata 'Chachi', and the strategy of using the CID-induced special rearrangement ion-binding metabolic pathway has potential application value for discovering trace compounds.
Collapse
Affiliation(s)
- Tian Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China;
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; (K.C.); (X.W.); (Y.G.)
| | - Ke Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; (K.C.); (X.W.); (Y.G.)
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; (K.C.); (X.W.); (Y.G.)
| | - Ying Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing 102629, China
| | - Yue Su
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China;
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; (K.C.); (X.W.); (Y.G.)
| |
Collapse
|
3
|
Miltojević AB, Mitić KV, Stojanović NM, Randjelović PJ, Radulović NS. Methyl and Isopropyl N-Methylanthranilates Affect Primary Macrophage Function - an Insight into the Possible Immunomodulatory Mode of Action. Chem Biodivers 2021; 19:e202100724. [PMID: 34773377 DOI: 10.1002/cbdv.202100724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/12/2021] [Indexed: 11/08/2022]
Abstract
To complement the knowledge on the anti-inflammatory activity of methyl and isopropyl N -methylanthranilates, two natural products with panacea-like properties, we investigated their effects on thioglycolate-elicited macrophages by evaluating macrophage ability to metabolize MTT, macrophage membrane function, and macrophage myeloperoxidase and phagocytic activities. Moreover, two additional aspects of the inflammatory response of these compounds, their inhibitory activity on xanthine oxidase and catalase, were studied. It was found that these two compounds regulate elicited macrophage functions, most probably by interfering with the function of cell membranes and changing the reducing cellular capacity or enzyme activity of macrophages. Nonetheless, no significant inhibitory action either towards xanthine oxidase or catalase was found, suggesting that the inhibition of these enzymes is not involved in the anti-inflammatory mode of action of these two esters.
Collapse
Affiliation(s)
- Ana B Miltojević
- Univerzitet v Nisu Fakultet zastite na radu, -, Čarnojevića 10a, Serbia, 1800, Nis, SERBIA
| | - Katarina V Mitić
- Univerzitet u Beogradu Bioloski Fakultet, Institut Ivan Djaja, Studentski trg 16, Serbia, 1100, Belgrade, SERBIA
| | - Nikola M Stojanović
- Universitet u Nisu Medicinski Fakultet, Fiziologija, Zorana Đinđića 81, Serbia, 1800, Nis, SERBIA
| | - Pavle J Randjelović
- Universitet u Nisu Medicinski Fakultet, Fiziologija, Zorana Đinđića 81, Serbia, 18000, Nis, SERBIA
| | - Niko S Radulović
- Faculty of Science and Mathematics, University of Nis, Chemistry, Visegradska 33, 1800, Niš, SERBIA
| |
Collapse
|
4
|
Donald GR, de Carvalho PR, Fernandes PD, Boylan F. Antinociceptive activity of puberulin and choisyine from ethanol extract of Choisya ternata Kunth var. Sundance. Biomed Pharmacother 2021; 141:111926. [PMID: 34323696 DOI: 10.1016/j.biopha.2021.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 11/28/2022] Open
Abstract
Choisya ternata Kunth variety Sundance (CTS) is a plant used in traditional medicine in North America, especially in Mexico. The present study evaluated the antinociceptive activity of the crude ethanolic extract of CTS leaves and tested its isolated compounds puberulin (Pu) and choisyine (Ch). An antinociceptive effect was observed after treatment with CTS extract and the isolated compounds Pu and Ch. Mice orally pre-treated with CTS extract (10, 30 or 100 mg/kg), Pu or Ch (0.3, 1 or 3 mg/kg) were less sensitive to chemical and thermal algesic agents in different animal models (formalin-, glutamate- and capsaicin-induced licking response tests and hot plate test). In addition, an antagonist of the opioid receptor was able to reverse the antinociceptive effect observed for the CTS extract and the isolated substance Ch, but it did not inhibit the effect of Pu. The cholinergic pathway was found to be involved in this antinociceptive effect for the CTS extract and Ch but has no participation in the Pu antinociceptive activity.
