1
|
Antezana PE, Municoy S, Silva Sofrás FM, Bellino MG, Evelson P, Desimone MF. Alginate-based microencapsulation as a strategy to improve the therapeutic potential of cannabidiolic acid. Int J Pharm 2025; 669:125076. [PMID: 39667593 DOI: 10.1016/j.ijpharm.2024.125076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Cannabidiolic Acid (CBDA) is a promising natural compound with potent antioxidant, anti-inflammatory, and anti-emetic properties. Its antioxidant activity rivals that of vitamin E, while its anti-inflammatory effects are also remarkable. Additionally, CBDA has been shown to effectively reduce nausea and emetic attacks. As a more natural and water-soluble alternative to CBD, CBDA offers improved bioavailability and absorption. However, despite its promising potential, the development of effective CBDA delivery systems is still in its early stages. Among the various materials suitable for drug delivery, alginate is a widely used biopolymer due to its abundance and common availability in nature. This study aimed to develop an efficient CBDA delivery carrier using a microflow-dripping method to microencapsulate CBDA into alginate carriers (Alg-CBDA). The antioxidant, antimicrobial, and cytotoxicity properties of these Alg-CBDA capsules were then evaluated. Our results demonstrated that encapsulating CBDA within alginate capsules yielded a novel multifunctional biomaterial with prolonged antioxidant activity up to 72 h and antimicrobial activity against Gram-positive bacteria. Furthermore, the encapsulation process significantly reduced CBDA's cytotoxicity, broadening its potential applications. To our knowledge, this is the first study demonstrating the advantages of CBDA within a drug delivery framework.
Collapse
Affiliation(s)
- Pablo E Antezana
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Sofía Municoy
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Argentina
| | - Fresia M Silva Sofrás
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Argentina
| | - Martín G Bellino
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Av. Gral. Paz 1499, San Martín, Buenos Aires, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Martín F Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Argentina; Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
2
|
Solano-Orrala D, Silva-Cullishpuma DA, Díaz-Cruces E, Gómez-López VM, Toro-Mendoza J, Gomez d'Ayala G, Troconis J, Narváez-Muñoz C, Alexis F, Mercader-Ros MT, Lucas-Abellán C, Zamora-Ledezma C. Exploring the Potential of Nonpsychoactive Cannabinoids in the Development of Materials for Biomedical and Sports Applications. ACS APPLIED BIO MATERIALS 2024; 7:8177-8202. [PMID: 39563525 DOI: 10.1021/acsabm.4c01402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
This Perspective explores the potential of nonpsychoactive cannabinoids (NPCs) such as CBD, CBG, CBC, and CBN in developing innovative biomaterials for biomedical and sports applications. It examines their physicochemical properties, anti-inflammatory, analgesic, and neuroprotective effects, and their integration into various biomaterials such as hydrogels, sponges, films, and scaffolds. It also discusses the current challenges in standardizing formulations, understanding long-term effects, and understanding their intrinsical regulatory landscapes. Further, it discusses the promising applications of NPC-loaded materials in bone regeneration, wound management, and drug delivery systems, emphasizing their improved biocompatibility, mechanical properties, and therapeutic efficacy demonstrated in vitro and in vivo. The review also addresses innovative approaches to enhance NPC delivery including the use of computational tools and explores their potential in both biomedical and sports science contexts. By providing a comprehensive overview of the current state of research, this review aims to outline future directions, emphasizing the potential of NPCs in biomaterial science and regenerative medicine.
Collapse
Affiliation(s)
- Dulexy Solano-Orrala
- Higher Polytechnic School, UAX-Universidad Alfonso X el Sabio, Avda. Universidad, 1, Villanueva de la Canada, 28691 Madrid, Spain
| | - Dennis A Silva-Cullishpuma
- Nutrition, Food and Health (NAS), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Eliana Díaz-Cruces
- Law Ecotechnology and Innovation Keys for the 21 st Century Development Research Group, Faculty of Law, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Vicente M Gómez-López
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Jhoan Toro-Mendoza
- Centro de Biomedicina Molecular, Instituto Venezolano de Investigaciones Cientificas, Maracaibo 1020A, Venezuela
| | - Giovanna Gomez d'Ayala
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, Via Campi Flegrei, 34, Pozzuoli, 80078 Naples, Italy
| | - Jorge Troconis
- Instituto Politécnico Nacional, ESIME-UPALM, Ciudad de Mexico 07738, México
| | - Christian Narváez-Muñoz
- Departamento de Ciencias de la Energía y Mecánica, Universidad de las Fuerzas Armadas (ESPE), Sangolqui 171103, Ecuador
| | - Frank Alexis
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Institute for Energy and Materials, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Maria Teresa Mercader-Ros
- Nutrition, Food and Health (NAS), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Carmen Lucas-Abellán
- Nutrition, Food and Health (NAS), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Camilo Zamora-Ledezma
- Higher Polytechnic School, UAX-Universidad Alfonso X el Sabio, Avda. Universidad, 1, Villanueva de la Canada, 28691 Madrid, Spain
| |
Collapse
|
3
|
Niyangoda D, Aung ML, Qader M, Tesfaye W, Bushell M, Chiong F, Tsai D, Ahmad D, Samarawickrema I, Sinnollareddy M, Thomas J. Cannabinoids as Antibacterial Agents: A Systematic and Critical Review of In Vitro Efficacy Against Streptococcus and Staphylococcus. Antibiotics (Basel) 2024; 13:1023. [PMID: 39596719 PMCID: PMC11591022 DOI: 10.3390/antibiotics13111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Two major bacterial pathogens, Staphylococcus aureus and Streptococcus pyogenes, are becoming increasingly antibiotic-resistant. Despite the urgency, only a few new antibiotics have been approved to address these infections. Although cannabinoids have been noted for their antibacterial properties, a comprehensive review of their effects on these bacteria has been lacking. OBJECTIVE This systematic review examines the antibacterial activity of cannabinoids against S. aureus, including methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) strains, and S. pyogenes. METHODS Databases, including CINAHL, Cochrane, Medline, Scopus, Web of Science, and LILACS, were searched. Of 3510 records, 24 studies met the inclusion criteria, reporting on the minimum inhibitory concentration (MIC) and minimum bactericidal concentration of cannabinoids. RESULTS Cannabidiol (CBD) emerged as the most effective cannabinoid, with MICs ranging from 0.65 to 32 mg/L against S. aureus, 0.5 to 4 mg/L for MRSA, and 1 to 2 mg/L for VRSA. Other cannabinoids, such as cannabichromene, cannabigerol (CBG), and delta-9-tetrahydrocannabinol (Δ9-THC), also exhibited significant antistaphylococcal activity. CBD, CBG, and Δ9-THC also showed efficacy against S. pyogenes, with MICs between 0.6 and 50 mg/L. Synergistic effects were observed when CBD and essential oils from Cannabis sativa when combined with other antibacterial agents. CONCLUSION Cannabinoids' antibacterial potency is closely linked to their structure-activity relationships, with features like the monoterpene region, aromatic alkyl side chain, and aromatic carboxylic groups enhancing efficacy, particularly in CBD and its cyclic forms. These results highlight the potential of cannabinoids in developing therapies for resistant strains, though further research is needed to confirm their clinical effectiveness.
Collapse
Affiliation(s)
- Dhakshila Niyangoda
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.B.)
