1
|
Chen S, Zhen S. Interaction Mechanism of Mangiferin and Ovalbumin Based on Spectrofluorimetry and Molecular Docking. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221119914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mangiferin (MAG) is a kind of polyphenol with many bioactivities. However, its application in medicines and functional foods is restricted because of its poor aqueous solubility and stability. The construction of a MAG/protein complex is an effective way to solve this bottleneck. In this study, the interaction of MAG and ovalbumin (OVA) was systematically investigated by spectrofluorimetry, and their binding mode was clarified based on molecular docking. The results suggested that MAG could cause the static fluorescence quenching of OVA with the quenching constant ( Kq) of >2 × 1010 L/(mol·s). Their binding performance increased with increasing temperature, and the binding-site number ( n) was close to 1. The thermodynamic analysis indicated that the binding was a spontaneous process, which was mainly driven by hydrophobic force. During this process, there was no apparent change in the microenvironment surrounding the tyrosine and tryptophan residues of OVA. The molecular docking results demonstrated the hydrophobic interaction and hydrogen bonding in the complex, which well-confirmed the results of the fluorescence experiments.
Collapse
Affiliation(s)
- Si Chen
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Shiyu Zhen
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
2
|
Ye X, Wu Y, Xu J, Liu H, Wang H, Li Q, Li Q, Xuan A. PPARβ mediates mangiferin-induced neuronal differentiation of neural stem cells through DNA demethylation. Pharmacol Res 2022; 179:106235. [PMID: 35472635 DOI: 10.1016/j.phrs.2022.106235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022]
Abstract
Adult hippocampal neurogenesis (AHN) is heavily implicated in the pathogenesis of various neuropsychiatric disorders. The mangiferin (MGF), a bioactive compound of the mango, reportedly produces biological effects on a variety of neuropsychiatric disorders. However, the function and underlying mechanisms of MGF in regulating hippocampal neurogenesis remain unknown. Here we discovered that the transcriptome and methylome of MGF-induced neural stem cells (NSCs) are distinct from the control. RNA-seq analysis revealed that the diferentially expressed genes (DEGs) were signifcantly enriched in the PPARs. Furthermore, we found that MGF enhanced neuronal differentiation and proliferation of neural stem cells (NSCs) via PPARβ but not PPARα and PPARγ. The combination of WGBS and RNA-seq analysis showed that the expression of some neurogenesis genes was negatively correlated with the DNA methylation level generally. We further found that PPARβ increased demethylation of Mash1 promoter by modulating the expressions of active and passive DNA demethylation enzymes in MGF-treated NSCs. Importantly, genetic deficiency of PPARβ decreased hippocampal neurogenesis in the adult mice, whereas the defective neurogenesis was notably rescued by Mash1 overexpression. Our findings uncover a model that PPARβ-mediated DNA demethylation of Mash1 contributes to MGF-induced neuronal genesis, and advance the concept that targeting PPARβ-TET1/DNMT3a-Mash1 axis regulation of neurogenesis might serve as a novel neurotherapeutic strategy.
Collapse
Affiliation(s)
- Xiujuan Ye
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, School of Basic Medical Sciences of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Yuanfei Wu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, School of Basic Medical Sciences of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Jiamin Xu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, School of Basic Medical Sciences of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Hui Liu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, School of Basic Medical Sciences of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Huan Wang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, School of Basic Medical Sciences of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Qingfeng Li
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, School of Basic Medical Sciences of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Qingqing Li
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, School of Basic Medical Sciences of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Aiguo Xuan
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, School of Basic Medical Sciences of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China.
| |
Collapse
|
3
|
Improving Aqueous Solubility of Natural Antioxidant Mangiferin through Glycosylation by Maltogenic Amylase from Parageobacillus galactosidasius DSM 18751. Antioxidants (Basel) 2021; 10:antiox10111817. [PMID: 34829688 PMCID: PMC8615176 DOI: 10.3390/antiox10111817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
Mangiferin is a natural antioxidant C-glucosidic xanthone originally isolated from the Mangifera indica (mango) plant. Mangiferin exhibits a wide range of pharmaceutical activities. However, mangiferin's poor solubility limits its applications. To resolve this limitation of mangiferin, enzymatic glycosylation of mangiferin to produce more soluble mangiferin glucosides was evaluated. Herein, the recombinant maltogenic amylase (MA; E.C. 3.2.1.133) from a thermophile Parageobacillus galactosidasius DSM 18751T (PgMA) was cloned into Escherichia coli BL21 (DE3) via the expression plasmid pET-Duet-1. The recombinant PgMA was purified via Ni2+ affinity chromatography. To evaluate its transglycosylation activity, 17 molecules, including mangiferin (as sugar acceptors), belonging to triterpenoids, saponins, flavonoids, and polyphenol glycosides, were assayed with β-CD (as the sugar donor). The results showed that puerarin and mangiferin are suitable sugar acceptors in the transglycosylation reaction. The glycosylation products from mangiferin by PgMA were isolated using preparative high-performance liquid chromatography. Their chemical structures were glucosyl-α-(1→6)-mangiferin and maltosyl-α-(1→6)-mangiferin, determined by mass and nucleic magnetic resonance spectral analysis. The newly identified maltosyl-α-(1→6)-mangiferin showed 5500-fold higher aqueous solubility than that of mangiferin, and both mangiferin glucosides exhibited similar 1,1-diphenyl-2-picrylhydrazyl free radical scavenging activities compared to mangiferin. PgMA is the first MA with glycosylation activity toward mangiferin, meaning mangiferin glucosides have potential future applications.
