1
|
Hosseini H, Bagherniya M, Sahebkar A, Iraj B, Majeed M, Askari G. The effect of curcumin-piperine supplementation on lipid profile, glycemic index, inflammation, and blood pressure in patients with type 2 diabetes mellitus and hypertriglyceridemia. Phytother Res 2024; 38:5150-5161. [PMID: 39165011 DOI: 10.1002/ptr.8304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/04/2024] [Accepted: 07/20/2024] [Indexed: 08/22/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder associated with insulin resistance and ensuing dysglycemia, dyslipidemia, and inflammation. Owing to the putative metabolic benefits of curcumin-piperine combination, we explored the efficacy of this combination in improving cardiometabolic indices of patients with T2DM and hypertriglyceridemia. In this double-blind clinical trial, 72 patients with T2DM and hypertriglyceridemia were randomized to receive either a tablet containing 500 mg of curcuminoids plus 5 mg of piperine, or a matched placebo for 12 weeks. Anthropometric indices, blood pressure, glycemic indices, lipid profile, C-reactive protein (CRP), quality of life, and mood were evaluated at baseline and end of the study. After 12 weeks of intervention, the levels of triglycerides (p-value = 0.001) and fasting blood glucose (p-value = 0.004) were significantly reduced in the curcumin-piperine compared with the placebo group. CRP levels were marginally reduced in the curcumin-piperine compared with the placebo group (p-value = 0.081). In addition, energy/fatigue significantly increased in the curcumin-piperine group compared to the control group (p-value = 0.024). However, between-group comparisons showed no significant change in other parameters, including anthropometric indices (waist circumference and body mass index (BMI)), biochemical parameters (low-density lipoprotein (LDL-c), high-density lipoprotein (HDL-c), and insulin), HOMA-IR, blood pressure, quality of life, and DASS-21 items between the studied groups (p-value >0.05). The current study showed that curcumin-piperine supplementation can improve serum CRP, triglycerides, and glucose concentrations in patients with T2DM and hypertriglyceridemia.
Collapse
Affiliation(s)
- Hanie Hosseini
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bijan Iraj
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Utpal BK, Sutradhar B, Zehravi M, Sweilam SH, Panigrahy UP, Urs D, Fatima AF, Nallasivan PK, Chhabra GS, Sayeed M, Alshehri MA, Rab SO, Khan SL, Emran TB. Polyphenols in wound healing: unlocking prospects with clinical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03538-1. [PMID: 39453503 DOI: 10.1007/s00210-024-03538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Wound healing is a multifaceted, complex process that factors like aging, metabolic diseases, and infections may influence. The potentiality of polyphenols, natural compounds, has shown anti-inflammatory and antimicrobial properties in promoting wound healing and their potential applications in wound management. The studies reviewed indicate that polyphenols have multiple mechanisms that promote wound healing. This involves enhancing antioxidant defenses, reducing oxidative stress, modulating inflammatory responses, improving healing times, reducing infection rates, and enhancing tissue regeneration in clinical trials and in vivo and in vitro studies. Polyphenols have been proven to be effective in managing hard-to-heal wounds, especially in diabetic and elderly populations. Polyphenols have shown significant benefits in promoting angiogenesis and stimulating collagen synthesis. Polyphenol treatment has been demonstrated to have therapeutic effects in wound healing and chronic wound management. Their ability to regulate key healing processes makes them suitable for new wound care products and treatments. Future research should enhance formulations and delivery methods to optimize polyphenols' bioavailability and therapeutic efficacy in wound management approaches.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Baishakhi Sutradhar
- Department of Microbiology, Gono University (Bishwabidyalay), Nolam, Mirzanagar, Savar, Dhaka, 1344, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam Down Town University, Gandhi Nagar, Sankar Madhab Path, Panikhaiti, Guwahati, Assam, 781026, India