Collapse
Affiliation(s)
- Graciela Rocha Donald
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro CEP 21941-901, Brazil.
| | - Patricia Ribeiro de Carvalho
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro CEP 21941-901, Brazil.
| | - Patrícia Dias Fernandes
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro CEP 21941-901, Brazil.
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
5
|
Quiñonez-Bastidas GN, Navarrete A. Mexican Plants and Derivates Compounds as Alternative for Inflammatory and Neuropathic Pain Treatment-A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10050865. [PMID: 33923101 PMCID: PMC8145628 DOI: 10.3390/plants10050865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 05/17/2023]
Abstract
Despite the availability of many anti-pain drugs, in the form of NSAIDs, steroids, gabapentinoids, opioids, and antidepressants, in this study we address the natural compounds belonging to the group of Mexican medicinal plants or "Mexican folk medicine", used for pain management in Mexico. Our interest in this subject is due to the growing idea that "natural is harmless" and to the large number of side effects exhibited in pharmacotherapy. The objective of this review was to document the scientific evidence about Mexican medicinal plants and their derivatives used for inflammatory and neuropathic pain treatment, as well as the mechanisms of action implicated in their antinociceptive effects, their possible adverse effects, and the main pharmacological aspects of each plant or compound. Our data review suggested that most studies on Mexican medicinal plants have used inflammatory experimental models for testing. The anti-pain properties exerted by medicinal plants lack adverse effects, and their toxicological assays report that they are safe to consume; therefore, more studies should be performed on preclinical neuropathic pain models. Moreover, there is no convincing evidence about the possible mechanisms of action involved in the anti-pain properties exerted by Mexican plants. Therefore, the isolation and pharmacological characterization of these plant derivatives' compounds will be important in the design of future preclinical studies.
Collapse
Affiliation(s)
| | - Andrés Navarrete
- Correspondence: (G.N.Q.-B.); (A.N.); Tel.: +52-5556225291 (A.N.)
| |
Collapse
|
6
|
Dougnon G, Ito M. Inhalation Administration of the Bicyclic Ethers 1,8- and 1,4-cineole Prevent Anxiety and Depressive-Like Behaviours in Mice. Molecules 2020; 25:E1884. [PMID: 32325759 PMCID: PMC7221571 DOI: 10.3390/molecules25081884] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/02/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
The anxiolytic and antidepressant-like activities of the naturally occurring monoterpene 1,8-cineole and its structural isomer 1,4-cineole were evaluated in mice via inhalation administration at doses ranging from 4 × 10-6 to 4 × 10-1 mg per 400 μL of triethyl citrate. Mice were tested for anxiety-like behaviours by using the light-dark box test (LDB) and marble-burying test (MBT) and for depression-like symptoms by using the forced swimming test (FST) and tail suspension test (TST). Diazepam and fluoxetine were used as standard drugs for anxiolytic and antidepressant tests, respectively. The results showed that 1,8-cineole at 4 × 10-4 mg, and 1,4-cineole at 4 × 10-4 and 4 × 10-3 mg significantly increased the amount of time spent in the light box and the number of entries in the light box in the LDB as well as reduced the number of marbles buried in the MBT relative to those in the control, suggesting an anxiolytic effect. Similarly, 1,8-cineole at 4 × 10-4 and 4 × 10-2 mg and 1,4-cineole at doses of 4 × 10-4 to 4 × 10-2 mg significantly reduced immobility times in the FST and TST relative to those of the control, suggesting an antidepressant activity. The role of the GABAA/benzodiazepine receptor system in the anxiolytic effects of 1,8- and 1,4-cineole was investigated through co-administration of flumazenil, a GABAergic system antagonist. Flumazenil reversed the effects of diazepam and 1,8-cineole, suggesting that 1,8-cineole affects the GABAA/benzodiazepine receptors. Collectively, the results suggest that inhaled 1,8- and 1,4-cineole prevented anxiety and depressive-like symptoms in classic mice models.
