1
|
Costa AR, Santos AMO, Barreto FS, Costa PMS, Roma RR, Rocha BAM, Oliveira CVB, Duarte AE, Pessoa C, Teixeira CS. In vitro antiproliferative effects of Vatairea macrocarpa (Benth.) Ducke lectin on human tumor cell lines and in vivo evaluation of its toxicity in Drosophila melanogaster. Food Chem Toxicol 2024; 190:114815. [PMID: 38876381 DOI: 10.1016/j.fct.2024.114815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Tumor cells may develop alterations in glycosylation patterns during the initial phase of carcinogenesis. These alterations may be important therapeutic targets for lectins with antitumor action. This work aimed to evaluate the in vitro cytotoxicity of VML on tumor and non-tumor cells (concentration of 25 μg/mL and then microdiluted) and evaluate its in vivo toxicity at different concentrations (1.8, 3.5 and 7.0 μg/mL), using Drosophila melanogaster. Toxicity in D. melanogaster evaluated mortality rate, as well as oxidative stress markers (TBARS, iron levels, nitric oxide levels, protein and non-protein thiols). The cytotoxicity assay showed that VML had cytotoxic effect on leukemic lines HL-60 (IC50 = 3.5 μg/mL), KG1 (IC50 = 18.6 μg/mL) and K562 (102.0 μg/mL). In the toxicity assay, VML showed no reduction in survival at concentrations of 3.5 and 7.0 μg/mL and did not alter oxidative stress markers at any concentrations tested. Cytotoxicity of VML from HL-60, KG1 and K562 cells could arise from the interaction between the lectin and specific carbohydrates of tumor cells. In contrast, effective concentrations of VML against no-tumor cells human keratinocyte - HaCat and in the D. melanogaster model did not show toxicity, suggesting that VML is a promising molecule in vivo studies involving leukemic cells.
Collapse
Affiliation(s)
- Adrielle R Costa
- Center for Agricultural Sciences and Biodiversity, Universidade Federal do Cariri, Crato, CE, Brazil
| | - Antonio M O Santos
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Francisco S Barreto
- Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Pedro M S Costa
- Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Renato R Roma
- Department of Biochemistry and Molecular Biology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Bruno A M Rocha
- Department of Biochemistry and Molecular Biology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Carlos V B Oliveira
- Department of Biological Sciences, Universidade Regional do Cariri, Crato, CE, Brazil
| | - Antonia E Duarte
- Department of Biological Sciences, Universidade Regional do Cariri, Crato, CE, Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Claudener S Teixeira
- Center for Agricultural Sciences and Biodiversity, Universidade Federal do Cariri, Crato, CE, Brazil.
| |
Collapse
|
2
|
Huang J, Wen Y, Yang T, Song H, Meyboom R, Yang X, Teng L, Duez P, Zhang L. Safety and efficacy evaluation of Simo decoction and Arecae semen in herbal medicine practice. Heliyon 2024; 10:e31373. [PMID: 38841513 PMCID: PMC11152707 DOI: 10.1016/j.heliyon.2024.e31373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Objective The traditional Chinese patent medicine (TCPM), Simo decoction (Simo decoction oral solution), with its primary ingredient Arecae semen (Binglang, Areca catechu L.), known for its potential carcinogenic effects, is the subject of this study. The research aims to analyze the effectiveness and potential risks of Simo decoction, particularly as a carcinogen, and to suggest a framework for evaluating the risks and benefits of other herbal medicines. Methods The study is based on post-marketing research of Simo decoction and Arecae semen. It utilized a wide range of sources, including ancient and modern literature, focusing on the efficacy and safety of Simo decoction. The research includes retrospective data on the sources, varieties, and toxicological studies of Arecae semen from databases such as Pubmed, Clinical Trials, Chinese Clinical Trial Registry, China National Knowledge Infrastructure, WHO-UMC Vigibase, and China National Center for ADR Monitoring. Results Common adverse drug reactions (ADRs) associated with Simo decoction include skin rash, nausea, vomiting, abdominal pain, and diarrhea. However, no studies exist reporting the severe ADRs, such as carcinogenic effects. Arecae semen is distributed across approximately 60 varieties in tropical Asia and Australia. According to the WHO-UMC Vigibase and the National Adverse Drug Reaction Monitoring System databases, there are currently no reports of toxicity related to Arecae semen in the International System for Classification of ADRs (ISCR) or clinical studies. Conclusion Risk-benefit analysis in TCPM presents more challenges compared to conventional drugs. The development of a practical pharmacovigilance system and risk-benefit analysis framework is crucial for marketing authorization holders, researchers, and regulatory bodies. This approach is vital for scientific supervision and ensuring the safety and efficacy of drug applications, thus protecting public health.
Collapse
Affiliation(s)
- Jukai Huang
- Department of Endocrinology, Beijing University of Chinese Medicine, Dongzhimen Hospital, PR China
| | - Yalu Wen
- Department of Respiratory Medicine, Beijing Hepingli Hospital, PR China
| | - Tianyi Yang
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30329, United States
| | - Haibo Song
- Center for Drug Reevaluation, National Medical Products Administration, Beijing, PR China
| | - Ronald Meyboom
- Department of Pharmacoepidemiology and Clinical Pharmacology, University of Utrecht, the Netherlands
| | - Xiaohui Yang
- Department of Endocrinology, Beijing University of Chinese Medicine, Dongzhimen Hospital, PR China
| | - Lida Teng
- Department of Health Economics and Outcomes Research, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, Université de Mons (UMONS), Mons, Belgium
| | - Li Zhang
- Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, No. 6, District 1, Fangxingyuan, Fangzhuang, Fengtai District, Beijing, PR China
| |
Collapse
|
3
|
Khan NM, Ali A, Wan Y, Zhou G. Genome-wide identification of heavy-metal ATPases genes in Areca catechu: investigating their functionality under heavy metal exposure. BMC PLANT BIOLOGY 2024; 24:484. [PMID: 38822228 PMCID: PMC11141028 DOI: 10.1186/s12870-024-05201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Heavy-metal ATPases (HMAs) play a vital role in plants, helping to transport heavy metal ions across cell membranes.However, insufficient data exists concerning HMAs genes within the Arecaceae family.In this study, 12 AcHMA genes were identified within the genome of Areca catechu, grouped into two main clusters based on their phylogenetic relationships.Genomic distribution analysis reveals that the AcHMA genes were unevenly distributed across six chromosomes. We further analyzed their physicochemical properties, collinearity, and gene structure.Furthermore, RNA-seq data analysis exhibited varied expressions in different tissues of A. catechu and found that AcHMA1, AcHMA2, and AcHMA7 were highly expressed in roots, leaves, pericarp, and male/female flowers. A total of six AcHMA candidate genes were selected based on gene expression patterns, and their expression in the roots and leaves was determined using RT-qPCR under heavy metal stress. Results showed that the expression levels of AcHMA1 and AcHMA3 genes were significantly up-regulated under Cd2 + and Zn2 + stress. Similarly, in response to Cu2+, the AcHMA5 and AcHMA8 revealed the highest expression in roots and leaves, respectively. In conclusion, this study will offer a foundation for exploring the role of the HMAs gene family in dealing with heavy metal stress conditions in A. catechu.
Collapse
Affiliation(s)
- Noor Muhammad Khan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Akhtar Ali
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yinglang Wan
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Guangzhen Zhou
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China.
| |
Collapse
|
4
|
Tong T, Xu A, Tan S, Jiang H, Liu L, Deng S, Wang H. Biological Effects and Biomedical Applications of Areca Nut and Its Extract. Pharmaceuticals (Basel) 2024; 17:228. [PMID: 38399443 PMCID: PMC10893415 DOI: 10.3390/ph17020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The dried, mature fruit of the palm tree species Areca catechu L. is known as the areca nut (AN) or betel nut. It is widely cultivated in the tropical regions. In many nations, AN is utilized for traditional herbal treatments or social activities. AN has historically been used to address various health issues, such as diarrhea, arthritis, dyspepsia, malaria, and so on. In this review, we have conducted a comprehensive summary of the biological effects and biomedical applications of AN and its extracts. Initially, we provided an overview of the constituents in AN extract. Subsequently, we summarized the biological effects of AN and its extracts on the digestive system, nervous system, and circulatory system. And we elucidated the contributions of AN and its extracts in antidepressant, anti-inflammatory, antioxidant, and antibacterial applications. Finally, we have discussed the challenges and future perspectives regarding the utilization of AN and its extracts as emerging pharmaceuticals or valuable adjuncts within the pharmaceutical field.