| | - Deepadarshan Urs
- Inflammation Research Laboratory, Department of Studies & Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate Campus, Kodagu, Karnataka, India
| | - Ayesha Farhath Fatima
- Department of Pharmaceutics, Anwarul Uloom College of Pharmacy, New Mallepally, Hyderabad, India
| | - P Kumar Nallasivan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari, Coimbatore, Tamilnadu, India
| | - Gurmeet Singh Chhabra
- Department Pharmaceutical Chemistry, Indore Institute of Pharmacy, Opposite Indian Institute of Management Rau, Pithampur Road, Indore, Madhya Pradesh, India
| | - Mohammed Sayeed
- Department of Pharmacology, School of Pharmacy, Anurag University, Venkatapur, Ghatkesar, Hyderabad, Telangana, India
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| |
Collapse
|
3
|
Pathak D, Mazumder A. A critical overview of challenging roles of medicinal plants in improvement of wound healing technology. Daru 2024; 32:379-419. [PMID: 38225520 PMCID: PMC11087437 DOI: 10.1007/s40199-023-00502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/25/2023] [Indexed: 01/17/2024] Open
Abstract
PURPOSE Chronic diseases often hinder the natural healing process, making wound infections a prevalent clinical concern. In severe cases, complications can arise, potentially leading to fatal outcomes. While allopathic treatments offer numerous options for wound repair and management, the enduring popularity of herbal medications may be attributed to their perceived minimal side effects. Hence, this review aims to investigate the potential of herbal remedies in efficiently treating wounds, presenting a promising alternative for consideration. METHODS A literature search was done including research, reviews, systematic literature review, meta-analysis, and clinical trials considered. Search engines such as Pubmed, Google Scholar, and Scopus were used while retrieving data. Keywords like Wound healing 'Wound healing and herbal combinations', 'Herbal wound dressing', Nanotechnology and Wound dressing were used. RESULT This review provides valuable insights into the role of natural products and technology-based formulations in the treatment of wound infections. It evaluates the use of herbal remedies as an effective approach. Various active principles from herbs, categorized as flavonoids, glycosides, saponins, and phenolic compounds, have shown effectiveness in promoting wound closure. A multitude of herbal remedies have demonstrated significant efficacy in wound management, offering an additional avenue for care. The review encompasses a total of 72 studies, involving 127 distinct herbs (excluding any common herbs shared between studies), primarily belonging to the families Asteraceae, Fabaceae, and Apiaceae. In research, rat models were predominantly utilized to assess wound healing activities. Furthermore, advancements in herbal-based formulations using nanotechnology-based wound dressing materials, such as nanofibers, nanoemulsions, nanofiber mats, polymeric fibers, and hydrogel-based microneedles, are underway. These innovations aim to enhance targeted drug delivery and expedite recovery. Several clinical-based experimental studies have already been documented, evaluating the efficacy of various natural products for wound care and management. This signifies a promising direction in the field of wound treatment. CONCLUSION In recent years, scientists have increasingly utilized evidence-based medicine and advanced scientific techniques to validate the efficacy of herbal medicines and delve into the underlying mechanisms of their actions. However, there remains a critical need for further research to thoroughly understand how isolated chemicals extracted from herbs contribute to the healing process of intricate wounds, which may have life-threatening consequences. This ongoing research endeavor holds great promise in not only advancing our understanding but also in the development of innovative formulations that expedite the recovery process.
Collapse
Affiliation(s)
- Deepika Pathak
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, UP, 201306, India.