Collapse
Affiliation(s)
| | - Michiho Ito
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan;
| |
Collapse
|
7
|
Izabel da Silva Hage-Melim L, Curtolo Poiani JG, Tomich de Paula da Silva CH, Boylan F. In silico study of the mechanism of action, pharmacokinetic and toxicological properties of some N-methylanthranilates and their analogs. Food Chem Toxicol 2019; 131:110556. [DOI: 10.1016/j.fct.2019.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 12/13/2022]
|
8
|
Miltojević AB, Stojanović NM, Randjelović PJ, Radulović NS. Distribution of methyl and isopropyl N-methylanthranilates and their metabolites in organs of rats treated with these two essential-oil constituents. Food Chem Toxicol 2019; 128:68-80. [PMID: 30914356 DOI: 10.1016/j.fct.2019.03.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/20/2019] [Indexed: 11/15/2022]
Abstract
Two volatile alkaloids, methyl (MMA) and isopropyl N-methylanthranilates (IMA), identified in the essential oil of Choisya ternata Kunth (Rutaceae), have been proven to possess polypharmacological properties (antinociceptive, anti-inflammatory, gastro-, hepato-, nephroprotective activities, anxiolytic and antidepressant properties, and likewise an effect on diazepam-induced sleep). In the continuation of our investigation of their urinary-metabolite profiles, we performed GC-MS analyses of the diethyl-ether extracts of selected tissues (liver, kidneys, heart, brain, lungs, quadriceps femoris muscle, and spleen) of rats intraperitoneally treated with MMA or IMA (2 g kg-1). Organ-metabolite profiles of MMA and IMA were qualitatively mutually analogous (varying only in the alcohol moiety of the metabolites), and generally analogous to their urinary-metabolite profiles. The greatest diversity and the highest overall amount of anthranilate metabolites was found in the hepatic tissue. The principal anthranilate-related compounds in the organs of rats treated with MMA, among 12 detected, were the products of ester hydrolysis, N-methylanthranilic and anthranilic acids. In the tissues of IMA-treated rats, among 16 compounds, the most abundant ones were the unmetabolized IMA and N-methylanthranilic acid. A collection of the compositional data regarding the anthranilate-related metabolites was statistically treated by multivariate statistical analysis that provided a better insight into the possible biotransformation pathways.
Collapse
Affiliation(s)
- Ana B Miltojević
- University of Niš, Faculty of Occupational Safety, Čarnojevića 10a, 18000, Niš, Serbia.
| | - Nikola M Stojanović
- University of Niš, Faculty of Medicine, Zorana Đinđića 81, 18000, Niš, Serbia
| | - Pavle J Randjelović
- University of Niš, Faculty of Medicine, Institute of Physiology, Zorana Đinđića 81, 18000, Niš, Serbia
| | - Niko S Radulović
- University of Niš, Faculty of Sciences and Mathematics, Department of Chemistry, Višegradska 33, 18000, Niš, Serbia.