Collapse
Affiliation(s)
- Ting Tong
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Aiqing Xu
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shuhua Tan
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Hengzhi Jiang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Lixin Liu
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Senwen Deng
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Haihua Wang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan Binglang Science Institute, School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
5
|
Wang S, Wang H, Jiang Q, Dai J, Dai W, Kang X, Xu T, Zheng X, Fu A, Xing Z, Chen Y, He Z, Lu L, Gu L. Supplementation of dietary areca nut extract modulates the growth performance, cecal microbiota composition, and immune function in Wenchang chickens. Front Vet Sci 2023; 10:1278312. [PMID: 38192720 PMCID: PMC10773572 DOI: 10.3389/fvets.2023.1278312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/21/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction The study was aimed at evaluating the effects of areca nut extract (ANE) on the growth performance, cecal microbiota, and immunity of Wenchang chickens. Methods For this study, 42-day-old healthy Wenchang chickens (n = 450) with similar body weight were chosen. The animals were randomly divided into five groups, with six replicates per group and 15 chickens per replicate. One group was fed a basal diet (control; CCK). The remaining four groups were fed a basal diet supplemented with varying ANE concentrations: 0.038, 0.063, 0.100, and 0.151 g/kg, with the groups denoted as CNT1, CNT2, CNT3, and CNT4, respectively. The feeding experiment lasted 35 days. The ligated cecum segments of the control and experimental groups were collected for metabolomic and metagenomic analysis, while the bone marrow samples were extracted for tandem mass tag (TMT)-based proteomic analysis. Results All the experimental groups exhibited significantly higher average daily gain (ADG) and significantly lower feed-to-weight (F/G) ratios than CCK. Metabolomic screening of the cecum contents revealed the presence of 544 differential metabolites, including several gut health-related metabolites, such as xanthine, hydroxy hypoxanthine, 2,5-dimethylhydrazine, ganoderic acid, and 2-aminohexanoic acid. Metagenomic analysis of the cecum contents showed an upregulation in the abundance of Prevotella spp. in the experimental groups. However, we observed no significant differences in the abundances of other cecal microbes at phylum and genus levels. Furthermore, we observed significant associations between Prevotella spp. and the differentially abundant metabolites, such as cherubins, thiaburimamide, and 3,4-dihydroxy-L-phenylalanine, (r)-mevalonate, 5-O-methylalloptaeroxylin, nalidixic acid, and deoxyloganin (p < 0.05). Proteomic analysis revealed that the differentially expressed proteins (such as interferon-induced protein with tetratricopeptide repeats 5 (IFIT5), MHC-BF1, and death domain-associated protein (Daxx)) in the bone marrow of the chickens were primarily enriched in the immune network for IgA production and B cell receptor signaling pathway. Conclusion In conclusion, dietary ANE supplementation was found to enhance metabolic activity and energy utilization, improve growth performance, modulate cecal microbiota, and strengthen the immunity of Wenchang chickens.
Collapse
Affiliation(s)
- Shiping Wang
- Haikou Key Laboratory of Areca Processing Research, Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Hong Wang
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Qicheng Jiang
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Jiahui Dai
- Haikou Key Laboratory of Areca Processing Research, Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Wenting Dai
- Haikou Key Laboratory of Areca Processing Research, Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Xiaoning Kang
- Haikou Key Laboratory of Areca Processing Research, Institute of Agro-Products Processing and Design, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Tieshan Xu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xinli Zheng
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - An Fu
- Wenchang City Wenchang Chicken Research Institute, Wenchang, China
| | - Zengyang Xing
- Wenchang Spring of Dragon Wenchang Chicken Industrial Co., Ltd., Wenchang, China
| | - Yiyong Chen
- Hainan Inheriting Good Taste Wenchang Chicken Industry Co., Ltd., Wenchang, China
| | - Zhongchun He
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lihong Gu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| |
Collapse
|
6
|
Xu M, Su S, Jiang S, Li W, Zhang Z, Zhang J, Hu X. Short-term arecoline exposure affected the systemic health state of mice, in which gut microbes played an important role. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115055. [PMID: 37224782 DOI: 10.1016/j.ecoenv.2023.115055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
Arecoline is a critical bioactive component in areca nuts with toxicity and pharmacological activities. However, its effects on body health remain unclear. Here, we investigated the effects of arecoline on physiologic and biochemical parameters in mouse serum, liver, brain, and intestine. The effect of arecoline on gut microbiota was investigated based on shotgun metagenomic sequencing. The results showed that arecoline promoted lipid metabolism in mice, manifested as significantly reduced serum TC and TG and liver TC levels and a reduction in abdominal fat accumulation. Arecoline intake significantly modulated the neurotransmitters 5-HT and NE levels in the brain. Notably, arecoline intervention significantly increased serum IL-6 and LPS levels, leading to inflammation in the body. High-dose arecoline significantly reduced liver GSH levels and increased MDA levels, which led to oxidative stress in the liver. Arecoline intake promoted the release of intestinal IL-6 and IL-1β, causing intestinal injury. In addition, we observed a significant response of gut microbiota to arecoline intake, reflecting significant changes in diversity and function of the gut microbes. Further mechanistic exploration suggested that arecoline intake can regulate gut microbes and ultimately affect the host's health. This study provided technical help for the pharmacochemical application and toxicity control of arecoline.
Collapse
Affiliation(s)
- Meng Xu
- School of Food Science and Engineering, School of public administration, Hainan University, Haikou 570228, China
| | - Shunyong Su
- School of Food Science and Engineering, School of public administration, Hainan University, Haikou 570228, China
| | - Shuaiming Jiang
- School of Food Science and Engineering, School of public administration, Hainan University, Haikou 570228, China
| | - Wanggao Li
- School of Food Science and Engineering, School of public administration, Hainan University, Haikou 570228, China
| | - Zeng Zhang
- School of Food Science and Engineering, School of public administration, Hainan University, Haikou 570228, China
| | - Jiachao Zhang
- School of Food Science and Engineering, School of public administration, Hainan University, Haikou 570228, China; One Health Institute, Hainan University, Haikou 570228, China.
| | - Xiaosong Hu
- School of Food Science and Engineering, School of public administration, Hainan University, Haikou 570228, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
7
|
Liu PF, Chang YF. The Controversial Roles of Areca Nut: Medicine or Toxin? Int J Mol Sci 2023; 24:ijms24108996. [PMID: 37240342 DOI: 10.3390/ijms24108996] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Areca nut (AN) is used for traditional herbal medicine and social activities in several countries. It was used as early as about A.D. 25-220 as a remedy. Traditionally, AN was applied for several medicinal functions. However, it was also reported to have toxicological effects. In this review article, we updated recent trends of research in addition to acquire new knowledge about AN. First, the history of AN usage from ancient years was described. Then, the chemical components of AN and their biological functions was compared; arecoline is an especially important compound in AN. AN extract has different effects caused by different components. Thus, the dual effects of AN with pharmacological and toxicological effects were summarized. Finally, we described perspectives, trends and challenges of AN. It will provide the insight of removing or modifying the toxic compounds of AN extractions for enhancing their pharmacological activity to treat several diseases in future applications.