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, UP, 201306, India
| |
Collapse
|
4
|
Lee YM, Kim Y. Is Curcumin Intake Really Effective for Chronic Inflammatory Metabolic Disease? A Review of Meta-Analyses of Randomized Controlled Trials. Nutrients 2024; 16:1728. [PMID: 38892660 PMCID: PMC11174746 DOI: 10.3390/nu16111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
This review aimed to examine the effects of curcumin on chronic inflammatory metabolic disease by extensively evaluating meta-analyses of randomized controlled trials (RCTs). We performed a literature search of meta-analyses of RCTs published in English in PubMed®/MEDLINE up to 31 July 2023. We identified 54 meta-analyses of curcumin RCTs for inflammation, antioxidant, glucose control, lipids, anthropometric parameters, blood pressure, endothelial function, depression, and cognitive function. A reduction in C-reactive protein (CRP) levels was observed in seven of ten meta-analyses of RCTs. In five of eight meta-analyses, curcumin intake significantly lowered interleukin 6 (IL-6) levels. In six of nine meta-analyses, curcumin intake significantly lowered tumor necrosis factor α (TNF-α) levels. In five of six meta-analyses, curcumin intake significantly lowered malondialdehyde (MDA) levels. In 14 of 15 meta-analyses, curcumin intake significantly reduced fasting blood glucose (FBG) levels. In 12 of 12 meta-analyses, curcumin intake significantly reduced homeostasis model assessment of insulin resistance (HOMA-IR). In seven of eight meta-analyses, curcumin intake significantly reduced glycated hemoglobin (HbA1c) levels. In eight of ten meta-analyses, curcumin intake significantly reduced insulin levels. In 14 of 19 meta-analyses, curcumin intake significantly reduced total cholesterol (TC) levels. Curcumin intake plays a protective effect on chronic inflammatory metabolic disease, possibly via improved levels of glucose homeostasis, MDA, TC, and inflammation (CRP, IL-6, TNF-α, and adiponectin). The safety and efficacy of curcumin as a natural product support the potential for the prevention and treatment of chronic inflammatory metabolic diseases.
Collapse
Affiliation(s)
- Young-Min Lee
- Department of Practical Science Education, Gyeongin National University of Education, Gyesan-ro 62, Gyeyang-gu, Incheon 21044, Republic of Korea;
| | - Yoona Kim
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
5
|
Sanpinit S, Chokpaisarn J, Na-Phatthalung P, Sotthibandhu DS, Yincharoen K, Wetchakul P, Limsuwan S, Chusri S. Effectiveness of Ya-Samarn-Phlae in diabetic wound healing: Evidence from in vitro studies and a multicenter randomized controlled clinical trial. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117929. [PMID: 38373661 DOI: 10.1016/j.jep.2024.117929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/29/2023] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ya-Samarn-Phlae (YaSP) has traditionally been widely used in southern Thailand for treating chronic and infected wounds, including diabetic foot ulcers. However, there are only a limited number of clinical studies supporting the use of this polyherbal formulation. Therefore, the present work aims to provide clinical evidence to support the application of YaSP, prepared according to a standardized traditional procedure (T-YaSP). Additionally, its potential chemical markers and wound healing-related biological activities were examined. MATERIALS AND METHODS The in vitro wound healing-related biological activities of YaSP ethanol extract and T-YaSP, including antibacterial activity against Staphylococcus epidermidis, inhibition and eradication of staphylococcal biofilm, anti-inflammatory effects, and enhancement of human dermal fibroblast migration in scratch wounds, were examined using well-established protocols. The chemical profiles of the ethanol extract of YaSP and T-YaSP were compared, and with promising chemical markers, arecoline, alpha-mangostin, and curcumin were selected and quantified using the HPLC method. A prospective, multicenter, randomized, controlled, parallel-group study was conducted over 12 weeks to evaluate the efficacy of the YaSP solution as an adjunct therapy, combined with standard wound care, for diabetic ulcers compared to standard treatment. RESULTS The YaSP extract reduces NO production and can scavenge NO radicals in LPS-induced RAW 264.7 macrophage cells. Additionally, in a scratch assay, this extract and one of its herbal components, Curcuma longa, enhance the migration of human dermal fibroblasts. T-YaSP, containing 2.412 ± 0.002 mg/g of arecoline, 2.399 ± 0.005 mg/g of curcumin, and 0.017 ± 0.000 mg/g of α-mangostin, has shown the ability to inhibit the development and eradicate the mature biofilm of S. epidermidis. The use of T-YaSP as an adjunct therapy led to a significantly higher proportion of patients achieving healing within six weeks compared to the standard treatment group (36%/9 patients vs. 4%/1 patient; p = 0.013). After 12 weeks, 19 out of 25 patients in the T-YaSP group experienced complete healing, whereas only four patients in the standard treatment group achieved complete wound healing (76% in the T-YaSP group vs. 16% in the control group; p < 0.001). CONCLUSION The results presented here represent the first randomized controlled trial to demonstrate the effectiveness of the traditional polyherbal solution, T-YaSP, which exhibits a wide range of wound healing-related activities. Utilizing T-YaSP as an adjunctive treatment resulted in a significant improvement in the number of type 2 diabetic patients achieving complete healing. However, to explore and utilize YaSP further, conducting a double-blind, randomized controlled trial with a larger population is necessary.