| |
Collapse
|
9
|
Prenylated β-diketones, two new additions to the family of biologically active Hypericum perforatum L. (Hypericaceae) secondary metabolites. Food Chem Toxicol 2018; 118:505-513. [DOI: 10.1016/j.fct.2018.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 11/20/2022]
|
10
|
Radulović NS, Miltojević AB, Stojanović NM, Randjelović PJ. Distinct urinary metabolite profiles of two pharmacologically active N -methylanthranilates: Three approaches to xenobiotic metabolite identification. Food Chem Toxicol 2017; 109:341-355. [DOI: 10.1016/j.fct.2017.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/13/2017] [Accepted: 09/03/2017] [Indexed: 10/18/2022]
|
11
|
de Carvalho PR, Ropero DR, Pinheiro MM, Fernandes PD, Boylan F. Quinoline Alkaloids Isolated from Choisya Aztec-Pearl and Their Contribution to the Overall Antinociceptive Activity of This Plant. PLoS One 2016; 11:e0164998. [PMID: 27768733 PMCID: PMC5074523 DOI: 10.1371/journal.pone.0164998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/04/2016] [Indexed: 11/19/2022] Open
Abstract
Choisya 'Aztec-Pearl', a hybrid of Choisya ternata and Choisya dumosa var. arizonica, had the antinociceptive activity in the ethanol extract (EECA) of its leaves evaluated. Two quinoline alkaloids, anhydroevoxine (A) and choisyine (C), isolated from these leaves were also tested. The results obtained pointed out to a very high antinociceptive activity measured by the hot plate model for EECA (at doses of 10, 30 and 100 mg/kg) as well as for A and C (at doses of 1, 3 and 10 mg/kg). The magnitude of the activity was two-fold higher than the one observed for the morphine treated animals for the higher doses of extracts/compounds (30, 100 mg/kg and 3, 10 mg/kg respectively). The mechanism of action for this activity was also investigated and it seems that for EECA as well as A and C, the opiate system plays an important role. Results have also shown that the nitric oxide (NO) system also play a pivotal role in the case of EECA and A while for C it seems that the cholinergic system have some involvement. The acute toxicity was evaluated for EECA with results showing no important toxic effect.
Collapse
Affiliation(s)
- Patricia Ribeiro de Carvalho
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brazil
| | - Denise Ricoy Ropero
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mariana Martins Pinheiro
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brazil
| | - Patricia Dias Fernandes
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brazil
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
12
|
Concordance and incongruence in preclinical anxiety models: Systematic review and meta-analyses. Neurosci Biobehav Rev 2016; 68:504-529. [PMID: 27328783 DOI: 10.1016/j.neubiorev.2016.04.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/19/2016] [Accepted: 04/18/2016] [Indexed: 12/14/2022]
Abstract
Rodent defense behavior assays have been widely used as preclinical models of anxiety to study possibly therapeutic anxiety-reducing interventions. However, some proposed anxiety-modulating factors - genes, drugs and stressors - have had discordant effects across different studies. To reconcile the effect sizes of purported anxiety factors, we conducted systematic review and meta-analyses of the literature on ten anxiety-linked interventions, as examined in the elevated plus maze, open field and light-dark box assays. Diazepam, 5-HT1A receptor gene knockout and overexpression, SERT gene knockout and overexpression, pain, restraint, social isolation, corticotropin-releasing hormone and Crhr1 were selected for review. Eight interventions had statistically significant effects on rodent anxiety, while Htr1a overexpression and Crh knockout did not. Evidence for publication bias was found in the diazepam, Htt knockout, and social isolation literatures. The Htr1a and Crhr1 results indicate a disconnect between preclinical science and clinical research. Furthermore, the meta-analytic data confirmed that genetic SERT anxiety effects were paradoxical in the context of the clinical use of SERT inhibitors to reduce anxiety.
Collapse
|
13
|
A Systematic Review of the Anxiolytic-Like Effects of Essential Oils in Animal Models. Molecules 2015; 20:18620-60. [PMID: 26473822 PMCID: PMC6332383 DOI: 10.3390/molecules201018620] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/24/2015] [Accepted: 10/02/2015] [Indexed: 01/22/2023] Open
Abstract
The clinical efficacy of standardized essential oils (such as Lavender officinalis), in treating anxiety disorders strongly suggests that these natural products are an important candidate source for new anxiolytic drugs. A systematic review of essential oils, their bioactive constituents, and anxiolytic-like activity is conducted. The essential oil with the best profile is Lavendula angustifolia, which has already been tested in controlled clinical trials with positive results. Citrus aurantium using different routes of administration also showed significant effects in several animal models, and was corroborated by different research groups. Other promising essential oils are Citrus sinensis and bergamot oil, which showed certain clinical anxiolytic actions; along with Achillea wilhemsii, Alpinia zerumbet, Citrus aurantium, and Spiranthera odoratissima, which, like Lavendula angustifolia, appear to exert anxiolytic-like effects without GABA/benzodiazepine activity, thus differing in their mechanisms of action from the benzodiazepines. The anxiolytic activity of 25 compounds commonly found in essential oils is also discussed.