Collapse
Affiliation(s)
- Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yung-Fu Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
8
|
Wang J, Ma C, Chen P, Yao W, Yan Y, Zeng T, Chen S, Lan Y. Evaluation of aerial spraying application of multi-rotor unmanned aerial vehicle for Areca catechu protection. FRONTIERS IN PLANT SCIENCE 2023; 14:1093912. [PMID: 36925752 PMCID: PMC10011446 DOI: 10.3389/fpls.2023.1093912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Multi-rotor unmanned aerial vehicle (UAV) is a new chemical application tool for tall stalk tropical crop Areca catechu, which could improve deposit performance, reduce operator healthy risk, and increase spraying efficiency. In this work, a spraying experiment was carried out in two A. catechu fields with two leaf area index (LAI) values, and different operational parameters were set. Spray deposit quality, spray drift, and ground loss were studied and evaluated. The results showed that the larger the LAI of A. catechu, the lesser the coverage of the chemical deposition. The maximum coverage could reach 4.28% and the minimum 0.33%. At a flight speed of 1.5 m/s, sprayed droplets had the best penetration and worst ground loss. The overall deposition effect was poor when the flight altitudes were greater than 11.09 m and the flight speed was over 2.5 m/s. Comparing flight speed of 2.5 to 1.5 m/s, the overall distance of 90% of the total drift increased to double under the same operating parameters. This study presents reference data for UAV chemical application in A. catechu protection.
Collapse
Affiliation(s)
- Juan Wang
- College of Mechanical and Electrical Engineering, Hainan University, Haikou, China
| | - Chao Ma
- College of Mechanical and Electrical Engineering, Hainan University, Haikou, China
| | - Pengchao Chen
- National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology, College of Electronic Engineering and Artificial Intelligence, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Weixiang Yao
- College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang, China
- Liaoning Engineering Research Center for Information Technology in Agriculture, Shenyang, China
| | - Yingbin Yan
- Patent Examination Cooperation Guangdong Center of The Patent Office, China National Intellectual Property Administration (CNIPA), Guangzhou, China
| | - Tiwei Zeng
- College of Mechanical and Electrical Engineering, Hainan University, Haikou, China
- College of Information and Communication Engineering, Hainan University, Haikou, China
| | - Shengde Chen
- National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology, College of Electronic Engineering and Artificial Intelligence, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yubin Lan
- National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology, College of Electronic Engineering and Artificial Intelligence, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
9
|
Pandy V, Challa H, Byram P. Protective effect of methanolic extract of Areca catechu nut on ethanol withdrawal symptoms in mice. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-023-00459-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract
Background
The purpose of the current study was to examine the potential impact of a methanolic extract of Areca catechu nut (MAN) on handling-induced convulsions (HIC), anxiety and anhedonia behaviour of alcohol-withdrawn mice. 30 female Swiss albino mice were divided into 5 groups, each with 6 animals. Group 1 (saline withdrawal) received saline during the 3-day alcohol/saline induction phase, while the other 4 groups (alcohol withdrawal) received 20% v/v ethanol (1.25 ml/100 g body weight, i.p.; 20% v/v ethanol was made from absolute ethanol with 79.9 ml saline + 0.1 ml fomepizole, an alcohol dehydrogenase inhibitor). Day four (test day) involved studying handling-induced convulsions; open field test (OFT), elevated plus maze test (EPM), marble burying test (MBT) for anxiety; 24-h sucrose preference test (SPT) for anhedonia in mice. On the test day, Group I and II (saline withdrawal and alcohol withdrawal) received oral treatments with 1% w/v sodium carboxyl methylcellulose 1 h prior to the behavioural testing. Group III received an injection of diazepam (1 mg/kg, i.p., 30 min prior) and Group IV and V were treated with two different doses of MAN (50 and 100 mg/kg, p.o.) 1 h prior to the behavioural test.
Results
At doses of 50 and 100 mg/kg, p.o., the Areca catechu nut methanolic extract significantly reduced handling convulsions and anxiety, and had an anti-anhedonic effect using various evaluation criteria, such as convulsion score (HIC), no. of central and peripheral line crossings (OFT), % entries and time spent in open arms (EPM), no. of marbles buried (MBT), and sucrose intake ratio (SPT) in alcohol-withdrawn mice.
Conclusion
In mice undergoing alcohol withdrawal, Areca catechu nut extract (MAN) greatly lessens handling-induced convulsions, anxiety and depression symptoms.
Graphical Abstract
Collapse
|
10
|
Chaikhong K, Chumpolphant S, Rangsinth P, Sillapachaiyaporn C, Chuchawankul S, Tencomnao T, Prasansuklab A. Antioxidant and Anti-Skin Aging Potential of Selected Thai Plants: In Vitro Evaluation and In Silico Target Prediction. PLANTS (BASEL, SWITZERLAND) 2022; 12:65. [PMID: 36616194 PMCID: PMC9823845 DOI: 10.3390/plants12010065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 06/01/2023]
Abstract
The skin is the largest organ that performs a variety of the body's essential functions. Impairment of skin structure and functions during the aging process might severely impact our health and well-being. Extensive evidence suggests that reactive oxygen species play a fundamental role in skin aging through the activation of the related degradative enzymes. Here, the 16 Thai medicinal plant species were screened for their potential anti-skin aging properties. All extracts were investigated for total phenolic and flavonoid contents, antioxidant, anti-elastase, and anti-tyrosinase activities, as well as the binding ability of compounds with target enzymes by molecular docking. Among all the plants screened, the leaves of A. occidentale and G. zeylanicum exhibited strong antioxidants and inhibition against elastase and tyrosinase. Other potential plants include S. alata leaf and A. catechu fruit, with relatively high anti-elastase and anti-tyrosinase activities, respectively. These results are also consistent with docking studies of compounds derived from these plants. The inhibitory actions were found to be more highly positively correlated with phenolics than flavonoids. Taken together, our findings reveal some Thai plants, along with candidate compounds as natural sources of antioxidants and potent inhibitors of elastase and tyrosinase, could be developed as promising and effective agents for skin aging therapy.
Collapse
Affiliation(s)
- Kamonwan Chaikhong
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sawarin Chumpolphant
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panthakarn Rangsinth
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanin Sillapachaiyaporn
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
11
|
Choudhary N, Tewari D, Nabavi SF, Kashani HRK, Lorigooini Z, Filosa R, Khan FB, Masoudian N, Nabavi SM. Plant based food bioactives: A boon or bane for neurological disorders. Crit Rev Food Sci Nutr 2022; 64:3279-3325. [PMID: 36369694 DOI: 10.1080/10408398.2022.2131729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neurological disorders are the foremost occurring diseases across the globe resulting in progressive dysfunction, loss of neuronal structure ultimately cell death. Therefore, attention has been drawn toward the natural resources for the search of neuroprotective agents. Plant-based food bioactives have emerged as potential neuroprotective agents for the treatment of neurodegenerative disorders. This comprehensive review primarily focuses on various plant food bioactive, mechanisms, therapeutic targets, in vitro and in vivo studies in the treatment of neurological disorders to explore whether they are boon or bane for neurological disorders. In addition, the clinical perspective of plant food bioactives in neurological disorders are also highlighted. Scientific evidences point toward the enormous therapeutic efficacy of plant food bioactives in the prevention or treatment of neurological disorders. Nevertheless, identification of food bioactive components accountable for the neuroprotective effects, mechanism, clinical trials, and consolidation of information flow are warranted. Plant food bioactives primarily act by mediating through various pathways including oxidative stress, neuroinflammation, apoptosis, excitotoxicity, specific proteins, mitochondrial dysfunction, and reversing neurodegeneration and can be used for the prevention and therapy of neurodegenerative disorders. In conclusion, the plant based food bioactives are boon for neurological disorders.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Seyed Fazel Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rosanna Filosa
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, 15551 United Arab Emirates
| | - Nooshin Masoudian
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| |
Collapse
|
12
|
Yang F, Jiang XL, Tariq A, Sadia S, Ahmed Z, Sardans J, Aleem M, Ullah R, Bussmann RW. Potential medicinal plants involved in inhibiting 3CL pro activity: A practical alternate approach to combating COVID-19. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:488-496. [PMID: 35985974 PMCID: PMC9359926 DOI: 10.1016/j.joim.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/29/2022] [Indexed: 01/25/2023]
Abstract
At present, a variety of vaccines have been approved, and existing antiviral drugs are being tested to find an effective treatment for coronavirus disease 2019 (COVID-19). However, no standardized treatment has yet been approved by the World Health Organization. The virally encoded chymotrypsin-like protease (3CLpro) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which facilitates the replication of SARS-CoV in the host cells, is one potential pharmacological target for the development of anti-SARS drugs. Online search engines, such as Web of Science, Google Scholar, Scopus and PubMed, were used to retrieve data on the traditional uses of medicinal plants and their inhibitory effects against the SARS-CoV 3CLpro. Various pure compounds, including polyphenols, terpenoids, chalcones, alkaloids, biflavonoids, flavanones, anthraquinones and glycosides, have shown potent inhibition of SARS-CoV-2 3CLpro activity with 50% inhibitory concentration (IC50) values ranging from 2-44 µg/mL. Interestingly, most of these active compounds, including xanthoangelol E (isolated from Angelica keiskei), dieckol 1 (isolated from Ecklonia cava), amentoflavone (isolated from Torreya nucifera), celastrol, pristimerin, tingenone and iguesterin (isolated from Tripterygium regelii), tannic acid (isolated from Camellia sinensis), and theaflavin-3,3'-digallate, 3-isotheaflav1in-3 gallate and dihydrotanshinone I (isolated from Salvia miltiorrhiza), had IC50 values of less than 15 µg/mL. Kinetic mechanistic studies of several active compounds revealed that their mode of inhibition was dose-dependent and competitive, with Ki values ranging from 2.4-43.8 μmol/L. Given the significance of plant-based compounds and the many promising results obtained, there is still need to explore the phytochemical and mechanistic potentials of plants and their products. These medicinal plants could serve as an effective inexpensive nutraceutical for the general public to help manage COVID-19.