- Department of Pharmacy, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Myat Lin Aung
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.B.)
| | - Mallique Qader
- Institute for Tuberculosis Research, Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Wubshet Tesfaye
- School of Pharmacy, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mary Bushell
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.B.)
| | - Fabian Chiong
- Department of Infectious Diseases, The Canberra Hospital, Garran, ACT 2605, Australia;
- School of Medicine and Psychology, Australian National University, Canberra, ACT 2601, Australia;
| | - Danny Tsai
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Alice Springs, NT 0870, Australia;
- University of Queensland Centre for Clinical Research, The University of Queensland, Herston, QLD 4029, Australia
- Pharmacy Department, Alice Springs Hospital, Central Australian Region Health Service, Alice Springs, NT 0870, Australia
| | - Danish Ahmad
- School of Medicine and Psychology, Australian National University, Canberra, ACT 2601, Australia;
| | | | - Mahipal Sinnollareddy
- Clinical Pharmacology and Pharmacometrics, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA;
| | - Jackson Thomas
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.B.)
| |
Collapse
|
4
|
Mims MM, Parikh AC, Sandhu Z, DeMoss N, Mhawej R, Queimado L. Surgery-Related Considerations in Treating People Who Use Cannabis: A Review. JAMA Otolaryngol Head Neck Surg 2024; 150:918-924. [PMID: 39172477 DOI: 10.1001/jamaoto.2024.2545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Importance Cannabis use has experienced substantial growth. Many patients treated by otolaryngologists are using cannabis in various forms, often without the knowledge of the treating surgeon. These cannabinoid substances have various systemic effects, and it is critical for otolaryngologists to recognize how cannabis use may contribute to a patient's care. Observations Cannabis use has effects that contribute to every phase of a surgeon's care. Preoperative counseling for tapering use may prevent increased rates of adverse effects. Care with anesthesia must be observed due to increased rates of myocardial ischemia, higher tolerance to standard doses, and prolonged sedation. Although results of studies are mixed, there may be an association with cannabis use and postoperative pain, nausea, and vomiting. Postoperative wound healing may be improved through the use of topical cannabinoids. Significant drug-drug interactions exist with cannabis, most notably with several common anticoagulant medications. Care should be exercised when managing medications for people who use cannabis. While many people who use cannabis consume it infrequently, a substantial population has developed cannabis use disorder, which is associated with increased morbidity and mortality postoperatively. Screening for cannabis use disorder is important and can be done through short screening tools. Conclusions and Relevance Patients who use cannabis may require special attention regarding preoperative counseling and workup, intraoperative anesthesia, postoperative pain management, nausea, wound healing, and drug-drug interactions. As patient use continues to increase, otolaryngologists will find an increasing need to remain up to date on how cannabis use contributes to patient care.
Collapse
Affiliation(s)
- Mark M Mims
- Department of Otolaryngology-Head and Neck Surgery, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Aniruddha C Parikh
- Department of Otolaryngology-Head and Neck Surgery, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Zainab Sandhu
- University of Oklahoma Medical School, Oklahoma City
| | - Noah DeMoss
- University of Oklahoma Medical School, Oklahoma City
| | - Rachad Mhawej
- Department of Otolaryngology-Head and Neck Surgery, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Lurdes Queimado
- Department of Otolaryngology-Head and Neck Surgery, University of Oklahoma Health Sciences Center, Oklahoma City
| |
Collapse
|
5
|
Torabi J, Luis H, Hurlbutt M. Anticaries and Antigingivitis Properties of Cannabinoid-Containing Oral Health Products: A Review. Cannabis Cannabinoid Res 2024; 9:e1377-e1384. [PMID: 38593455 DOI: 10.1089/can.2023.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
To evaluate the anticaries and antigingivitis properties of cannabinoid-containing oral health products. A systematic research strategy was employed. Specific search terms were used, including "Cannabinoids AND dental caries," "Cannabinoids AND oral health," "Cannabinoids AND dental plaque," "Cannabinoids AND gingivitis AND periodontitis," "Cannabinoids AND S. mutans," "Cannabidiol AND oral health," and "Cannabidiol AND oral biofilm." The search was conducted in PubMed, Cochrane, and EBSCO Host databases. The search yielded a total of 73 articles, out of which 15 articles (20.5%) were relevant to the scope of this systematic review. Among the relevant articles, only eight (10.9%) directly addressed the research question. The findings from these articles suggest that cannabinoids have the potential to reduce the metabolism of cariogenic bacteria, specifically Streptococcus mutans, and decrease the number of bacterial colonies in dental plaque. In vitro studies also demonstrated a significant inhibitory effect of cannabinoids on oral biofilms and create a considerable inhibitory zone of growth when investigated on oral biofilms in vitro. Furthermore, CBD exhibited antibacterial properties against Porphyromonas gingivalis, a primary pathogen associated with periodontal disease. The current review shows insufficient data to conclude on the anticaries and antigingivitis effects of cannabinoids. Despite extensive research on their systemic therapeutic benefits, their oral health impact remains underexplored, lacking clinical trials and primary research.
Collapse
Affiliation(s)
- Jila Torabi
- West Coast University, Dental Hygiene Program, Anaheim, CA, USA
- Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), RHODes-Dental Hygienists for Science, Faculdade de Medicina Dentária, Universidade de Lisboa, Lisboa, Portugal
| | - Henrique Luis
- Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), RHODes-Dental Hygienists for Science, Faculdade de Medicina Dentária, Universidade de Lisboa, Lisboa, Portugal
- Center for Innovative Care and Health Technology (ciTechcare), Polytechnic of Leiria, Leiria, Portugal
| | | |
Collapse
|
6
|
Israni DK, Raghani NR, Soni J, Shah M, Prajapati BG, Chorawala MR, Mangmool S, Singh S, Chittasupho C. Harnessing Cannabis sativa Oil for Enhanced Skin Wound Healing: The Role of Reactive Oxygen Species Regulation. Pharmaceutics 2024; 16:1277. [PMID: 39458608 PMCID: PMC11510192 DOI: 10.3390/pharmaceutics16101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Cannabis sativa emerges as a noteworthy candidate for its medicinal potential, particularly in wound healing. This review article explores the efficacy of cannabis oil in reducing reactive oxygen species (ROS) during the healing of acute and chronic wounds, comparing it to the standard treatments. ROS, produced from various internal and external sources, play a crucial role in wound development by causing cell and tissue damage. Understanding the role of ROS on skin wounds is essential, as they act both as signaling molecules and contributors to oxidative damage. Cannabis oil, recognized for its antioxidant properties, may help mitigate oxidative damage by scavenging ROS and upregulating antioxidative mechanisms, potentially enhancing wound healing. This review emphasizes ongoing research and the future potential of cannabis oil in dermatological treatments, highlighted through clinical studies and patent updates. Despite its promising benefits, optimizing cannabis oil formulations for therapeutic applications remains a challenge, underscoring the need for further research to realize its medicinal capabilities in wounds.
Collapse
Affiliation(s)
- Dipa K. Israni
- Department of Pharmacology, L J Institute of Pharmacy, L J University, Ahmedabad 382210, Gujarat, India; (D.K.I.); (M.S.)
| | - Neha R. Raghani
- Department of Pharmacology and Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar 382355, Gujarat, India;
| | - Jhanvi Soni
- Department of Pharmacology, Parul Institute of Pharmacy, Parul University, Waghodia, Vadodara 391760, Gujarat, India;
| | - Mansi Shah
- Department of Pharmacology, L J Institute of Pharmacy, L J University, Ahmedabad 382210, Gujarat, India; (D.K.I.); (M.S.)
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva 384012, Gujarat, India;
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Mehul R. Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India;
| | | | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chuda Chittasupho
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
7
|
Mulla SA, Patil A, Mali S, Jain AK, Jaiswal H, Sawant HR, Arvind R, Singh S. Unleashing the therapeutic role of cannabidiol in dentistry. J Oral Biol Craniofac Res 2024; 14:649-654. [PMID: 39296277 PMCID: PMC11409039 DOI: 10.1016/j.jobcr.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Cannabidiol (CBD) found in Cannabis sativa is a non-psychoactive compound which is capable of binding to CB1 and CB2 receptors. CBD has recently gained interest in dentistry although it has not been explored sufficiently yet. The therapeutic effects of CBD include anti-inflammatory, analgesic, antioxidant, biological and osteoinductive properties. The aim of this review is to highlight these effects with respect to various oral conditions and shed light on the current limitations and prospects for the use of CBD in maintaining oral health.