Collapse
|
14
|
Effect of two esters of N-methylanthranilic acid from Rutaceae species on impaired kidney morphology and function in rats caused by CCl4. Life Sci 2015; 135:110-7. [PMID: 26093265 DOI: 10.1016/j.lfs.2015.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 05/03/2015] [Accepted: 05/23/2015] [Indexed: 11/24/2022]
Abstract
AIMS Herein we investigated the potential protective effects of methyl N-methylanthranilate (MA) and isopropyl N-methylanthranilate (IA), two naturally occurring plant constituents from Rutaceae taxa, in a rat model of acute intoxication with carbon tetrachloride (CCl4) by tracking changes in kidney tissue morphology and function. MAIN METHODS The antioxidant capacity of IA and MA was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid radical cation (ABTS(+)) assays and superoxide-scavenging test. Wistar rats were treated daily with MA and IA for seven days in a dose of 200mg/kg. Twenty-four hours after a CCl4 injection, rats were sacrificed and blood samples were used for the evaluation of urea and creatinine. Kidney tissue specimens were stained with hematoxylin and eosin, periodic acid-Schiff and Jones stain and evaluated for morphological changes. Quantification of structural changes determined by histological analysis of kidney tissue was assessed by a morphometric analysis of glomeruli using ImageJ software. KEY FINDINGS IA and MA applied in high doses on their own did not cause any significant damage to kidney tissue. A pretreatment with MA prior to the administration of CCl4 significantly prevented the increase of serum levels of decreased kidney function markers, while that of IA did not. Histopathological evaluation of the kidneys also revealed that MA reduced the incidence of kidney lesions. SIGNIFICANCE Our experiments showed that methyl-, and not isopropyl-, N-methylanthranilate possesses a protective potential against CCl4-induced kidney damage in rats. The results are of interest due to the presence of natural or synthetic methyl N-methylanthranilate in the human diet and their potent analgesic properties.
Collapse
|
15
|
Pinheiro MMG, Miltojević AB, Radulović NS, Abdul-Wahab IR, Boylan F, Fernandes PD. Anti-inflammatory activity of Choisya ternata Kunth essential oil, ternanthranin, and its two synthetic analogs (methyl and propyl N-methylanthranilates). PLoS One 2015; 10:e0121063. [PMID: 25807367 PMCID: PMC4373924 DOI: 10.1371/journal.pone.0121063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/27/2015] [Indexed: 11/25/2022] Open
Abstract
Choisya ternata Kunth (Rutaceae) is native to North America where it is popularly known as "Mexican orange". In this study, the anti-inflammatory effects of the essential oil (EO) obtained from the leaves of C. ternata, one of its minor components (ternanthranin-ISOAN) and its two synthetic analogues (methyl and propyl N-methylanthranilate--MAN and PAN) were evaluated. Mice pretreated with the EO (EO) obtained from C. ternata leaves (3-100 mg/kg, p.o.), ISOAN, MAN or PAN (1-30 mg/kg, p.o.) and the reference drugs, morphine (1 mg/kg, p.o.) and acetylsalicylic acid (ASA, 100 mg/kg, p.o.), were evaluated in inflammation models such as formalin and subcutaneous air pouch models, with measurement of cell migration, exudate volume, protein extravasation, nitric oxide and pro-inflammatory cytokines. The EO from C. ternata significantly inhibited the time that the animals spent licking the formalin-injected paw in the second phase of the model at their higher doses (30 and 100 mg/kg, respectively). An inhibition of the inflammatory reaction induced after subcutaneous carrageenan injection into air pouch was also observed. In this model, the EO significantly reduced cell migration, exudate volume, protein extravased, and the increase in levels of inflammatory mediators (nitric oxide, TNF-α and IL-1β). ISOAN, MAN and PAN behaved in the same fashion at much smaller doses. Also, these molecules were able to show significant effects in the reduction of paw edema (at all tested doses) when the phlogistic agent was carrageenan, bradykinin, 5-HT, PGE2, C48/80 or 12-O-tetradecanoylphorbol-acetate (TPA). None of the tested doses had any effect in reducing histamine-induced edema. Our results indicate that the EO from C. ternata and anthranilate derivatives demonstrates an anti-inflammatory effect.