Collapse
Affiliation(s)
- Fan Yang
- The Medical Center of General Practice, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu 610041, Sichuan Province, China
| | - Xiao-Lan Jiang
- The Medical Center of General Practice, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu 610041, Sichuan Province, China.
| | - Akash Tariq
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830041, Xinjiang Uygur Autonomous Region, China.
| | - Sehrish Sadia
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki 55300, Pakistan
| | - Zeeshan Ahmed
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830041, Xinjiang Uygur Autonomous Region, China
| | - Jordi Sardans
- Consejo Superior de Investigaciones Científicas, Global Ecology Unit, Centre for Ecological Research and Forestry Applications-Consejo Superior de Investigaciones Científicas-Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Catalonia, Spain; Centre for Ecological Research and Forestry Applications, Cerdanyola del Vallès 08193, Catalonia, Spain
| | - Muhammad Aleem
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki 55300, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rainer W Bussmann
- Department of Ethnobotany, Institute of Botany, llia State University, Tbilisi 0105, Georgia
| |
Collapse
|
13
|
Chaparro-Hernández I, Rodríguez-Ramírez J, Barriada-Bernal LG, Méndez-Lagunas L. Tree ferns (Cyatheaceae) as a source of phenolic compounds – A review. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Liu X, Jiang L, Zhang Q, Zhao Z, Zhang H. Arecoline and arecaidine lixiviation in areca nut blanching: Liquid chromatography‐ion trap‐time of flight hybrid mass spectrometry determination and kinetic modeling. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaoling Liu
- College of Food Science and Engineering Hainan University Haikou China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Hainan University Haikou China
- Key Laboratory of Biological Active Substance and Functional Food Development Hainan University Haikou China
| | - Lian Jiang
- College of Food Science and Engineering Hainan University Haikou China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Hainan University Haikou China
- Key Laboratory of Biological Active Substance and Functional Food Development Hainan University Haikou China
| | - Qi Zhang
- College of Food Science and Engineering Hainan University Haikou China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Hainan University Haikou China
- Key Laboratory of Biological Active Substance and Functional Food Development Hainan University Haikou China
| | - Zhendong Zhao
- College of Food Science and Engineering Hainan University Haikou China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Hainan University Haikou China
- Key Laboratory of Biological Active Substance and Functional Food Development Hainan University Haikou China
- Analytical and Testing Center Hainan University Haikou China
| | - Haide Zhang
- College of Food Science and Engineering Hainan University Haikou China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources Hainan University Haikou China
- Key Laboratory of Biological Active Substance and Functional Food Development Hainan University Haikou China
| |
Collapse
|
15
|
Chou YT, Sun ZJ, Shen WC, Yang YC, Lu FH, Chang CJ, Li CY, Wu JS. Cumulative Betel Quid Chewing and the Risk of Significant Liver Fibrosis in Subjects With and Without Metabolic Syndrome. Front Nutr 2022; 9:765206. [PMID: 35223941 PMCID: PMC8873786 DOI: 10.3389/fnut.2022.765206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Betel quid chewing is associated with metabolic disorders, oral cancer, cardiovascular disease, and chronic liver diseases. Metabolic syndrome (MetS) is also a factor associated with liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). However, studies on the relationship between betel quid and liver fibrosis while also considering MetS are lacking. The aim of this study was thus to investigate the association of betel quid chewing and liver fibrosis with MetS. Methods A total of 9,221 subjects were enrolled after excluding subjects <18 years of age, with past history of chronic liver diseases, cancer, significant alcohol consumption, and incomplete data. Betel nut chewing habit was classified into three groups: none, former-chewing, and current-chewing, and cumulative exposure was calculated by multiplying the duration with the quantity. Liver fibrosis was evaluated based on the NAFLD fibrosis score (NFS), which is a composite score of age, hyperglycemia, BMI, platelet count, albumin, and the AST/ALT ratio. Significant liver fibrosis was defined as NFS ≥-1.455. Results After adjusting for other variables, MetS was positively associated with significant liver fibrosis. Subjects with both MetS and betel quid chewing had a higher associated risk of significant liver fibrosis than those with neither MetS nor betel quid chewing (adjusted OR: 3.03, 95% CI: 2.04–4.50, p < 0.001). Betel quid chewing was associated with significant liver fibrosis (adjusted OR: 2.00, 95% CI: 1.14–3.49, p = 0.015) in subjects with MetS, but not in subjects without. Conclusion Metabolic syndrome increased the associated risk of significant liver fibrosis. Cumulative betel quid exposure increased the associated risk of significant liver fibrosis in subjects with MetS, but not in subjects without.
Collapse
Affiliation(s)
- Yu-Tsung Chou
- Department of Health Management Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Zih-Jie Sun
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Family Medicine, National Cheng Kung University Hospital Dou-Liou Branch, College of Medicine, National Cheng Kung University, Yunlin, Taiwan
| | - Wei-Chen Shen
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Yang
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Feng-Hwa Lu
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Community Healthcare Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Geriatric Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Jen Chang
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chung-Yi Li
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Jin-Shang Wu
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Family Medicine, National Cheng Kung University Hospital Dou-Liou Branch, College of Medicine, National Cheng Kung University, Yunlin, Taiwan
- Department of Family Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- *Correspondence: Jin-Shang Wu
| |
Collapse
|
16
|
Hoang NB, Ngo TCQ, Tran TKN, Lam VT. Comprehensive review on synthesis, physicochemical properties, and application of activated carbon from the Arecaceae plants for enhanced wastewater treatment. OPEN CHEM 2022. [DOI: 10.1515/chem-2021-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Arecaceae presents one of the plant families distributed mainly in the equatorial and subequatorial regions. Arecaceae are widely applied in many fields such as food, cosmetics, fuel, and chemical industries. However, a large amount of agricultural waste from the Arecaceae trees has been released into the environment. The objective of this report is to gain more insights into the potentials and applications of activated carbon (AC) from the Arecaceae trees in wastewater treatment, in which, the ability to handle organic pigments, metals, and antibiotics is focused. The physical properties and processability of AC are statistically evaluated. With a uniform structure, large specific surface area, processing ability according to Langmuir and pseudo-second-order models, we showed that ACs from Arecaceae trees are promising materials for water treatment applications. This is the basis for the development and reduction of by-products that affect the environment.