Collapse
Affiliation(s)
- Sayem Anwarhussain Mulla
- Department of Dentistry, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Navi Mumbai, Maharashtra, India, 400614
| | - Amit Patil
- Department of Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Navi Mumbai, Maharashtra, India, 400614
| | - Sheetal Mali
- Department of Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Navi Mumbai, Maharashtra, India, 400614
| | - Ashish K Jain
- Department of Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Navi Mumbai, Maharashtra, India, 400614
| | - Himmat Jaiswal
- Department of Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Navi Mumbai, Maharashtra, India, 400614
| | - Hitesh Ramdas Sawant
- Department of Orthodontics and Dentofacial Orthopaedics, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Navi Mumbai, Maharashtra, India, 400614
| | - Ritvi Arvind
- Department of Conservative Dentistry and Endodontics, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Navi Mumbai, Maharashtra, India, 400614
| | - Shruti Singh
- Department of Dentistry, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Navi Mumbai, Maharashtra, India, 400614
| |
Collapse
|
8
|
Niyangoda D, Muayad M, Tesfaye W, Bushell M, Ahmad D, Samarawickrema I, Sinclair J, Kebriti S, Maida V, Thomas J. Cannabinoids in Integumentary Wound Care: A Systematic Review of Emerging Preclinical and Clinical Evidence. Pharmaceutics 2024; 16:1081. [PMID: 39204426 PMCID: PMC11359183 DOI: 10.3390/pharmaceutics16081081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
This systematic review critically evaluates preclinical and clinical data on the antibacterial and wound healing properties of cannabinoids in integument wounds. Comprehensive searches were conducted across multiple databases, including CINAHL, Cochrane library, Medline, Embase, PubMed, Web of Science, and LILACS, encompassing records up to May 22, 2024. Eighteen studies met the inclusion criteria. Eleven were animal studies, predominantly utilizing murine models (n = 10) and one equine model, involving 437 animals. The seven human studies ranged from case reports to randomized controlled trials, encompassing 92 participants aged six months to ninety years, with sample sizes varying from 1 to 69 patients. The studies examined the effects of various cannabinoid formulations, including combinations with other plant extracts, crude extracts, and purified and synthetic cannabis-based medications administered topically, intraperitoneally, orally, or sublingually. Four animal and three human studies reported complete wound closure. Hemp fruit oil extract, cannabidiol (CBD), and GP1a resulted in complete wound closure in twenty-three (range: 5-84) days with a healing rate of 66-86% within ten days in animal studies. One human study documented a wound healing rate of 3.3 cm2 over 30 days, while three studies on chronic, non-healing wounds reported an average healing time of 54 (21-150) days for 17 patients by oral oils with tetrahydrocannabinol (THC) and CBD and topical gels with THC, CBD, and terpenes. CBD and tetrahydrocannabidiol demonstrated significant potential in reducing bacterial loads in murine models. However, further high-quality research is imperative to fully elucidate the therapeutic potential of cannabinoids in the treatment of bacterial skin infections and wounds. Additionally, it is crucial to delineate the impact of medicinal cannabis on the various phases of wound healing. This study was registered in PROSPERO (CRD42021255413).
Collapse
Affiliation(s)
- Dhakshila Niyangoda
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.M.); (M.B.)
- Department of Pharmacy, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Mohammed Muayad
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.M.); (M.B.)
| | - Wubshet Tesfaye
- School of Pharmacy, Faculty of Health and Behavioural Sciences, University of Queensland, Queensland, QLD 4072, Australia;
| | - Mary Bushell
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.M.); (M.B.)
| | - Danish Ahmad
- School of Medicine and Psychology, Australian National University, Canberra, ACT 2601, Australia;
| | | | - Justin Sinclair
- Australian Natural Therapeutics Group, Byron Bay, NSW 2481, Australia;
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Shida Kebriti
- Eczanes Pharmaceuticals, Rydalmere, NSW 2116, Australia;
| | - Vincent Maida
- Temerity Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Hospice Vaughan, Woodbridge, ON L4H 3G7, Canada
| | - Jackson Thomas
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.M.); (M.B.)
| |
Collapse
|
9
|
Shah P, Holmes K, Chibane F, Wang P, Chagas P, Salles E, Jones M, Palines P, Masoumy M, Baban B, Yu J. Cutaneous Wound Healing and the Effects of Cannabidiol. Int J Mol Sci 2024; 25:7137. [PMID: 39000244 PMCID: PMC11241632 DOI: 10.3390/ijms25137137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Cutaneous wounds, both acute and chronic, begin with loss of the integrity, and thus barrier function, of the skin. Surgery and trauma produce acute wounds. There are 22 million surgical procedures per year in the United States alone, based on data from the American College of Surgeons, resulting in a prevalence of 6.67%. Acute traumatic wounds requiring repair total 8 million per year, 2.42% or 24.2 per 1000. The cost of wound care is increasing; it approached USD 100 billion for just Medicare in 2018. This burden for wound care will continue to rise with population aging, the increase in metabolic syndrome, and more elective surgeries. To heal a wound, an orchestrated, evolutionarily conserved, and complex series of events involving cellular and molecular agents at the local and systemic levels are necessary. The principal factors of this important function include elements from the neurological, cardiovascular, immune, nutritional, and endocrine systems. The objectives of this review are to provide clinicians engaged in wound care and basic science researchers interested in wound healing with an updated synopsis from recent publications. We also present data from our primary investigations, testing the hypothesis that cannabidiol can alter cutaneous wound healing and documenting their effects in wild type (C57/BL6) and db/db mice (Type 2 Diabetes Mellitus, T2DM). The focus is on the potential roles of the endocannabinoid system, cannabidiol, and the important immune-regulatory wound cytokine IL-33, a member of the IL-1 family, and connective tissue growth factor, CTGF, due to their roles in both normal and abnormal wound healing. We found an initial delay in the rate of wound closure in B6 mice with CBD, but this difference disappeared with time. CBD decreased IL-33 + cells in B6 by 70% while nearly increasing CTGF + cells in db/db mice by two folds from 18.6% to 38.8% (p < 0.05) using a dorsal wound model. We review the current literature on normal and abnormal wound healing, and document effects of CBD in B6 and db/db dorsal cutaneous wounds. CBD may have some beneficial effects in diabetic wounds. We applied 6-mm circular punch to create standard size full-thickness dorsal wounds in B6 and db/db mice. The experimental group received CBD while the control group got only vehicle. The outcome measures were rate of wound closure, wound cells expressing IL-33 and CTGF, and ILC profiles. In B6, the initial rate of wound closure was slower but there was no delay in the time to final closure, and cells expressing IL-33 was significantly reduced. CTGF + cells were higher in db/bd wounds treated with CBD. These data support the potential use of CBD to improve diabetic cutaneous wound healing.
Collapse
Affiliation(s)
- Pearl Shah
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.S.); (K.H.); (F.C.); (M.J.)
| | - Kathryne Holmes
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.S.); (K.H.); (F.C.); (M.J.)
| | - Fairouz Chibane
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.S.); (K.H.); (F.C.); (M.J.)
| | - Phillip Wang
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.W.); (P.C.); (E.S.)
| | - Pablo Chagas
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.W.); (P.C.); (E.S.)
| | - Evila Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.W.); (P.C.); (E.S.)
| | - Melanie Jones
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.S.); (K.H.); (F.C.); (M.J.)
| | - Patrick Palines
- School of Medicine, Louisiana State University Health Sciences, New Orleans, LA 70112, USA; (P.P.); (M.M.)
| | - Mohamad Masoumy
- School of Medicine, Louisiana State University Health Sciences, New Orleans, LA 70112, USA; (P.P.); (M.M.)
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.W.); (P.C.); (E.S.)
| | - Jack Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (P.S.); (K.H.); (F.C.); (M.J.)
| |
Collapse
|
10
|
Singh H, Singh M, Nag S, Mohanto S, Jain K, Shrivastav A, Mishra AK, Pallavi J, Bhunia A, Subramaniyan V, Kumar A, Mishra A. Isolation and characterization of secondary metabolites from Bryophylum pinnatum (Lam.) Oken and assessment of wound healing efficacy using animal model. SOUTH AFRICAN JOURNAL OF BOTANY 2024; 169:531-542. [DOI: 10.1016/j.sajb.2024.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
|
11
|
Parikh AC, Jeffery CS, Sandhu Z, Brownlee BP, Queimado L, Mims MM. The effect of cannabinoids on wound healing: A review. Health Sci Rep 2024; 7:e1908. [PMID: 38410495 PMCID: PMC10895075 DOI: 10.1002/hsr2.1908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/05/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024] Open
Abstract
Background and Aims Cannabis and its various derivatives are commonly used for both recreational and medicinal purposes. Cannabinoids have been shown to have anti-inflammatory properties. Inflammation is an important component of wound healing and the effect of cannabinoids on wound healing has become a recent topic of investigation. The objective of this article is to perform a comprehensive review of the literature to summarize the effects of cannabinoids on wound healing of the skin and to guide future avenues of research. Methods A comprehensive literature review was performed to evaluate the effects of cannabinoids on cutaneous wound healing. Results Cannabinoids appear to improve skin wound healing through a variety of mechanisms. This is supported through a variety of in vitro and animal studies. Animal studies suggest application of cannabinoids may improve the healing of postsurgical and chronic wounds. There are few human studies which evaluate the effects of cannabinoids on wound healing and many of these are case series and observational studies. They do suggest cannabinoids may have some benefit. However, definitive conclusions cannot be drawn from them. Conclusion While further human studies are needed, topical application of cannabinoids may be a potential therapeutic option for postsurgical and chronic wounds.