Collapse
|
4
|
Chang B, Tang S, Chen R, Xiao N, Zhu J, Tian M, Jiang H, Li X, Jian Z, Han X, Gao Y, Yao Q. The Traditional Uses, Phytochemistry, Pharmacology, Toxicology, and Clinical Uses of Metagentiana Rhodantha (Franch.) T.N.Ho and S.W.Liu, an Ethnomedicine in Southwest China. Front Pharmacol 2021; 12:658628. [PMID: 33981236 PMCID: PMC8107381 DOI: 10.3389/fphar.2021.658628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Metagentiana rhodantha (Franch.) T.N.Ho and S.W.Liu (MR) belongs to Gentianales, and it is often called Hong-hua-long-dan in Chinese. Traditionally, it has been used to cure acute icteric hepatitis, sore throat, dysentery, acute gastritis, carbuncle, and furuncle based on traditional Chinese medicine (TCM) concepts. Aim of Study: This review manages to provide a critical and comprehensive analysis on the traditional uses, phytochemistry, pharmacology, toxicology, and clinical uses of MR and to evaluate the therapeutic potential of this plant. Methods: Relevant data mainly literatures on MR were selected from available database. All the papers reviewed provided evidence that the source herbs were reliably identified. Results: The heat-clearing and removing the phlegm, and purging fire and removing toxicity of MR contribute to its dispelling jaundice, and clearing lung heat and cough. The compounds isolated from this plant include iridoids and secoiridoids, phenolic acids, ketones, triterpenoids, flavonoids, benzophenone glycosides, and others. Mangiferin (MAF) is a characteristic substance from this plant. The pharmacological studies show that some extracts and compounds from MR exhibit anti-inflammatory, antinociceptive, antibacterial, hepatoprotective, cardioprotective, and other effects which are associated with the traditional uses of this plant. The toxicological studies suggest that MAF is less toxic in mice and dogs. Nowadays, Chinese patent drugs such as Feilike Jiaonang and Kangfuling Jiaonang containing MR have been used to cure cough, asthma, chronic bronchitis, dysmenorrhea, and appendagitis. Conclusion: Although the current studies provide related research information of MR, it is still necessary to systemically evaluate the chemistry, pharmacology, toxicity, and safety of the extracts or compounds from this plant before clinical trials in the future. In addition, except for lung infection-related diseases, analgesia, anti-tumor, and hypertriglycemia may be new and prior therapeutic scopes of this ethnomedicine in the future.
Collapse
Affiliation(s)
- Botao Chang
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Graduate College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Songjiang Tang
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Rong Chen
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Nan Xiao
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jingsong Zhu
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Mengxian Tian
- Graduate College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Huizhong Jiang
- Graduate College, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xi Li
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhonglu Jian
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xu Han
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ying Gao
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qi Yao
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
5
|
Mei S, Ma H, Chen X. Anticancer and anti-inflammatory properties of mangiferin: A review of its molecular mechanisms. Food Chem Toxicol 2021; 149:111997. [DOI: 10.1016/j.fct.2021.111997] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
|
6
|
Aboyewa JA, Sibuyi NRS, Meyer M, Oguntibeju OO. Gold Nanoparticles Synthesized Using Extracts of Cyclopia intermedia, Commonly Known as Honeybush, Amplify the Cytotoxic Effects of Doxorubicin. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E132. [PMID: 33429945 PMCID: PMC7826697 DOI: 10.3390/nano11010132] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
Cyclopia intermedia (C. intermedia) is an indigenous South African shrub used to prepare the popular medicinal honeybush (HB) tea. This plant contains high levels of mangiferin (MGF), a xanthonoid that was reported to have numerous biological activities, including anti-tumor activity. MGF and extracts that contain high concentrations of MGF, such as extracts from Mangifera indica L. or mango have been used to synthesize gold nanoparticles (AuNPs) using green nanotechnology. It has previously been shown that when AuNPs synthesized from M. indica L. extracts are used in combination with doxorubicin (DOX) and Ayurvedic medicine, the anti-tumor effects appear to be augmented. It has also been demonstrated that MGF used in combination with DOX resulted in enhanced anti-tumor effects. In this study, C. intermedia (HB) and MGF were used to synthesize HB-AuNPs and MGF-AuNPs, respectively. The physicochemical properties of the AuNPs were characterized by the UV-Visible Spectroscopy (UV-Vis), dynamic light scattering (DLS), Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD) and high-resolution transmission electron microscopy (HR-TEM). The cytotoxicity of HB-AuNPs and MGF-AuNPs were assessed on human colon (Caco-2), prostate (PC-3) and glioblastoma (U87) cancer cells; as well as normal breast epithelial (MCF-12A) cells using the MTT assay. Both HB-AuNPs and MGF-AuNPs demonstrated relatively low cytotoxicity in these cells. However, when these nanoparticles were used in combination with DOX, the cytotoxicity of DOX was significantly augmented.