Collapse
Affiliation(s)
- Ngoc Bich Hoang
- Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University , Ho Chi Minh City 700000 , Vietnam
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
| | - Thi Cam Quyen Ngo
- Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University , Ho Chi Minh City 700000 , Vietnam
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
| | - Thi Kim Ngan Tran
- Faculty of Food and Environmental Engineering, Nguyen Tat Thanh University , Ho Chi Minh City 700000 , Vietnam
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
| | - Van Tan Lam
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
- Department of Science and Technology, People’s Committee in Ben Tre , Ben Tre City 86000 , Vietnam
| |
Collapse
|
17
|
Hossain R, Quispe C, Herrera-Bravo J, Beltrán JF, Islam MT, Shaheen S, Cruz-Martins N, Martorell M, Kumar M, Sharifi-Rad J, Ozdemir FA, Setzer WN, Alshehri MM, Calina D, Cho WC. Neurobiological Promises of the Bitter Diterpene Lactone Andrographolide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3079577. [PMID: 35154564 PMCID: PMC8825670 DOI: 10.1155/2022/3079577] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/21/2021] [Accepted: 01/18/2022] [Indexed: 12/27/2022]
Abstract
Andrographolide (ANDRO), a bitter diterpene lactone found in Andrographis paniculata (Burm.f.) Nees, possesses several biological effects such as antioxidant, anti-inflammatory, and organo-protective effects. Scientific reports suggest that it also has neuroprotective capacity in various test systems. The purpose of this review was to synthesize the neuropharmacological properties of ANDRO and highlight the molecular mechanisms of action that highlight these activities. A careful search was done in PubMed and Google Scholar databases using specific keywords. Findings suggest that ANDRO possess neuroprotective, analgesic, and antifatigue effects. Prominent effects were stated on neuro-inflammation, cerebral ischemia, Alzheimer's and Parkinson's diseases, multiple sclerosis, and brain cancer in mice and rats. Furthermore, ANDRO and its derivatives can enhance memory and learning capacity in experimental animals (rats) without causing any toxicity in the brain. Thus, ANDRO may be one of the most promising plant-based psychopharmacological lead compounds for new drug development.
Collapse
Affiliation(s)
- Rajib Hossain
- 1Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalga nj-8100, Bangladesh
| | - Cristina Quispe
- 2Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- 3Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- 4Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge F. Beltrán
- 5Department of Chemical Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, Temuco, Chile
| | - Muhammad Torequl Islam
- 1Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalga nj-8100, Bangladesh
| | | | - Natália Cruz-Martins
- 7Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- 8Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- 9Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
- 10TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Miquel Martorell
- 11Department of Nutrition and Dietetics, Faculty of Pharmacy, And Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
- 12Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
| | - Manoj Kumar
- 13Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, 400019, Mumbai, India
| | | | - Fethi Ahmet Ozdemir
- 15Department of Molecular Biology and Genetics, Faculty of Science and Art, Bingol University, Bingol 1200, Turkey
| | - William N. Setzer
- 16Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Mohammed M. Alshehri
- 17Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Daniela Calina
- 18Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- 19Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
18
|
Ayu Kade Sutariati G, Mila Rahni N, Corina Rakian T, Madiki A, Risqi Maharani R, Mudi L, Nurhayati Yusuf D, Ngurah Adhi Wibawa G. Scarification and Seed Biomatriconditioning Effect Using Endophytic-Rhizobacteria in Areca Nut ( Areca catechu L.) Seedling Vigor. Pak J Biol Sci 2022; 25:168-174. [PMID: 35234006 DOI: 10.3923/pjbs.2022.168.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Intensive and commercial development of areca nut requires the provision of high-vigour areca nut. This study aimed to evaluate the effect of scarification and seeds biomatriconditioning using endophytic-rhizobacteria in increasing seedlings vigor of areca nut. <b>Materials and Methods:</b> The research was carried out at the Agronomy Unit of Agrotechnology Laboratory, Agriculture Faculty, Halu Oleo University, from November, 2020-March, 2021. The research design was split-plot in a Completely Randomized Design (CRD). The main plot, seed scarification, consisted of 2 treatments, without scarification and scarification. Sub-plots, seeds biomatriconditioning using endophytic-rhizobacteria, consisted of 6 treatments, control, L1-R, M5-R, LA6-R, LA2-E and RJ6-R. <b>Results:</b> The results showed that the scarification treatment did not affect the seedlings vigor of the areca nut. Seed biomatriconditioning using endophytic-rhizobacteria was able to increase seedling vigor both without scarification and with scarification. There were 3 isolates of endophytic-rhizobacteria which were more able to increase the vigor of areca nut without scarification, namely L1-R, LA6-R and LA2-E, with an increase of 137, 104 and 102%, respectively compared to the control, while in scarified seeds, L1-R isolate was able to increase the seedlings vigor of areca nut by 194% compared to the control. <b>Conclusion:</b> Scarification treatment did not affect the vigor of the areca nut. Seed biomatriconditioning with endophytic-rhizobacteria was able to increase the vigor of areca nut seeds either without scarification or with scarification.
Collapse
|
19
|
Microbial Diversity Characteristics of Areca Palm Rhizosphere Soil at Different Growth Stages. PLANTS 2021; 10:plants10122706. [PMID: 34961178 PMCID: PMC8705836 DOI: 10.3390/plants10122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 12/03/2022]
Abstract
The rhizosphere microflora are key determinants that contribute to plant health and productivity, which can support plant nutrition and resistance to biotic and abiotic stressors. However, limited research is conducted on the areca palm rhizosphere microbiota. To further study the effect of the areca palm’s developmental stages on the rhizosphere microbiota, the rhizosphere microbiota of areca palm (Areca catechu) grown in its main producing area were examined in Wanning, Hainan province, at different vegetation stages by an Illumina Miseq sequence analysis of the 16S ribosomal ribonucleic acid and internal transcribed spacer genes. Significant shifts of the taxonomic composition of the bacteria and fungi were observed in the four stages. Burkholderia-Caballeronia-Paraburkholderia were the most dominant group in stage T1 and T2; the genera Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium were decreased significantly from T1 to T2; and the genera Acidothermus and Bacillus were the most dominant in stage T3 and T4, respectively. Meanwhile, Neocosmospora, Saitozyma, Penicillium, and Trichoderma were the most dominant genera in the stage T1, T2, T3, and T4, respectively. Among the core microbiota, the dominant bacterial genera were Burkholderia-Caballeronia-Paraburkholderia and Bacillus, and the dominant fungal genera were Saitozyma and Trichoderma. In addition, we identified five bacterial genera and five fungal genera that reached significant levels during development. Finally, we constructed the OTU (top 30) interaction network of bacteria and fungi, revealed its interaction characteristics, and found that the bacterial OTUs exhibited more extensive interactions than the fungal OTUs. Understanding the rhizosphere soil microbial diversity characteristics of the areca palm could provide the basis for exploring microbial association and maintaining the areca palm’s health.
Collapse
|
20
|
Ogundele AV, Yadav A, Haldar S, Das AM. Antimicrobial activities of extract, fractions and isolated compounds from the fruits of Elaeocarpus floribundus growing in North-East India. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
21
|
Wu J, Cui C, Zhang H, Liu D, Schreiber L, Qin W, Wan Y. Identifying new compounds with potential pharmaceutical and physiological activity in Areca catechu and Areca triandra via a non-targeted metabolomic approach. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:970-981. [PMID: 33619832 DOI: 10.1002/pca.3039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION The fruits of Areca catechu, also called areca nuts, are widely used as popular masticatory and traditional herbal medicine in Asia. Besides arecoline and related alkaloids, limited information is available about further primary and secondary metabolites and their potential biological activities. OBJECTIVE Here we aimed to further enhance our knowledge on phytochemical profiles of A. catechu and Areca triandra fruits. We intended to comprehensively identify metabolites in A. catechu and A. triandra fruits. METHODOLOGY Metabolites were identified by ultra-performance liquid chromatography triple-quadrupole tandem mass spectrometry (UPLC-MS/MS). The occurrence of 12 selected bioactive compounds in 4 different developmental stages of A. catechu and A. triandra was quantified by LC-MS/MS. RESULTS A total of 791 metabolites was identified. Of these, 115 metabolites could successfully be mapped to 44 Kyoto Encyclopedia of Genes and Genomes metabolic pathways, and 154 metabolites occurred at significantly different levels in A. catechu compared to A. triandra. Several components with known biological activities were identified for the first time in A. catechu and A. triandra. The abundance of many of these new components was similar in A. catechu and A. triandra, but significantly different between the pericarp and the seeds of A. catechu fruits. CONCLUSIONS Metabolic profiles indicate that fruits of the Areca species compared here have similar primary and secondary metabolites. Our findings provide new insights into A. catechu and A. triandra as valuable sources for traditional medicine and they pave the way for further studies to potentially improve the underlying pharmaceutical and physiological effects.