Collapse
Affiliation(s)
- Aniruddha C. Parikh
- Departments of Otolaryngology Head and Neck SurgeryThe University of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Christopher S. Jeffery
- Departments of General SurgeryThe University of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Zainab Sandhu
- Departments of Otolaryngology Head and Neck SurgeryThe University of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Benjamin P. Brownlee
- Departments of Otolaryngology Head and Neck SurgeryThe University of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Lurdes Queimado
- Departments of Otolaryngology Head and Neck SurgeryThe University of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Departments of Cell BiologyThe University of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Department of Otolaryngology Head and Neck Surgery, TSET Health Promotion Research Center, Stephenson Cancer CenterThe University of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Mark M. Mims
- Departments of Otolaryngology Head and Neck SurgeryThe University of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| |
Collapse
|
12
|
Moniruzzaman M, Janjua TI, Martin JH, Begun J, Popat A. Cannabidiol - Help and hype in targeting mucosal diseases. J Control Release 2024; 365:530-543. [PMID: 37952828 DOI: 10.1016/j.jconrel.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/22/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Cannabidiol (CBD) is one of the most commonly utilised phytocannabinoids due to its non-psychoactive and multiple potential therapeutic properties and its non-selective pharmacology. Recent studies have demonstrated efficacy of CBD in some types of drug resistant epilepsies in combination with other therapies; comparative efficacy to other agents or placebo has been hoped for anxiety, chronic pain, and inflammatory disorders based on animal data. Although CBD products are generally treated as a restricted substance, these are being eased, partially in response to significant growth in CBD product usage and increased production but more due to emerging evidence about its safety and pharmacological properties. Currently, only one CBD product (Epidiolex®) has been approved by the Australian Therapeutic Goods Administration and US Food and Drug Administration. CBD has demonstrated promise in alleviating gut and lung diseases in vitro; however, its physicochemical properties pose a significant barrier to achieving pharmacological effects in in vivo and clinical trials. Improving CBD formulations and delivery methods using technologies including self-emulsifying emulsion, nano and micro particles could overcome these shortfalls and improve its efficacy. This review focuses on the therapeutic potential of CBD in gastrointestinal and lung diseases from the available in vitro, in vivo, and clinical research. We report on identified research gaps and obstacles in the development of CBD-based therapeutics, including novel delivery methods.
Collapse
Affiliation(s)
- Md Moniruzzaman
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia; Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Taskeen Iqbal Janjua
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jennifer H Martin
- Clinical Pharmacology, School of Medicine and Public Health, University of Newcastle, Hunter Medical Research Institute, Kookaburra Circuit, Australia
| | - Jakob Begun
- Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
13
|
Healy CR, Gethin G, Pandit A, Finn DP. Chronic wound-related pain, wound healing and the therapeutic potential of cannabinoids and endocannabinoid system modulation. Biomed Pharmacother 2023; 168:115714. [PMID: 37865988 DOI: 10.1016/j.biopha.2023.115714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
Chronic wounds represent a significant burden on the individual, and the healthcare system. Individuals with chronic wounds report pain to be the most challenging aspect of living with a chronic wound, with current therapeutic options deemed insufficient. The cutaneous endocannabinoid system is an important regulator of skin homeostasis, with evidence of system dysregulation in several cutaneous disorders. Herein, we describe the cutaneous endocannabinoid system, chronic wound-related pain, and comorbidities, and review preclinical and clinical evidence investigating endocannabinoid system modulation for wound-related pain and wound healing. Based on the current literature, there is some evidence to suggest efficacy of endocannabinoid system modulation for promotion of wound healing, attenuation of cutaneous disorder-related inflammation, and for the management of chronic wound-related pain. However, there is 1) a paucity of preclinical studies using validated models, specific for the study of chronic wound-related pain and 2) a lack of randomised control trials and strong clinical evidence relating to endocannabinoid system modulation for wound-related pain. In conclusion, while there is some limited evidence of benefit of endocannabinoid system modulation in wound healing and wound-related pain management, further research is required to better realise the potential of targeting the endocannabinoid system for these therapeutic applications.
Collapse
Affiliation(s)
- Catherine R Healy
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway City, Ireland; Galway Neuroscience Centre, University of Galway, Galway City, Ireland; Centre for Pain Research, University of Galway, Galway City, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway City, Ireland
| | - Georgina Gethin
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway City, Ireland; School of Nursing and Midwifery, University of Galway, Galway City, Ireland; Alliance for Research and Innovation in Wounds, University of Galway, Galway City, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway City, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway City, Ireland; Galway Neuroscience Centre, University of Galway, Galway City, Ireland; Centre for Pain Research, University of Galway, Galway City, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway City, Ireland.
| |
Collapse
|
14
|
Tran VN, Strnad O, Šuman J, Veverková T, Sukupová A, Cejnar P, Hynek R, Kronusová O, Šach J, Kaštánek P, Ruml T, Viktorová J. Cannabidiol nanoemulsion for eye treatment - Anti-inflammatory, wound healing activity and its bioavailability using in vitro human corneal substitute. Int J Pharm 2023; 643:123202. [PMID: 37406946 DOI: 10.1016/j.ijpharm.2023.123202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
Cannabidiol (CBD) is the non-psychoactive component of the plant Cannabis sativa (L.) that has great anti-inflammatory benefits and wound healing effects. However, its high lipophilicity, chemical instability, and extensive metabolism impair its bioavailability and clinical use. Here, we report on the preparation of a human cornea substitute in vitro and validate this substitute for the evaluation of drug penetration. CBD nanoemulsion was developed and evaluated for stability and biological activity. The physicochemical properties of CBD nanoemulsion were maintained during storage for 90 days under room conditions. In the scratch assay, nanoformulation showed significantly ameliorated wound closure rates compared to the control and pure CBD. Due to the lower cytotoxicity of nanoformulated CBD, a higher anti-inflammatory activity was demonstrated. Neither nanoemulsion nor pure CBD can penetrate the cornea after the four-hour apical treatment. For nanoemulsion, 94 % of the initial amount of CBD remained in the apical compartment while only 54 % of the original amount of pure CBD was detected in the apical medium, and 7 % in the cornea, the rest was most likely metabolized. In summary, the nanoemulsion developed in this study enhanced the stability and biological activity of CBD.
Collapse
Affiliation(s)
- Van Nguyen Tran
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Ondřej Strnad
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Jáchym Šuman
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Tereza Veverková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Adéla Sukupová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Pavel Cejnar
- Department of Mathematics, Informatics and Cybernetics, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Radovan Hynek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Olga Kronusová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; EcoFuel Laboratories Ltd., Ocelářská 392, 190 00 Prague 9, Czech Republic
| | - Josef Šach
- Department of Pathology, Third Faculty of Medicine, Teaching Hospital Královské Vinohrady Prague, Šrobárova 50, 100 34 Prague 10, Czech Republic
| | - Petr Kaštánek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic; EcoFuel Laboratories Ltd., Ocelářská 392, 190 00 Prague 9, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 16628 Prague 6, Czech Republic.
| |
Collapse
|
15
|
Momenzadeh K, Yeritsyan D, Kheir N, Nazarian RM, Nazarian A. Propylene glycol and Kolliphor as solvents for systemic delivery of cannabinoids via intraperitoneal and subcutaneous routes in preclinical studies: a comparative technical note. J Cannabis Res 2023; 5:24. [PMID: 37340498 DOI: 10.1186/s42238-023-00194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Substance administration to laboratory animals necessitates careful consideration and planning in order to enhance agent distribution while reducing any harmful effects from the technique. There are numerous methods for administering cannabinoids; however, several parameters must be considered, including delivery frequency, volume of administration, vehicle, and the level of competence required for staff to use these routes properly. There is a scarcity of information about the appropriate delivery method for cannabinoids in animal research, particularly those that need the least amount of animal manipulation during the course of the investigation. This study aims to assess the feasibility and potential side effects of intraperitoneal and subcutaneous injection of CBD and THC using propylene glycol or Kolliphor in animal models. By evaluating the ease of use and histopathological side effects of these solvents, this study intends to help researchers better understand an accessible long-term delivery route of administration in animal experiments while minimizing the potential confounding effects of the delivery method on the animal. METHODS Intraperitoneal and subcutaneous methods of systemic cannabis administration were tested in rat models. Subcutaneous delivery via needle injection and continuous osmotic pump release were evaluated using propylene glycol or Kolliphor solvents. In addition, the use of a needle injection and a propylene glycol solvent for intraperitoneal (IP) administration was investigated. Skin histopathological changes were evaluated following a trial of subcutaneous injections of cannabinoids utilizing propylene glycol solvent. DISCUSSION Although IP delivery of cannabinoids with propylene glycol as solvent is a viable method and is preferable to oral treatment in order to reduce gastrointestinal tract degradation, it has substantial feasibility limitations. We conclude that subcutaneous delivery utilizing osmotic pumps with Kolliphor as a solvent provides viable and consistent route of administration for long-term systemic cannabinoid delivery in the preclinical context.