Collapse
Affiliation(s)
- Sineenart Sanpinit
- School of Medicine, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand
| | - Julalak Chokpaisarn
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Pinanong Na-Phatthalung
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | | | - Kanyatorn Yincharoen
- Department of Thai Traditional Medicine, Faculty of Science and Technology, Rajamangala University of Technology Srivijaya (RMUTSV), Thung Song, Nakhon Si Thammarat, 80110, Thailand
| | - Palika Wetchakul
- School of Medicine, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand
| | - Surasak Limsuwan
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Sasitorn Chusri
- School of Health Science and Biomedical Technology Research Group for Vulnerable Populations, MaeFah Luang University, Chiang Rai, 57100, Thailand.
| |
Collapse
|
6
|
Chen P, Vilorio NC, Dhatariya K, Jeffcoate W, Lobmann R, McIntosh C, Piaggesi A, Steinberg J, Vas P, Viswanathan V, Wu S, Game F. Effectiveness of interventions to enhance healing of chronic foot ulcers in diabetes: A systematic review. Diabetes Metab Res Rev 2024; 40:e3786. [PMID: 38507616 DOI: 10.1002/dmrr.3786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND It is critical that interventions used to enhance the healing of chronic foot ulcers in diabetes are backed by high-quality evidence and cost-effectiveness. In previous years, the systematic review accompanying guidelines published by the International Working Group of the Diabetic Foot performed 4-yearly updates of previous searches, including trials of prospective, cross-sectional and case-control design. AIMS Due to a need to re-evaluate older studies against newer standards of reporting and assessment of risk of bias, we performed a whole new search from conception, but limiting studies to randomised control trials only. MATERIALS AND METHODS For this systematic review, we searched PubMed, Scopus and Web of Science databases for published studies on randomised control trials of interventions to enhance healing of diabetes-related foot ulcers. We only included trials comparing interventions to standard of care. Two independent reviewers selected articles for inclusion and assessed relevant outcomes as well as methodological quality. RESULTS The literature search identified 22,250 articles, of which 262 were selected for full text review across 10 categories of interventions. Overall, the certainty of evidence for a majority of wound healing interventions was low or very low, with moderate evidence existing for two interventions (sucrose-octasulfate and leucocyte, platelet and fibrin patch) and low quality evidence for a further four (hyperbaric oxygen, topical oxygen, placental derived products and negative pressure wound therapy). The majority of interventions had insufficient evidence. CONCLUSION Overall, the evidence to support any other intervention to enhance wound healing is lacking and further high-quality randomised control trials are encouraged.