Collapse
Affiliation(s)
- Mariana Martins Gomes Pinheiro
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brasil
| | - Ana B. Miltojević
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Niko S. Radulović
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Ikarastika Rahayu Abdul-Wahab
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Patrícia Dias Fernandes
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brasil
| |
Collapse
|
16
|
Abstract
Peptic ulcer is a common disease characterized by lesions that affect the mucosa of the esophagus, stomach and/or duodenum, and may extend into the muscular layer of the mucosa. Natural products have played an important role in the process of development and discovery of new drugs, due to their wide structural diversity and present, mostly specific and selective biological activities. Among natural products the alkaloids, biologically active secondary metabolites, that can be found in plants, animals or microorganisms stand out. The alkaloids are compounds consisting of a basic nitrogen atom that may or may not be part of a heterocyclic ring. This review will describe 15 alkaloids with antiulcer activity in animal models and in vitro studies.
Collapse
|
17
|
Miltojević AB, Radulović NS. Structural elucidation of thermolysis products of methyl N-methyl-N-nitrosoanthranilate. RSC Adv 2015. [DOI: 10.1039/c5ra07612a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MethylN-methyl-N-nitrosoanthranilate thermolysis in the vapor and condensed phases gave different coupling products, dimethyl 2,2′-(1,2-dimethylhydrazine-1,2-diyl)dibenzoate and methyl 5-methyl-6-oxo-(5H)-phenanthridine-4-carboxylate, respectively.
Collapse
Affiliation(s)
- Ana B. Miltojević
- Department of Chemistry
- Faculty of Science and Mathematics
- University of Niš
- 18000 Niš
- Serbia
| | - Niko S. Radulović
- Department of Chemistry
- Faculty of Science and Mathematics
- University of Niš
- 18000 Niš
- Serbia
| |
Collapse
|
18
|
Pejović A, Denić MS, Stevanović D, Damljanović I, Vukićević M, Kostova K, Tavlinova-Kirilova M, Randjelović P, Stojanović NM, Bogdanović GA, Blagojević P, D'hooghe M, Radulović NS, Vukićević RD. Discovery of anxiolytic 2-ferrocenyl-1,3-thiazolidin-4-ones exerting GABAA receptor interaction via the benzodiazepine-binding site. Eur J Med Chem 2014; 83:57-73. [PMID: 24950490 DOI: 10.1016/j.ejmech.2014.05.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/05/2014] [Accepted: 05/25/2014] [Indexed: 11/26/2022]
Abstract
Herein, we report on the synthesis, spectral, crystallographic and electrochemical properties of a small library of N-substituted 2-ferrocenyl-1,3-thiazolidin-4-ones, designed as novel GABAA benzodiazepine-binding site ligands. The anxiolytic properties of the title compounds were evaluated in several different in vivo models, whereas the involvement of the GABAA receptor complex in the activity of the most potent compound, 2-ferrocenyl-3-(4-methoxyphenylethyl)-1,3-thiazolidin-4-one, was inferred from experiments with known GABAA-targeting agents. Ligand docking experiments revealed that the high, dose-dependent, anxiolytic activity of the new compounds might be due to their favorable interactions with the benzodiazepine-binding site of the GABAA receptor complex. The incorporation of the ferrocene core and fine tuning of the distance between the thiazolidinone core and an additional aromatic ring were judged to be crucial structural requirements for the observed anxiolytic effect.