Collapse
Affiliation(s)
- Kaveh Momenzadeh
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Diana Yeritsyan
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Nadim Kheir
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Rosalyn M Nazarian
- Pathology Service, Dermatopathology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, Armenia.
| |
Collapse
|
16
|
Bellocchio L, Patano A, Inchingolo AD, Inchingolo F, Dipalma G, Isacco CG, de Ruvo E, Rapone B, Mancini A, Lorusso F, Scarano A, Malcangi G, Inchingolo AM. Cannabidiol for Oral Health: A New Promising Therapeutical Tool in Dentistry. Int J Mol Sci 2023; 24:ijms24119693. [PMID: 37298644 DOI: 10.3390/ijms24119693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
The medical use of cannabis has a very long history. Although many substances called cannabinoids are present in cannabis, Δ9tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD) and cannabinol (CBN) are the three main cannabinoids that are most present and described. CBD itself is not responsible for the psychotropic effects of cannabis, since it does not produce the typical behavioral effects associated with the consumption of this drug. CBD has recently gained growing attention in modern society and seems to be increasingly explored in dentistry. Several subjective findings suggest some therapeutic effects of CBD that are strongly supported by research evidence. However, there is a plethora of data regarding CBD's mechanism of action and therapeutic potential, which are in many cases contradictory. We will first provide an overview of the scientific evidence on the molecular mechanism of CBD's action. Furthermore, we will map the recent developments regarding the possible oral benefits of CBD. In summary, we will highlight CBD's promising biological features for its application in dentistry, despite exiting patents that suggest the current compositions for oral care as the main interest of the industry.
Collapse
Affiliation(s)
- Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, University of Bordeaux, 33063 Bordeaux, France
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | | | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Elisabetta de Ruvo
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | - Felice Lorusso
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Antonio Scarano
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Study "Aldo Moro", 70124 Bari, Italy
| | | |
Collapse
|
17
|
Sun X. Research Progress on Cannabinoids in Cannabis ( Cannabis sativa L.) in China. Molecules 2023; 28:molecules28093806. [PMID: 37175216 PMCID: PMC10180461 DOI: 10.3390/molecules28093806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 05/15/2023] Open
Abstract
Cannabis (Cannabis sativa L.) is an ancient cultivated plant that contains less than 0.3% tetrahydrocannabinol (THC). It is widely utilized at home and abroad and is an economic crop with great development and utilization value. There are 31 countries legalizing industrial cannabis cultivation. Cannabis fiber has been used for textile production in China for 6000 years. China is the largest producer and exporter of cannabis. China may still play a leading role in the production of cannabis fiber. China has a long history of cannabis cultivation and rich germplasm resources. Yunnan, Heilongjiang, and Jilin are three Chinese provinces where industrial cannabis can be grown legally. Cannabinoids are terpenoid phenolic compounds produced during the growth, and which development of cannabis and are found in the glandular hairs of female flowers at anthesis. They are the active chemical components in the cannabis plant and the main components of cannabis that exert pharmacological activity. At the same time, research in China on the use of cannabis in the food industry has shown that industrial cannabis oil contains 13-20% oleic acid, 40-60% omega-6 linoleic acid, and 15-30% omega-3 α-linolenic acid. At present, more than 100 cannabinoids have been identified and analyzed in China, among which phenolic compounds are the main research objects. For instance, phenolic substances represented by cannabidiol (CBD) have rich pharmacological effects. There are still relatively little research on cannabinoids, and a comprehensive introduction to research progress in this area is needed. This paper reviews domestic and foreign research progress on cannabinoids in cannabis sativa, which is expected to support cannabis-related research and development.
Collapse
Affiliation(s)
- Xiangping Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| |
Collapse
|
18
|
Umpreecha C, Bhalang K, Charnvanich D, Luckanagul J. Efficacy and safety of topical 0.1% cannabidiol for managing recurrent aphthous ulcers: a randomized controlled trial. BMC Complement Med Ther 2023; 23:57. [PMID: 36803360 PMCID: PMC9940329 DOI: 10.1186/s12906-023-03886-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Although topical steroids constitute the first-line therapy for recurrent aphthous ulcers (RAUs), their long-term use often leads to candidiasis. Although cannabidiol (CBD) can be an alternative for pharmacologically managing RAUs due to its analgesic and anti-inflammatory in vivo effects, there is a lack of clinical and safety trials concerning its use. The aim of this study was to evaluate the clinical safety and efficacy of topical 0.1% CBD for managing RAU. METHODS A CBD patch test was performed on 100 healthy subjects. CBD was applied on the normal oral mucosa of 50 healthy subjects 3 times/day for 7 days. Oral examination, vital signs, and blood tests were performed pre- and post-CBD use. Another 69 RAU subjects randomly received one of three topical interventions: 0.1% CBD, 0.1% triamcinolone acetonide (TA), or placebo. These were applied on the ulcers 3 times/day for 7 days. The ulcer and erythematous size were measured on day 0, 2, 5, and 7. Pain ratings were recorded daily. The subjects rated their satisfaction with the intervention and completed a quality-of-life questionnaire (OHIP-14). RESULTS None of the subjects exhibited allergic reactions or side effects. Their vital signs and blood parameters were stable before and after the 7-day CBD intervention. CBD and TA significantly reduced ulcer size more than placebo at all time points. The erythematous size reduction was higher in the CBD intervention than the placebo on day 2, while TA reduced the erythematous size at all time points. The pain score in the CBD group was lower compared with placebo on day 5, whereas TA reduced pain more than placebo on day 4, 5, and 7. The subjects receiving CBD reported higher satisfaction than placebo. However, the OHIP-14 scores were comparable among the interventions. CONCLUSIONS Topical 0.1% CBD reduced ulcer size and accelerated ulcer healing without side effects. CBD exerted anti-inflammatory effects in the early stage and an analgesic effect in the late RAU stage. Thus, topical 0.1% CBD might be more appropriate for RAU patients who decline to take topical steroids, except for cases where CBD is contraindicated. TRIAL REGISTRATION Thai Clinical Trials Registry (TCTR) Number TCTR20220802004. Retrospectively registered on 02/08/2022.
Collapse
Affiliation(s)
- Chalapinyo Umpreecha
- Pathum Thani Provincial Public Health Office, Ministry of Public Health, 14 Rat Amnuay Road, Bang Prok, Muang, Pathum Thani, 12000, Thailand. .,Department of Oral Medicine, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
| | - Kanokporn Bhalang
- grid.7922.e0000 0001 0244 7875Department of Oral Medicine, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Dusadee Charnvanich
- grid.7922.e0000 0001 0244 7875Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Jittima Luckanagul
- grid.7922.e0000 0001 0244 7875Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| |
Collapse
|
19
|
David C, Elizalde-Hernández A, Barboza AS, Cardoso GC, Santos MBF, Moraes RR. Cannabidiol in Dentistry: A Scoping Review. Dent J (Basel) 2022; 10:193. [PMID: 36286003 PMCID: PMC9601225 DOI: 10.3390/dj10100193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cannabidiol (CBD) has been gaining increased attention in contemporary society but seems to have been little explored in dentistry. This scoping review mapped the scientific and technological scenarios related to the use of CBD in dentistry. Peer-reviewed publications were searched in five international databases, patents were searched in five technological platforms. In total, 11 articles and 13 patents involving CBD in dentistry-related applications were included. The countries contributing to most articles were Brazil (27.3%) and USA (18.2%). The studies involved experiments on animals (63.6%) and/or using bacteria or cells (36.4%), and no clinical study was found. Three different applications of CBD were observed: periodontal therapy (45.4%), aid for bone regeneration (27.3%), and general use in oral therapies (27.3%). Patent inventors were based in China (53.8%) or USA (46.2%). The patent claims were mainly compositions for oral care, tooth whitening, injury repair, antifungal, anti-inflammatory, and analgesic effects. A total of 76.9% of the patents were filed in association with a company. In general, research suggests that CBD has promising biological properties for applications in dentistry, whereas patents indicate that the current interest of industry relies on compositions for oral care. There appears to be extensive room available for research and technological applications of CBD in dentistry.