Collapse
Affiliation(s)
- Pam Chen
- Joondalup Health Campus, Ramsay Healthcare Australia, Joondalup, Western Australia, Australia
- Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Nalini Campillo Vilorio
- Department of Diabetology, Diabetic Foot Unit, Plaza de la Salud General Hospital, Santo Domingo, Dominican Republic
| | - Ketan Dhatariya
- Elsie Bertram Diabetes Centre, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | - Ralf Lobmann
- Clinic for Endocrinology, Diabetology and Geriatrics, Klinikum Stuttgart, Stuttgart, Germany
| | | | - Alberto Piaggesi
- Diabetic Foot Section, Department of Medicine, University of Pisa, Pisa, Italy
| | - John Steinberg
- Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Prash Vas
- King's College Hospital NHS Foundation Trust, London, UK
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Prof M Viswanathan Diabetes Research Center, Chennai, India
| | - Stephanie Wu
- Dr. William M. Scholl College of Podiatric Medicine at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Fran Game
- University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| |
Collapse
|
7
|
Highton P, Almaqhawi A, Oroko M, Sathanapally H, Gray L, Davies M, Webb D, Game F, Petrie J, Tesfaye S, Valabhji J, Gillies C, Khunti K. Non-pharmacological interventions to improve cardiovascular risk factors in people with diabetic foot disease: A systematic review and meta-analysis. Diabetes Res Clin Pract 2024; 209:111590. [PMID: 38403175 DOI: 10.1016/j.diabres.2024.111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Cardiovascular disease (CVD) risk in those with diabetic foot disease is very high. Non-pharmacological interventions may improve this risk, though no previous evidence synthesis has been completed. This systematic review aimed to investigate the impact of non-pharmacological interventions on CVD risk factors in diabetic ulcer disease. Multiple databases and trials registers were searched from inception to December 6th 2023. We included reports of randomised controlled trials investigating the impact of non-pharmacological interventions on cardiovascular risk in those with type 1 or type 2 diabetes and current or previous diabetic foot disease. Twenty studies were included. Extracted data included: study design and setting; participant sociodemographic factors; and change in cardiovascular risk factors. Data were synthesised using random effects meta-analyses and narrative syntheses. Interventions included nutritional supplementation, collaborative care, hyperbaric oxygen therapy, patient education, nurse-led intervention, self-management, family support, relaxation and exercise, over a median duration of 12 weeks. Significant post-intervention changes were observed in fasting plasma glucose, serum insulin levels, insulin sensitivity and resistance, glycated haemoglobin, triglycerides, total cholesterol, low-density lipoprotein-cholesterol and C-reactive protein. No effects were detected in very low- or high-density lipoprotein-cholesterol or body mass index. Non-pharmacological interventions show promise in improving CVD risk in diabetic foot disease.
Collapse
Affiliation(s)
- Patrick Highton
- Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester LE5 4PW, UK; National Institute for Health and Care Research Applied Research Collaboration East Midlands, Leicester, UK.
| | - Abdullah Almaqhawi
- Department of Family and Community Medicine, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Maroria Oroko
- School of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Harini Sathanapally
- Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester LE5 4PW, UK
| | - Laura Gray
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Melanie Davies
- Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester LE5 4PW, UK
| | - David Webb
- Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester LE5 4PW, UK
| | - Frances Game
- Department of Diabetes and Endocrinology, University Hospitals of Derby and Burton NHS Foundation Trust, Derby DE22 3NE, UK
| | - John Petrie
- School of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Solomon Tesfaye
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield S10 2JF, UK
| | - Jonathan Valabhji
- NHS England, Wellington House, 133-135 Waterloo Road, London SE1 8UG, UK; Department of Diabetes and Endocrinology, St Mary's Hospital, Imperial College Healthcare NHS Trust, The Bays, S Wharf Rd, Paddington, London W2 1NY, UK; Division of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington, London SW7 2BU, UK
| | - Clare Gillies
- Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester LE5 4PW, UK; National Institute for Health and Care Research Applied Research Collaboration East Midlands, Leicester, UK
| | - Kamlesh Khunti
- Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester LE5 4PW, UK; National Institute for Health and Care Research Applied Research Collaboration East Midlands, Leicester, UK
| |
Collapse
|
8
|
Chen P, Vilorio NC, Dhatariya K, Jeffcoate W, Lobmann R, McIntosh C, Piaggesi A, Steinberg J, Vas P, Viswanathan V, Wu S, Game F. Guidelines on interventions to enhance healing of foot ulcers in people with diabetes (IWGDF 2023 update). Diabetes Metab Res Rev 2024; 40:e3644. [PMID: 37232034 DOI: 10.1002/dmrr.3644] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