Collapse
Affiliation(s)
- Jiao Wu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Chuang Cui
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - He Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571737, China
| | - Dongjun Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of Bonn, D53115, Germany
| | - Weiquan Qin
- Coconut Research Institute, Chinese Academy of Tropical Agriculture Sciences, Wenchang, Hainan, 571339, China
| | - Yinglang Wan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, 570228, China
- Huachuang Institute of Areca Research-Hainan, Haikou, Hainan, 570228, China
| |
Collapse
|
22
|
Chen X, He Y, Deng Y. Chemical Composition, Pharmacological, and Toxicological Effects of Betel Nut. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:1808081. [PMID: 34457017 PMCID: PMC8387188 DOI: 10.1155/2021/1808081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/07/2021] [Indexed: 01/18/2023]
Abstract
Betel nut, the fruit of Areca catechu L, has a long medical history in Southeast Asia. It is native to Malaysia and is cultivated and processed extensively in subtropical regions, such as South China and India. Betel nut almost appears as a "snack" in various occasions in most parts of China. Clinically, betel nut can play a certain pharmacology role and was used in malaria, ascariasis, arthritis, enterozoic abdominalgia, stagnation of food, diarrhea, edema, and beriberi. The nervous excitement of betel nut chewing has made it gradually become popular. However, chewing betel nut can induce oral submucosal fibrosis (OSF) and oral cancer (OC). At the same time, long-term chewing of betel nut also causes inhaled asthma, sperm reducing, betel quid dependence (BQD), and uterine and esophageal cancers. The main components of processed betel nut are the goal of this review. This study will mainly start from the pharmacological activity and toxicology study of betel nut in recent years, aiming to seek its advantages and disadvantages. In the meantime, this study will analyze and emphasize that betel nut and arecoline are the high-risk factors for oral cancer, which should arouse attention and vigilance of the public.
Collapse
Affiliation(s)
- Xiaoxiao Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yongzhi He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanru Deng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
23
|
Bhattacharya R, Rolta R, Dev K, Sourirajan A. Synergistic potential of essential oils with antibiotics to combat fungal pathogens: Present status and future perspectives. Phytother Res 2021; 35:6089-6100. [PMID: 34324240 DOI: 10.1002/ptr.7218] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 01/01/2023]
Abstract
The steady rise in the emergence of antibiotic-resistant fungal pathogens has rendered most of the clinical antibiotics available in the market to be ineffective. Therefore, alternative strategies are required to tackle drug-resistant fungal infections. An effective solution is to combine the available antibiotics with adjuvants such as phytochemicals or essential oils to enhance the efficacy and activity of antibiotics. The present review aims to summarize the studies on synergistic combinations of essential oils and anti-fungal antibiotics. The current findings, methods used for measuring synergistic effects, possible mechanisms of synergism, and future perspectives for developing synergistic EO-antibiotic therapeutic formulations are discussed in this study. Several essential oils exhibit synergistic effect in combination with antibiotics against human fungal pathogens such as Candida albicans. The possible mechanisms of synergy exhibited by essential oil- antibiotic combinations in fungi include disruption of cell wall structure/ ergosterol biosynthesis pathway, enhanced transdermal penetration of antibiotics, alterations in membrane permeability, intracellular leakage of cellular contents, inhibition of germ tube formation or fungal biofilm formation, and competition for a primary target. Synergistic combination of essential oils and antibiotics can prove to be a valid and pragmatic alternative to develop drugs with increased drug-efficacy, and low toxicity.
Collapse
Affiliation(s)
- Riya Bhattacharya
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Rajan Rolta
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| |
Collapse
|
24
|
Kaur A, Bhatti R. Understanding the phytochemistry and molecular insights to the pharmacology of Angelica archangelica L. (garden angelica) and its bioactive components. Phytother Res 2021; 35:5961-5979. [PMID: 34254374 DOI: 10.1002/ptr.7206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 05/23/2021] [Accepted: 06/17/2021] [Indexed: 01/17/2023]
Abstract
Plant-derived molecules have enduring usefulness in treating diseases, and herbal drugs have emerged as a vital component of global therapeutic demand. Angelica archangelica L. (A. archangelica), commonly known as garden angelica, is an aromatic food plant used in culinary procedures as a flavoring agent. In the traditional medicine system, it is regarded as an "Angel plant" due to its miraculous curative power. This review aims to provide a comprehensive summary of the plant's taxonomic profile, ethnopharmacology, Phytochemistry, and pharmacological activities. Various in vivo and in vitro experiments have validated that the plant possesses broad pharmacological potential. The biological activities attributed to the plant include anti-anxiety activity, anti-convulsant activity, cognition enhancer, antiviral activity, cholinesterase inhibitory potential, antiinflammatory activity, gastroprotective activity, and radioprotective activity. The beneficial effects of the plant are credited to its bioactive components, that is, coumarins and volatile oils. The review summarizes the pharmacological activities of crude extract and its bioactive fractions and has also explored their target-oriented effects. This review will be of value in undertaking further investigations on the plant with regard to exploring mechanism-based pharmacological approaches on A. archangelica.
Collapse
Affiliation(s)
- Anudeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
25
|
Biological and Chemical Assessment of Ochrosia elliptica Labill Leaves. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-04986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
霍 妍, 赵 安, 宋 晶, 李 加, 王 荣. [Betelnut polyphenols provide protection against high-altitude hypoxia in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:671-678. [PMID: 34134953 PMCID: PMC8214955 DOI: 10.12122/j.issn.1673-4254.2021.05.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the protective effects of betelnut polyphenols on the vital organs against high-altitude hypoxia in rats. OBJECTIVE We compared low-, medium-, and high- dose betelnut polyphenols (400, 800, and 1600 mg/kg, respectively) and rhodiola the effects of against high-altitude hypoxia in Wistar rats. The rats were kept in normal condition and given the drugs daily for 3 days before transfer to a facility at the altitude of 4010 m, where the rats were kept for 5 consecutive days for hypoxic exposure. The rats were then euthanized for measuring arterial blood gas and assessing liver, lung, brain and cardiac pathologies with HE staining. SOD activity, MDA content and GSH content in the organs were measured, and serum levels of inflammatory factors were detected using a protein microarray. OBJECTIVE Acute exposure to hypoxia significantly reduced blood oxygen saturation of the rats (P < 0.05), caused damages in the liver, lung, brain and myocardium, lowered SOD activity and GSH content and increased MDA content in the vital organs, and increased serum levels of TIMP-1, MCP-1, ICAM-1, and L-selectin (P < 0.05). Treatment with betelnut polyphenols significantly improved blood oxygen saturation, alleviated organ damages, decreased MDA content and increased SOD activity and GSH content in the tissues, and significantly lowered serum levels of inflammatory cytokines in rats with acute exposure to high-altitude hypoxia (P < 0.05). OBJECTIVE Betelnut polyphenols provides protection of the vital organs against acute high-altitude hypoxia in rats by enhancing the antioxidant capacity and reducing inflammatory response.