Collapse
Affiliation(s)
- Carla David
- Biopathological Research Group, Faculty of Dentistry (GIBFO), University of the Andes Mérida, Mérida 5101, Venezuela
- Graduate Program in Dentistry, Universidade Federal de Pelotas, Pelotas 96015-560, Brazil
| | | | - Andressa S. Barboza
- Graduate Program in Dentistry, Universidade Federal de Pelotas, Pelotas 96015-560, Brazil
| | - Gabriela C. Cardoso
- Graduate Program in Dentistry, Universidade Federal de Pelotas, Pelotas 96015-560, Brazil
| | - Mateus B. F. Santos
- Graduate Program in Dentistry, Universidade Federal de Pelotas, Pelotas 96015-560, Brazil
| | - Rafael R. Moraes
- Graduate Program in Dentistry, Universidade Federal de Pelotas, Pelotas 96015-560, Brazil
| |
Collapse
|
20
|
Fabrication and Preliminary In Vitro Evaluation of 3D-Printed Alginate Films with Cannabidiol (CBD) and Cannabigerol (CBG) Nanoparticles for Potential Wound-Healing Applications. Pharmaceutics 2022; 14:pharmaceutics14081637. [PMID: 36015263 PMCID: PMC9416381 DOI: 10.3390/pharmaceutics14081637] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, drug carrier nanoparticles comprised of Pluronic-F127 and cannabidiol (CBD) or cannabigerol (CBG) were developed, and their wound healing action was studied. They were further incorporated in 3D printed films based on sodium alginate. The prepared films were characterized morphologically and physicochemically and used to evaluate the drug release profiles of the nanoparticles. Additional studies on their water loss rate, water retention capacity, and 3D-printing shape fidelity were performed. Nanoparticles were characterized physicochemically and for their drug loading performance. They were further assessed for their cytotoxicity (MTT Assay) and wound healing action (Cell Scratch Assay). The in vitro wound-healing study showed that the nanoparticles successfully enhanced wound healing in the first 6 h of application, but in the following 6 h they had an adverse effect. MTT assay studies revealed that in the first 24 h, a concentration of 0.1 mg/mL nanoparticles resulted in satisfactory cell viability, whereas CBG nanoparticles were safe even at 48 h. However, in higher concentrations and after a threshold of 24 h, the cell viability was significantly decreased. The results also presented mono-disperse nano-sized particles with diameters smaller than 200 nm with excellent release profiles and enhanced thermal stability. Their entrapment efficiency and drug loading properties were higher than 97%. The release profiles of the active pharmaceutical ingredients from the films revealed a complete release within 24 h. The fabricated 3D-printed films hold promise for wound healing applications; however, more studies are needed to further elucidate their mechanism of action.
Collapse
|
21
|
Evidence-based Potential Therapeutic Applications of Cannabinoids in Wound Management. Adv Skin Wound Care 2022; 35:447-453. [PMID: 35588193 DOI: 10.1097/01.asw.0000831920.15801.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although wound management is a major component of all domains of healthcare, conventional therapeutics have numerous limitations. The endocannabinoid system of the skin, one of the major endogenous systems, has recently been connected to wound healing. Cannabinoids and their interactions with the endogenous chemical signaling system may be a promising therapeutic option because they address some of the fundamental pathways for physiologic derangement that underpin chronic integumentary wounds. RECENT ADVANCES The therapeutic applications of cannabinoids are increasing because of their legalization and resulting market expansion. Recently, their immunosuppressive and anti-inflammatory properties have been explored for the treatment of wounds that are not effectively managed by conventional medicines. CRITICAL ISSUES Failure to manage wounds effectively is associated with reduced quality of life, disability, mortality, and increased healthcare expenditures. Therapeutic options that can manage wounds effectively and efficiently are needed. In this review, the authors summarize recent advances on the use of cannabinoids to treat skin disorders with an emphasis on wound management. FUTURE DIRECTIONS Effective wound management requires medicines with good therapeutic outcomes and minimal adverse effects. Despite the promising results of cannabinoids in wound management, further controlled clinical studies are required to establish the definitive role of these compounds in the pathophysiology of wounds and their usefulness in the clinical setting.
Collapse
|
22
|
Kongkadee K, Wisuitiprot W, Ingkaninan K, Waranuch N. Anti-inflammation and Gingival Wound Healing Activities of Cannabis sativa L. subsp. sativa (hemp) Extract and Cannabidiol: An in vitro Study. Arch Oral Biol 2022; 140:105464. [DOI: 10.1016/j.archoralbio.2022.105464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/03/2022] [Accepted: 05/15/2022] [Indexed: 11/28/2022]
|
23
|
Lee JH, Lee KE, Nam OH, Chae YK, Lee MH, Kweon DK, Kim MS, Lee HS, Choi SC. Orodispersible hyaluronic acid film delivery for oral wound healing in rats. J Dent Sci 2022; 17:1595-1603. [PMID: 36299335 PMCID: PMC9588893 DOI: 10.1016/j.jds.2022.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background/purpose Oral wound healing undergoes a dynamic process of oral environment. This study aimed to investigate the effects of hyaluronic acid (HA) film on oral wound healing in a rat model. Materials and methods A total of 60 rats with tongue wounds (5 mm in diameter) were randomly divided into control (n = 20), HA gel (n = 20), and HA film groups (n = 20). The animals were sacrificed on either 3 or 7 days after the experiment. Clinical, histological, and quantitative reverse transcriptase-polymerase chain reaction analysis were performed to evaluate the healing rate, inflammation, re-epithelialization, and gene expression of wound healing biomarkers. Results The healing rates of HA gel (84.4 ± 9.2%) and HA film (74.0 ± 15.0%) were significantly higher than that of the control (51.7 ± 16.9%) on day 7 (P < 0.001 and P = 0.002, respectively). Histological analysis revealed no significant differences between the groups on day 3. On day 7, only the HA film showed significant improvement in inflammation (P = 0.038) and re-epithelialization (P = 0.011) compared to the control. Regarding wound healing biomarkers, both HA gel and HA film groups showed lower level of COL1α1 expression on day 3 compared to the control. Conclusion Within the limits of this study, HA film was found to be effective for oral wound healing, particularly for re-epithelialization. This finding suggests that HA film delivery can be beneficial not only for clinical convenience but also for promoting oral wound healing.
Collapse
Affiliation(s)
- Jeong Hyun Lee
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Ko Eun Lee
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Ok Hyung Nam
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, South Korea
- Corresponding author. Department of Pediatric Dentistry, Kyung Hee University School of Dentistry, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea.
| | - Yong Kwon Chae
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, South Korea
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | | | | | - Mi Sun Kim
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, South Korea
- Department of Pediatric Dentistry, Kyung Hee University Dental Hospital at Gangdong, Seoul, South Korea
| | - Hyo-Seol Lee
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Sung Chul Choi
- Department of Pediatric Dentistry, School of Dentistry, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
24
|
Xu S, Zhang H, Li CZ, Lai PS, Wang G, Chan YS, Cheng SH, Chen X. Cannabidiol promotes fin regeneration and reduces apoptosis in zebrafish embryos. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
25
|
Wen SD, Sans-Serramitjana E, Santander JF, Sánchez MR, Salazar-Aguilar P, Zepeda AB, Alvarado SI, Miranda IB. Effects of natural extracts in the treatment of oral ulcers: A systematic review of evidence from experimental studies in animals. J Clin Exp Dent 2021; 13:e1038-e1048. [PMID: 34667500 PMCID: PMC8501866 DOI: 10.4317/jced.58567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023] Open
Abstract
Background To evaluate the clinical and histopathological effects of natural extracts in the treatment of oral ulcers induced in animal experimental models.