Collapse
Affiliation(s)
- Jumoke A. Aboyewa
- Phytomedicine and Phytochemistry Group, Oxidative Stress Research Centre, Department of Biomedical Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Nicole R. S. Sibuyi
- DSI/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7530, South Africa;
| | - Mervin Meyer
- DSI/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Bellville 7530, South Africa;
| | - Oluwafemi O. Oguntibeju
- Phytomedicine and Phytochemistry Group, Oxidative Stress Research Centre, Department of Biomedical Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| |
Collapse
|
7
|
Mirza B, Croley CR, Ahmad M, Pumarol J, Das N, Sethi G, Bishayee A. Mango ( Mangifera indica L.): a magnificent plant with cancer preventive and anticancer therapeutic potential. Crit Rev Food Sci Nutr 2020; 61:2125-2151. [PMID: 32506936 DOI: 10.1080/10408398.2020.1771678] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mangifera indica L. (mango), a long-living evergreen plant belonging to the Anacardiaceae family, has been cultivated for thousands of years in the Indian subcontinent for its excellent fruits which represent a rich source of fiber, vitamin A and C, essential amino acids, and a plethora of phytochemicals. M. indica is extensively used in various traditional systems of medicine to prevent and treat several diseases. The health-promoting and disease-preventing effects of M. indica are attributed to a number of bioactive phytochemicals, including polyphenols, terpenoids, carotenoid and phytosterols, found in the leaf, bark, edible flesh, peel, and seed. M. indica has been shown to exhibit various biological and pharmacological activities, such as antioxidant, anti-inflammatory, immunomodulatory, antimicrobial, antidiabetic, antiobesity, and anticancer effects. There are a few studies conducted that have indicated the nontoxic nature of mango constituents. However, while there are numerous individual studies investigating anticancer effects of various constituents from the mango tree, an up-to-date, comprehensive and critical review of available research data has not been performed according to our knowledge. The purpose of this review is to present a comprehensive and critical evaluation of cancer preventive and anticancer therapeutic potential of M. indica and its phytochemicals with special focus on the cellular and molecular mechanisms of action. The bioavailability, pharmacokinetics, and safety profile of individual phytocomponents of M. indica as well as current limitations, challenges, and future directions of research have also been discussed.
Collapse
Affiliation(s)
- Bilal Mirza
- Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | | | - Maha Ahmad
- Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Joshua Pumarol
- Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia, Tripura, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
8
|
Ma Y, Liu Y, Ma Y, Jiang N, Wang L, Wang B, Niu W, Hu Y, Lin Q, Yu B. Mangiferin Relieves Lipopolysaccharide-Induced Injury by Up-Regulating miR-181a via Targeting PTEN in ATDC5 Cells. Front Pharmacol 2020; 11:137. [PMID: 32210798 PMCID: PMC7066527 DOI: 10.3389/fphar.2020.00137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/31/2020] [Indexed: 01/17/2023] Open
Abstract
Background Mangiferin (MF) was reported to possess anti-inflammatory activity. This investigation tried to probe into the underlying mechanism of MF in osteoarthritis. Methods ATDC5 cells were pretreated with series concentrations of MF (0.1, 1, 5, 10, 15, 20 μM) for 2 h and then were exposed to lipopolysaccharide (LPS) (5 μg/ml) for 12 h to construct the inflammatory injury model. The cell viability, productions of pro-inflammatory cytokines and enzymes were respectively measured by employing CCK-8 assay, western blot, ELISA, and quantitative reverse-transcription (qRT)-PCR. miR-181a expression was altered by employing cell transfection. Dichloro-dihydro-fluorescein diacetate (DCFH-DA) method was employed for detection of reactive oxygen species (ROS) generation. Dual luciferase activity assay was conducted for analyzing the relationship between miR-181a and PTEN. The underlying mechanism was determined by employing western blot. Results High doses of MF treatment (15 and 20 μM) noticeably induced inflammatory injury exhibiting as increased the productions of pro-inflammatory cytokines, enzymes and ROS, activated NF-κB pathway and deactivated PTEN/PI3K/AKT pathway in ATDC5 cells. Besides, MF treatment notably remitted LPS-induced inflammatory injury through deactivation of NF-κB pathway and activation of PTEN/PI3K/AKT pathway. PTEN was a target of miR-181a. Inhibition of miR-181a remarkably reversed MF-triggered impacts on ATDC5 cells. Conclusion MF attenuated LPS-induced inflammatory damage through miR-181a/PTEN axis and thereby inhibiting NF-κB pathway and activating PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yunfei Ma
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Liu
- Department of Orthopaedic Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Yunyan Ma
- Department of Obstetrics, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Nan Jiang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Wang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bowei Wang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanting Niu
- Tissue Engineering Laboratories, VA Boston Healthcare System, Boston, MA, United States.,Department of Orthopedics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yanjun Hu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingrong Lin
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|