Collapse
Affiliation(s)
- 妍 霍
- 兰州大学药学院,甘肃 兰州 730000School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- 中国人民解放军联勤保障部队第940医院全军高原医学重点实验室,甘肃 兰州 730050Key Laboratory of High- altitude Medicine, 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou 730050, China
| | - 安鹏 赵
- 中国人民解放军联勤保障部队第940医院全军高原医学重点实验室,甘肃 兰州 730050Key Laboratory of High- altitude Medicine, 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou 730050, China
| | - 晶燕 宋
- 中国人民解放军联勤保障部队第940医院全军高原医学重点实验室,甘肃 兰州 730050Key Laboratory of High- altitude Medicine, 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou 730050, China
| | - 加忠 李
- 兰州大学药学院,甘肃 兰州 730000School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - 荣 王
- 兰州大学药学院,甘肃 兰州 730000School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- 中国人民解放军联勤保障部队第940医院全军高原医学重点实验室,甘肃 兰州 730050Key Laboratory of High- altitude Medicine, 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou 730050, China
| |
Collapse
|
27
|
Psychoactive Substances of Natural Origin: Toxicological Aspects, Therapeutic Properties and Analysis in Biological Samples. Molecules 2021; 26:molecules26051397. [PMID: 33807728 PMCID: PMC7961374 DOI: 10.3390/molecules26051397] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
The consumption of new psychoactive substances (NPSs) has been increasing, and this problem affects several countries worldwide. There is a class of NPSs of natural origin, consisting of plants and fungi, which have a wide range of alkaloids, responsible for causing relaxing, stimulating or hallucinogenic effects. The consumption of some of these substances is prompted by religious beliefs and cultural reasons, making the legislation very variable or even ambiguous. However, the abusive consumption of these substances can present an enormous risk to the health of the individuals, since their metabolism and effects are not yet fully known. Additionally, NPSs are widely spread over the internet, and their appearance is very fast, which requires the development of sophisticated analytical methodologies, capable of detecting these compounds. Thus, the objective of this work is to review the toxicological aspects, traditional use/therapeutic potential and the analytical methods developed in biological matrices in twelve plant specimens (Areca catechu, Argyreia nervosa, Ayahuasca, Catha edulis, Datura stramonium, Lophophora williamsii, Mandragora officinarum, Mitragyna speciosa, Piper methysticum Forst, Psilocybe, Salvia divinorum and Tabernanthe iboga).
Collapse
|
28
|
Deyno S, Mtewa AG, Hope D, Bazira J, Makonnen E, Alele PE. Antibacterial Activities of Echinops kebericho Mesfin Tuber Extracts and Isolation of the Most Active Compound, Dehydrocostus Lactone. Front Pharmacol 2021; 11:608672. [PMID: 33597879 PMCID: PMC7883827 DOI: 10.3389/fphar.2020.608672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022] Open
Abstract
Echinops kebericho Mesfin is traditionally used for the treatment of various infectious diseases. This study investigated antibacterial activity of the essential oil (EO) and the different fractions of ethanol extract. The most active component was isolated and identified. Isolation and purification was accomplished using chromatographic techniques while identification was done by spectroscopic method. Minimum inhibitory concentration (MIC) was determined using the broth micro-dilution method. In bioactive-guided isolation, percent inhibition was determined using optical density (OD) measurement. The MICs of the essential oil ranged from 78.125 μg/ml to 625 μg/ml, and its activity was observed against methicillin-resistant Staphylococcus aureus (MRSA, NCTC 12493). Ethyl acetate fraction showed high activity against MRSA (NCTC 12493), MIC = 39.075 μg/ml followed by Enterococcus faecalis (ATCC 49532), MIC = 78.125 μg/ml and was least active against Klebsiella pneumoniae (ATCC 700603), MIC = 1,250 μg/ml. MIC of hexane fraction ranged from 156.2 µg/ml to Escherichia coli (ATCC 49532) to 1,250 μg/ml to E. coli (NCTC 11954). The MICs of chloroform fraction ranged from 312.5 to 2500 μg/ml; while butanol fraction could be considered pharmacologically inactive as its MIC value was 2,500 μg/ml for all and no activity against E. coli (NCTC 11954). Dehydrocostus lactone was successfully isolated and identified whose MIC was 19.53 μg/ml against MRSA. Dehydrocostus lactone isolated from E. kebericho M. showed noteworthy antibacterial activity which lends support to ethnopharmacological use of the plant. Further optimization should be done to improve its antibacterial activities and pharmacokinetic profile.
Collapse
Affiliation(s)
- Serawit Deyno
- Department of Pharmacology, Mbarara University of Science and Technology, Mbarara, Uganda.,Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia.,Pharmbiotechnology and Traditional Medicine Center of Excellence (PHARMBIOTRAC), Mbarara University of Science and Technology, Mbarara, Uganda
| | - Andrew G Mtewa
- Chemistry Section, Department of Applied Sciences, Malawi Institute of Technology, Malawi University of Science and Technology, Limbe, Malawi
| | - Derick Hope
- MSF Mbarara Research Base, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Joel Bazira
- Department of Microbiology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Eyasu Makonnen
- Center for Innovative Drug Development and Therapeutic Trials for Africa, College of Health Sciences, Addis Ababa University, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Pharmacology and Clinical Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa University, Addis Ababa, Ethiopia
| | - Paul E Alele
- Department of Pharmacology, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
29
|
Cecchini ME, Paoloni C, Campra N, Picco N, Grosso MC, Soriano Perez ML, Alustiza F, Cariddi N, Bellingeri R. Nanoemulsion of Minthostachys verticillata essential oil. In-vitro evaluation of its antibacterial activity. Heliyon 2021; 7:e05896. [PMID: 33521347 PMCID: PMC7820482 DOI: 10.1016/j.heliyon.2021.e05896] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/28/2020] [Accepted: 12/30/2020] [Indexed: 01/08/2023] Open
Abstract
Infectious diseases constitute a problem of great importance for animal and human health, as well as the increasing bacterial resistance to antibiotics. In this context, medicinal plants emerge as an effective alternative to replace the use antibiotics. The essential oil (EO) of Minthostachys verticillata (Griseb.) Epling (Lamiaceae) has demonstrated a strong antimicrobial activity. However, its instability and hydrophobicity under normal storage conditions are limitations to its use. Nanoemulsion technology is an excellent way to solubilize, microencapsulate, and protect this compound. This study aimed to obtain a nanoemulsion based on M. verticillata EO and evaluate its antibacterial activity against Staphylococcus aureus. The EO was obtained by steam distillation. Identification and quantification of their components were determined by GC-MS revealing that the dominated chemical group was oxygenated monoterpenes. Nanoemulsions (NE) were characterized by measuring pH, transmittance, separation percentage, release profile, and morphology. The effect of NE on the growth of S. aureus and cyto-compatibility was also evaluated. The results showed that NE containing a higher percentage of tween 20 exhibited higher stability with an approximated droplet size of 10 nm. The effect of encapsulation process was evaluated by GC-MS revealing that the volatile components in EO were no affected. After 24 h, 74.24 ± 0.75% of EO was released from NE and the antibacterial activity of EO was enhanced considerably by its encapsulation. The incubation of S. aureus with the NE and pure EO, show a bacterial growth inhibition of 58.87% ± 0.99 and 46.72% ± 3.32 (p < 0.05), respectively. In addition, nanoemulsión did not cause toxicity to porcine and equine red blood cells. The results obtained showed that NE could be a potential vehicle for M. verticillata EO with promissory properties to emerge as a tool for developing advanced therapies to control and combat infections.