Collapse
Affiliation(s)
- Anka Pejović
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Marija S Denić
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Dragana Stevanović
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Ivan Damljanović
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Mirjana Vukićević
- Department of Pharmacy, Faculty of Medicinal Sciences, University of Kragujevac, S. Markovića 69, 34000 Kragujevac, Serbia
| | - Kalina Kostova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Bl. 9, Acad. G. Bonchev Str., Sofia 1113, Bulgaria
| | - Maya Tavlinova-Kirilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Bl. 9, Acad. G. Bonchev Str., Sofia 1113, Bulgaria
| | - Pavle Randjelović
- Department of Physiology, Faculty of Medicine, University of Niš, Bulevаr Zorana Đinđića 81, 18000 Niš, Serbia
| | - Nikola M Stojanović
- Faculty of Medicine, University of Niš, Bulevаr Zorana Đinđića 81, 18000 Niš, Serbia
| | - Goran A Bogdanović
- Vinča Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, PO Box 522, 11001 Belgrade, Serbia
| | - Polina Blagojević
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Niko S Radulović
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia.
| | - Rastko D Vukićević
- Department of Chemistry, Faculty of Science, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
19
|
Pinheiro MMG, Radulović NS, Miltojević AB, Boylan F, Dias Fernandes P. Antinociceptive esters of N-methylanthranilic acid: Mechanism of action in heat-mediated pain. Eur J Pharmacol 2014; 727:106-14. [PMID: 24486396 DOI: 10.1016/j.ejphar.2013.12.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 11/28/2013] [Accepted: 12/21/2013] [Indexed: 01/23/2023]
Abstract
Recently, we identified a new natural antinociceptive alkaloid ternanthranin, isopropyl N-methylanthranilate (ISOAN), from the plant species Choisya ternata Kunth (Rutaceae). In this work we concentrated on the elucidation of its mechanism of action in comparison with two other esters of this acid (methyl (MAN) and propyl (PAN)). Mice orally pre-treated with ISOAN, MAN or PAN (at 0.3, 1 and 3mg/kg) were less sensitive to chemical or thermal stimuli in different nociception models (formalin-, capsaicin- and glutamate-induced licking response, tail flick and hot plate). All compounds (1 and 3mg/kg) showed significant activity in the peripheral nociception models, as well as a dose-dependent spinal antinociceptive effect in the tail flick model. We observed that glibenclamide was able to reverse the antinociceptive effect of ISOAN in the hot plate model suggesting the involvement of K(+)ATP channels. The antinociceptive effect of MAN and PAN may be related to adrenergic, nitrergic and serotoninergic pathways. In addition, the antinociception of PAN was reverted by naloxone implying that the opioid pathway participates in its activity. The cholinergic and cannabinoid systems were found not be involved in the onset of the antinociceptive effects of any of the esters. In conclusion, isopropyl, methyl and propyl N-methylanthranilates produced significant peripheral and central antinociception at doses lower than that of morphine, the classical opioid analgesic drug, without causing toxicity.
Collapse
Affiliation(s)
- Mariana Martins Gomes Pinheiro
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brazil
| | - Niko S Radulović
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Ana B Miltojević
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Patrícia Dias Fernandes
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Dor e da Inflamação, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Methyl and isopropyl N-methylanthranilates attenuate diclofenac- and ethanol-induced gastric lesions in rats. Life Sci 2013; 93:840-6. [DOI: 10.1016/j.lfs.2013.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/24/2013] [Accepted: 10/02/2013] [Indexed: 01/12/2023]
|