Material and Methods We carried out a search in the Medline, Scopus, WoS and Embase databases from the start of the databases to December 2020, and also made a manual search of the references. The search and selection were carried out by two researchers independently. The inclusion criteria were: experimental studies in animal models, in english, which complied with the study object.
Results A total of 705 articles were identified. After selection by title, abstract and full text, 19 articles were finally included. Natural extracts of Jasminum grandiflorum, Ficus deltoidea, curcumin and Bixina orellana provoked a significantly greater reduction in the size of the ulcer. Extracts of Salvatora persica, Musa acuminate, Ganoderma lucidum mycelia and Bixina Orellana, as well as preparations of Kouyanqing Granule and curcumin, were able to reduce levels of pro-inflammatory cytokines and increase the expression and serum levels of growth factors and anti-inflammatory cytokines. Extracts of Piper sarmentosus, Cannabis sativa and Bletilla striata provoked a reduction in the severity of the histological inflammation. No significant differences were observed compared to controls in the treatments with extracts of Cannabis sativa, Aloe barbadensus Miller and Malva sylvestris in reducing the area of the oral ulcers.
Conclusions Most of the natural extracts described in this review presented a positive clinical and histological effect on the cicatrisation of oral ulcers induced in animal models. Key words:Recurrent aphthous stomatitis, oral ulcer, plants, herbs, extracts, medicine, treatment.
Collapse
Affiliation(s)
- Schilin D Wen
- Grupo de investigación en Ciencias Aplicadas a la Odontología, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Chile.,Doctoral Program in Morphological Sciences, Universidad de La Frontera, Temuco, Chile
| | - Eulàlia Sans-Serramitjana
- Grupo de investigación en Ciencias Aplicadas a la Odontología, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Chile.,Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Javiera F Santander
- Grupo de investigación en Ciencias Aplicadas a la Odontología, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Mariela R Sánchez
- Grupo de investigación en Ciencias Aplicadas a la Odontología, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Paulina Salazar-Aguilar
- Grupo de investigación en Ciencias Aplicadas a la Odontología, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Chile
| | - Andrea B Zepeda
- Grupo de investigación en Ciencias Aplicadas a la Odontología, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Chile.,Non-Governmental Organization for Technology and Science Development for Humanity, Chile
| | - Susana I Alvarado
- Grupo de investigación en Ciencias Aplicadas a la Odontología, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Chile.,Non-Governmental Organization for Technology and Science Development for Humanity, Chile
| | - Ignacia B Miranda
- Grupo de investigación en Ciencias Aplicadas a la Odontología, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Chile.,Non-Governmental Organization for Technology and Science Development for Humanity, Chile
| |
Collapse
|
26
|
Qi X, Lin W, Wu Y, Li Q, Zhou X, Li H, Xiao Q, Wang Y, Shao B, Yuan Q. CBD Promotes Oral Ulcer Healing via Inhibiting CMPK2-Mediated Inflammasome. J Dent Res 2021; 101:206-215. [PMID: 34269108 DOI: 10.1177/00220345211024528] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Oral ulcer is a common oral inflammatory lesion accompanied by severe pain but with few effective treatments. Cannabidiol (CBD) is recently emerging for its therapeutic potential in a range of diseases, including inflammatory conditions and cancers. Here we show that CBD oral spray on acid- or trauma-induced oral ulcers on mice tongue inhibits inflammation, relieves pain, and accelerates lesion closure. Notably, the enrichment of genes associated with the NOD, LRR, and NLRP3 pyrin domain-containing protein 3 (NLRP3) inflammasome pathway is downregulated after CBD treatment. The expression of cleaved-gasdermin D (GSDMD) and the percentage of pyroptotic cells are reduced as well. In addition, CBD decreases the expression of cytidine/uridine monophosphate kinase 2 (CMPK2), which subsequently inhibits the generation of oxidized mitochondria DNA and suppresses inflammasome activation. These immunomodulating effects of CBD are mostly blocked by peroxisome proliferator activated receptor γ (PPARγ) antagonist and partially antagonized by CB1 receptor antagonist. Our results demonstrate that CBD accelerates oral ulcer healing by inhibiting CMPK2-mediated NLRP3 inflammasome activation and pyroptosis, which are mediated mostly by PPARγ in the nucleus and partially by CB1 in the plasma membrane.
Collapse
Affiliation(s)
- X Qi
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - W Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Q Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - H Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Q Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - B Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Q Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
27
|
Talley-Bruns RC, Shatkin MS, Dhar Y, Zelicof SB. The Physiological Effects, Including Risks and Potential Benefits, of Cannabis for Patients Undergoing Elective Orthopedic Procedures. Orthopedics 2021; 44:e314-e319. [PMID: 33561869 DOI: 10.3928/01477447-20210201-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Given the evolving regulations regarding and availability of cannabis in the United States, physicians should understand the risks and benefits associated with its use. Patients are interested in learning about the use of cannabis for the management of orthopedic pain and any potential risks associated with it when undergoing elective surgery. Edible and topical cannabis products appear to have fewer side effects than inhaled cannabis products. A review of the literature was performed regarding different modes of administration and their related risks and potential benefits specifically regarding perioperative concerns for elective orthopedic procedures. Larger studies are necessary to further determine the efficacy, safety, and side effect profile of cannabis. [Orthopedics. 2021;44(3):e314-e319.].
Collapse
|
28
|
The Effects of Cannabis: Implications for the Surgical Patient. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3448. [PMID: 33747688 PMCID: PMC7963514 DOI: 10.1097/gox.0000000000003448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022]
Abstract
Background: Cannabis use is increasingly prevalent. Cannabinoid receptors regulate pro-inflammatory cytokines, and compounds in marijuana exert diverse physiologic effects. As more patients use cannabis, clinicians should recognize implications of perioperative cannabis use. Although the role of cannabis use in perioperative pain control has been explored, little is known about its effect on perioperative wound healing or on hematologic, pulmonary, and cardiovascular physiology. Methods: We searched PubMed for English-language articles related to cannabis (ie, marijuana, cannabidiol oil, and tetrahydrocannabinol) and wound healing, cardiovascular, pulmonary, or hematologic outcomes, and surgery. Titles and abstracts were reviewed, and relevant articles were analyzed. Human, animal, and pathology studies were included. Editorials, case reports, and review articles were excluded. Results: In total, 2549 wound healing articles were identified; 5 human studies and 8 animal/pathology studies were included. Results were conflicting. An estimated 2900 articles related to cardiovascular effects were identified, of which 2 human studies were included, which showed tetrahydrocannabinol and marijuana caused tachycardia. A total of 142 studies regarding pulmonary effects were identified. Three human studies were included, which found no difference in respiratory complications. In total, 114 studies regarding hematologic effects were identified. The 3 included human studies found conflicting venous thromboembolism risks. The overall study quality was poor. Information about dose/duration, administration route, and follow-up was reported with variable completeness. Conclusions: Surgeons should consider effects of cannabis in the perioperative setting. Little is known about its perioperative effects on wound healing, or on cardiovascular, pulmonary, and hematologic physiology. Further research should elucidate the effects of administration route, dose, and timing of cannabis use among surgical patients.
Collapse
|
29
|
McCartney D, Benson MJ, Desbrow B, Irwin C, Suraev A, McGregor IS. Cannabidiol and Sports Performance: a Narrative Review of Relevant Evidence and Recommendations for Future Research. SPORTS MEDICINE - OPEN 2020; 6:27. [PMID: 32632671 PMCID: PMC7338332 DOI: 10.1186/s40798-020-00251-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022]
Abstract
Cannabidiol (CBD) is a non-intoxicating cannabinoid derived from Cannabis sativa. CBD initially drew scientific interest due to its anticonvulsant properties but increasing evidence of other therapeutic effects has attracted the attention of additional clinical and non-clinical populations, including athletes. Unlike the intoxicating cannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC), CBD is no longer prohibited by the World Anti-Doping Agency and appears to be safe and well-tolerated in humans. It has also become readily available in many countries with the introduction of over-the-counter "nutraceutical" products. The aim of this narrative review was to explore various physiological and psychological effects of CBD that may be relevant to the sport and/or exercise context and to identify key areas for future research. As direct studies of CBD and sports performance are is currently lacking, evidence for this narrative review was sourced from preclinical studies and a limited number of clinical trials in non-athlete populations. Preclinical studies have observed robust anti-inflammatory, neuroprotective and analgesic effects of CBD in animal models. Preliminary preclinical evidence also suggests that CBD may protect against gastrointestinal damage associated with inflammation and promote healing of traumatic skeletal injuries. However, further research is required to confirm these observations. Early stage clinical studies suggest that CBD may be anxiolytic in "stress-inducing" situations and in individuals with anxiety disorders. While some case reports indicate that CBD improves sleep, robust evidence is currently lacking. Cognitive function and thermoregulation appear to be unaffected by CBD while effects on food intake, metabolic function, cardiovascular function, and infection require further study. CBD may exert a number of physiological, biochemical, and psychological effects with the potential to benefit athletes. However, well controlled, studies in athlete populations are required before definitive conclusions can be reached regarding the utility of CBD in supporting athletic performance.