Collapse
Affiliation(s)
- M E Cecchini
- Universidad Nacional de Río Cuarto, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Departamento de Microbiología e Inmunología, Laboratorio de Inmunología, Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina.,Instituto de Biotecnología Ambiental y Salud (INBIAS) CONICET, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| | - C Paoloni
- Universidad Nacional de Río Cuarto, Facultad de Agronomía y Veterinaria, Departamento de Anatomía Animal, Laboratorio de Biotecnología Animal, Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| | - N Campra
- Universidad Nacional de Río Cuarto, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Departamento de Microbiología e Inmunología, Laboratorio de Inmunología, Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina.,Instituto de Biotecnología Ambiental y Salud (INBIAS) CONICET, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| | - N Picco
- Universidad Nacional de Río Cuarto, Facultad de Agronomía y Veterinaria, Departamento de Anatomía Animal, Laboratorio de Biotecnología Animal, Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| | - M C Grosso
- Universidad Nacional de Río Cuarto, Facultad de Agronomía y Veterinaria, Departamento de Anatomía Animal, Laboratorio de Biotecnología Animal, Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| | - M L Soriano Perez
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Marcos Juárez, Marcos Juárez, X2580, Córdoba, Argentina
| | - F Alustiza
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Marcos Juárez, Marcos Juárez, X2580, Córdoba, Argentina
| | - N Cariddi
- Universidad Nacional de Río Cuarto, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Departamento de Microbiología e Inmunología, Laboratorio de Inmunología, Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina.,Instituto de Biotecnología Ambiental y Salud (INBIAS) CONICET, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| | - R Bellingeri
- Universidad Nacional de Río Cuarto, Facultad de Agronomía y Veterinaria, Departamento de Anatomía Animal, Laboratorio de Biotecnología Animal, Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina.,Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA) CONICET, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Río Cuarto, Córdoba, 5800, Argentina
| |
Collapse
|
30
|
Rahman MM, Mosaddik A, Alam AK. Traditional foods with their constituent's antiviral and immune system modulating properties. Heliyon 2021; 7:e05957. [PMID: 33462562 PMCID: PMC7806454 DOI: 10.1016/j.heliyon.2021.e05957] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 01/08/2021] [Indexed: 12/30/2022] Open
Abstract
Background Viruses are responsible for several diseases, including severe acute respiratory syndrome, a condition caused by today's pandemic coronavirus disease (COVID-19). A negotiated immune system is a common risk factor for all viral infections, including COVID-19. To date, no specific therapies or vaccines have been approved for coronavirus. In these circumstances, antiviral and immune boosting foods may ensure protection against viral infections, especially SARS-CoV-2 by reducing risk and ensuring fast healing of SARS-CoV-2 illness. Scope and approach In this review, we have conducted an online search using several search engines (Google Scholar, PubMed, Web of Science and Science Direct) to find out some traditional foods (plant, animal and fungi species), which have antiviral and immune-boosting properties against numerous viral infections, particularly coronaviruses (CoVs) and others RNA-virus infections. Our review indicated some foods to be considered as potential immune enhancers, which may help individuals to overcome viral infections like COVID-19 by modulating immune systems and reducing respiratory problems. Furthermore, this review will provide information regarding biological properties of conventional foods and their ingredients to uphold general health. Key Findings and Conclusions We observed some foods with antiviral and immune-boosting properties, which possess bioactive compounds that showed significant antiviral properties against different viruses, particularly RNA viruses such as CoVs. Interestingly, some antiviral and immune-boosting mechanisms were very much similar to the antiviral drug of COVID-19 homologous SARS (Severe Acute Respiratory Syndrome Coronavirus) and MERS (Middle East Respiratory Syndrome Coronavirus). The transient nature and the devastating spreading capability of COVID-19 lead to ineffectiveness of many curative therapies. Therefore, body shielding and immune-modulating foods, which have previous scientific recognition, have been discussed in this review to discern the efficacy of these foods against viral infections, especially SARS-CoV-2.
Collapse
Affiliation(s)
| | - Ashik Mosaddik
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Ahm Khurshid Alam
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
31
|
Zhang L, Yin X, Zhang J, Wei Y, Huo D, Ma C, Chang H, Cai K, Shi H. Comprehensive microbiome and metabolome analyses reveal the physiological mechanism of chlorotic Areca leaves. TREE PHYSIOLOGY 2021; 41:147-161. [PMID: 32857860 DOI: 10.1093/treephys/tpaa112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
As an important economic crop in tropical areas, Areca catechu L. affects the livelihood of millions of farmers. The Areca yellow leaf phenomenon (AYLP) leads to severe crop losses and plant death. To better understand the relationship of microbes and chlorotic Areca leaves, microbial community structure as well as its correlation with differential metabolites was investigated by high-throughput sequencing and metabolomic approaches. High-throughput sequencing of the internal transcribed spacer 1 and 16S rRNA gene revealed that fungal diversity was dominated by Ascomycota and the bacterial community consisted of Proteobacteria as well as Actinobacteria. The microbiota structure on chlorotic Areca leaves exhibited significant changes based on non-metric multidimensional scaling analysis, which were attributed to 477 bacterial genera and 183 fungal genera. According to the results of the Kruskal-Wallis test, several potential pathogens were enriched on chlorotic Areca leaves. Further analysis based on metabolic pathways predicted by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States revealed the metabolism of half-yellow leaves and yellow leaves microbiota were significantly elevated in amino acid metabolism, carbohydrate metabolism, glycan biosynthesis and metabolism, metabolism of cofactors and vitamins, partial xenobiotics biodegradation and metabolism. Furthermore, 22 significantly variable metabolites in Areca leaves were identified by ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry and statistical analysis. Moreover, we further investigated the correlation between the predominant microbes and differential metabolites. Taken together, the association between AYLP and microbiome of Areca leaves was explored from the microecological perspective by omics techniques, and these findings provide new insights into possible prevention, monitoring and control of AYLP in the future.
Collapse
Affiliation(s)
- Lin Zhang
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Xiaojian Yin
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, Jiangsu 211198, China
| | - Jiachao Zhang
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Yunxie Wei
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Dongxue Huo
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Chenchen Ma
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Haibo Chang
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Kun Cai
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| | - Haitao Shi
- College of Food Science and Technology, College of Tropical Crops, College of Life and Pharmaceutical Sciences, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
32
|
Recent bionalytical methods for the determination of new psychoactive substances in biological specimens. Bioanalysis 2020; 12:1557-1595. [PMID: 33078960 DOI: 10.4155/bio-2020-0148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
One of the problems associated with the consumption of new psychoactive substances is that in most scenarios of acute toxicity the possibility of quick clinical action may be impaired because many screening methods are not responsive to them, and laboratories are not able to keep pace with the appearance of new substances. For these reasons, developing and validating new analytical methods is mandatory in order to efficiently face those problems, allowing laboratories to be one step ahead. The goal of this work is to perform a critical review regarding bionalytical methods that can be used for the determination of new psychoactive substances (phenylethylamines, cathinones, synthetic cannabinoids, opioids, benzodiazepines, etc), particularly concerning sample preparation techniques and associated analytical methods.
Collapse
|
33
|
Pharmacology of Herbal Sexual Enhancers: A Review of Psychiatric and Neurological Adverse Effects. Pharmaceuticals (Basel) 2020; 13:ph13100309. [PMID: 33066617 PMCID: PMC7602496 DOI: 10.3390/ph13100309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Sexual enhancers increase sexual potency, sexual pleasure, or libido. Substances increasing libido alter the concentrations of specific neurotransmitters or sex hormones in the central nervous system. Interestingly, the same pathways are involved in the mechanisms underlying many psychiatric and neurological disorders, and adverse reactions associated with the use of aphrodisiacs are strongly expected. However, sexual enhancers of plant origin have gained popularity over recent years, as natural substances are often regarded as a safer alternative to modern medications and are easily acquired without prescription. We reviewed the psychiatric and neurological adverse effects associated with the consumption of herbal aphrodisiacs Areca catechu L., Argemone Mexicana L., Citrus aurantium L., Eurycoma longifolia Jack., Lepidium meyenii Walp., Mitragyna speciosa Korth., Panax ginseng C. A. Mey, Panax quinquefolius L., Pausinystalia johimbe (K. Schum.) Pierre ex Beille, Piper methysticum G. Forst., Ptychopetalum olacoides Benth., Sceletium tortuosum (L.) N. E. Brown, Turnera diffusa Willd. ex. Schult., Voacanga africana Stapf ex Scott-Elliot, and Withania somnifera (L.) Dunal. A literature search was conducted on the PubMed, Scopus, and Web of Science databases with the aim of identifying all the relevant articles published on the issue up to June 2020. Most of the selected sexual enhancers appeared to be safe at therapeutic doses, although mild to severe adverse effects may occur in cases of overdosing or self-medication with unstandardized products. Drug interactions are more concerning, considering that herbal aphrodisiacs are likely used together with other plant extracts and/or pharmaceuticals. However, few data are available on the side effects of several plants included in this review, and more clinical studies with controlled administrations should be conducted to address this issue.
Collapse
|