Collapse
Affiliation(s)
- Danielle McCartney
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia.
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia.
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia.
| | - Melissa J Benson
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia
| | - Ben Desbrow
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher Irwin
- School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
- Menzies Health Institute Queensland, Gold Coast, Queensland, Australia
| | - Anastasia Suraev
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia
| | - Iain S McGregor
- The University of Sydney, Faculty of Science, School of Psychology, Sydney, New South Wales, 2050, Australia
- The University of Sydney, Lambert Initiative for Cannabinoid Therapeutics, Sydney, New South Wales, Australia
- The University of Sydney, Brain and Mind Centre, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Martínez V, Iriondo De-Hond A, Borrelli F, Capasso R, del Castillo MD, Abalo R. Cannabidiol and Other Non-Psychoactive Cannabinoids for Prevention and Treatment of Gastrointestinal Disorders: Useful Nutraceuticals? Int J Mol Sci 2020; 21:E3067. [PMID: 32357565 PMCID: PMC7246936 DOI: 10.3390/ijms21093067] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Cannabis sativa is an aromatic annual flowering plant with several botanical varieties, used for different purposes, like the production of fibers, the production of oil from the seeds, and especially for recreational or medical purposes. Phytocannabinoids (terpenophenolic compounds derived from the plant), include the well-known psychoactive cannabinoid Δ9-tetrahydrocannabinol, and many non-psychoactive cannabinoids, like cannabidiol. The endocannabinoid system (ECS) comprises of endocannabinoid ligands, enzymes for synthesis and degradation of such ligands, and receptors. This system is widely distributed in the gastrointestinal tract, where phytocannabinoids exert potent effects, particularly under pathological (i.e., inflammatory) conditions. Herein, we will first look at the hemp plant as a possible source of new functional food ingredients and nutraceuticals that might be eventually useful to treat or even prevent gastrointestinal conditions. Subsequently, we will briefly describe the ECS and the general pharmacology of phytocannabinoids. Finally, we will revise the available data showing that non-psychoactive phytocannabinoids, particularly cannabidiol, may be useful to treat different disorders and diseases of the gastrointestinal tract. With the increasing interest in the development of functional foods for a healthy life, the non-psychoactive phytocannabinoids are hoped to find a place as nutraceuticals and food ingredients also for a healthy gastrointestinal tract function.
Collapse
Affiliation(s)
- Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Neurosciences Institute, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28049 Madrid, Spain
| | - Amaia Iriondo De-Hond
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (UAM-CSIC), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.I.D.-H.); (M.D.d.C.)
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici (NA), Italy
| | - María Dolores del Castillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (UAM-CSIC), C/Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (A.I.D.-H.); (M.D.d.C.)
| | - Raquel Abalo
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC, Department of Basic Health Sciences, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), Campus de Alcorcón, Avda. de Atenas s/n, 28022 Madrid, Spain
- Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain;
| |
Collapse
|
31
|
Abstract
Introduction: Cannabidiol (CBD) as Epidiolex® (GW Pharmaceuticals) was recently approved by the U.S. Food and Drug Administration (FDA) to treat rare forms of epilepsy in patients 2 years of age and older. Together with the increased societal acceptance of recreational cannabis and CBD oil for putative medical use in many states, the exposure to CBD is increasing, even though all of its biological effects are not understood. Once such example is the ability of CBD to be anti-inflammatory and immune suppressive, so the purpose of this review is to summarize effects and mechanisms of CBD in the immune system. It includes a consideration of reports identifying receptors through which CBD acts, since the “CBD receptor,” if a single one exists, has not been definitively identified for the myriad immune system effects. The review then provides a summary of in vivo and in vitro effects in the immune system, in autoimmune models, with a focus on experimental autoimmune encephalomyelitis, and ends with identification of knowledge gaps. Conclusion: Overall, the data overwhelmingly support the notion that CBD is immune suppressive and that the mechanisms involve direct suppression of activation of various immune cell types, induction of apoptosis, and promotion of regulatory cells, which, in turn, control other immune cell targets.
Collapse
Affiliation(s)
- James M Nichols
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| | - Barbara L F Kaplan
- Department of Basic Sciences, Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi
| |
Collapse
|
32
|
Williamson EM, Liu X, Izzo AA. Trends in use, pharmacology, and clinical applications of emerging herbal nutraceuticals. Br J Pharmacol 2020; 177:1227-1240. [PMID: 31799702 DOI: 10.1111/bph.14943] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
The nutraceuticals market is vast, encompassing many different products with inconsistent levels of evidence available to support their use. This overview represents a Western perspective of the nutraceuticals market, with a brief comparison with that in China, as an illustration of how individual health supplements increase and decrease in popularity in regional terms. Recent changes in sales patterns, mainly taken from the US market, are summarized and a selection of five newer products, which have not been subject to extensive recent review are profiled: astaxanthin, a carotenoid found in red algae, seafood, salmon and trout, as an antioxidant; cannabidiol, a non-euphoric marijuana ingredient used as mood enhancer and for painful/inflammatory conditions; modified extracts of ginseng used in new indications including dementia and space travel; monk fruit, a non-sugar high intensity sweetener and nigella seed, a popular food ingredient and Asian medicine, which has experienced an extraordinary rise in sales recently. LINKED ARTICLES: This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc.
Collapse
Affiliation(s)
| | - Xinmin Liu
- Research Centre for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
33
|
Zantut PRA, Veras MM, Yariwake VY, Takahashi WY, Saldiva PH, Young LH, Damico FM, Fajersztajn L. Effects of cannabis and its components on the retina: a systematic review. Cutan Ocul Toxicol 2019; 39:1-9. [PMID: 31648567 DOI: 10.1080/15569527.2019.1685534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: Cannabis is the most prevalent drug in the world and its consumption is growing. Cannabinoid receptors are present in the human central nervous system. Recent studies show evidence of the effects of cannabinoids on the retina, and synthesising the results of these studies may be relevant for ophthalmologists. Thus, this review adopts standardised, systematic review methodology to investigate the effects of exposure to cannabis and components on the retina.Methods: We searched five online databases for the combined terms for outcome ("retina") and exposure ("cannabis"). Eligibility of studies were conducted by two independent reviewers, and risk of bias was assessed.Results: We retrieved 495 studies, screened 229 studies, assessed 52 studies for eligibility, and included 16 studies for qualitative analysis. The cannabinoids most frequently investigated were delta-9-tetrahydrocannabinol (THC), abnormal cannabidiol, synthetic cannabinoid, and cannabidiol (CDB). The outcomes most studied were neuroretinal dysfunction, followed by vascular effects. The studies also included investigation of neuroprotective and anti-inflammatory effects and teratogenic effects.Conclusions: This review suggests that cannabinoids may have an important role in retinal processing and function.
Collapse
Affiliation(s)
- Paulo R A Zantut
- Department of Ophthalmology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mariana M Veras
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, Faculdade de Medicina da Universidade São Paulo, São Paulo, Brazil
| | - Victor Y Yariwake
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, Faculdade de Medicina da Universidade São Paulo, São Paulo, Brazil
| | - Walter Y Takahashi
- Department of Ophthalmology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Paulo H Saldiva
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, Faculdade de Medicina da Universidade São Paulo, São Paulo, Brazil.,Institute for Advanced Studies of the University of São Paulo-IEA, Universidade de São Paulo, São Paulo, Brazil
| | - Lucy H Young
- Department of Ophthalmology, Harvard Medical School, Cambridge, MA, USA
| | - Francisco Max Damico
- Department of Ophthalmology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Laís Fajersztajn
- Institute for Advanced Studies of the University of São Paulo-IEA, Universidade de São Paulo, São Paulo, Brazil.,Department Global Brain Health Institute, University of California, San Francisco, CA, USA
| |
Collapse
|