AIMS Principles of wound management, including debridement, wound bed preparation, and newer technologies involving alternation of wound physiology to facilitate healing, are of utmost importance when attempting to heal a chronic diabetes-related foot ulcer. However, the rising incidence and costs of diabetes-related foot ulcer management necessitate that interventions to enhance wound healing of chronic diabetes-related foot ulcers are supported by high-quality evidence of efficacy and cost effectiveness when used in conjunction with established aspects of gold-standard multidisciplinary care. This is the 2023 International Working Group on the Diabetic Foot (IWGDF) evidence-based guideline on wound healing interventions to promote healing of foot ulcers in persons with diabetes. It serves as an update of the 2019 IWGDF guideline. MATERIALS AND METHODS We followed the GRADE approach by devising clinical questions and important outcomes in the Patient-Intervention-Control-Outcome (PICO) format, undertaking a systematic review, developing summary of judgements tables, and writing recommendations and rationale for each question. Each recommendation is based on the evidence found in the systematic review and, using the GRADE summary of judgement items, including desirable and undesirable effects, certainty of evidence, patient values, resources required, cost effectiveness, equity, feasibility, and acceptability, we formulated recommendations that were agreed by the authors and reviewed by independent experts and stakeholders. RESULTS From the results of the systematic review and evidence-to-decision making process, we were able to make 29 separate recommendations. We made a number of conditional supportive recommendations for the use of interventions to improve healing of foot ulcers in people with diabetes. These include the use of sucrose octasulfate dressings, the use of negative pressure wound therapies for post-operative wounds, the use of placental-derived products, the use of the autologous leucocyte/platelet/fibrin patch, the use of topical oxygen therapy, and the use of hyperbaric oxygen. Although in all cases it was stressed that these should be used where best standard of care was not able to heal the wound alone and where resources were available for the interventions. CONCLUSIONS These wound healing recommendations should support improved outcomes for people with diabetes and ulcers of the foot, and we hope that widescale implementation will follow. However, although the certainty of much of the evidence on which to base the recommendations is improving, it remains poor overall. We encourage not more, but better quality trials including those with a health economic analysis, into this area.
Collapse
Affiliation(s)
- Pam Chen
- Joondalup Health Campus, Ramsay Healthcare Australia, Joondalup, Western Australia, Australia
- Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Nalini Campillo Vilorio
- Department of Diabetology, Diabetic Foot Unit, Plaza de la Salud General Hospital, Santo Domingo, Dominican Republic
| | - Ketan Dhatariya
- Elsie Bertram Diabetes Centre, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | - Ralf Lobmann
- Clinic for Endocrinology, Diabetology and Geriatrics, Klinikum Stuttgart, Stuttgart, Germany
| | - Caroline McIntosh
- Podiatric Medicine, School of Health Sciences, University of Galway, Galway, Ireland
| | - Alberto Piaggesi
- Diabetic Foot Section, Department of Medicine, University of Pisa, Pisa, Italy
| | - John Steinberg
- Georgetown University School of Medicine, Georgetown, Washington DC, USA
| | - Prash Vas
- King's College Hospital NHS Foundation Trust, London, UK
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Prof M Viswanathan Diabetes Research Center, Chennai, India
| | - Stephanie Wu
- Dr. William M. Scholl College of Podiatric Medicine at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Fran Game
- University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| |
Collapse
|
9
|
Zamanifard M, Nasiri M, Yarahmadi F, Zonoori S, Razani O, Salajegheh Z, Imanipour M, Mohammadi SM, Jomehzadeh N, Asadi M. Healing of diabetic foot ulcer with topical and oral administrations of herbal products: A systematic review and meta-analysis of randomized controlled trials. Int Wound J 2024; 21:e14760. [PMID: 38356150 PMCID: PMC10867296 DOI: 10.1111/iwj.14760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/16/2024] Open
Abstract
This systematic review aimed to qualitatively synthesize recent randomized controlled trials (RCTs) regarding the effect of topical application and oral intake of herbal products on the healing of diabetic foot ulcer (DFU). Also, we sought to pool the obtained findings in a meta-analysis using a random-effects model, if RCTs were relatively comparable and homogenous. A comprehensive search was performed on five electronic data sources from their inception through 23 January 2024. The RCTs, without restriction on the country of origin, were included if they compared the effect of administering standard treatments and/or placebo (i.e. control condition) to applying standard treatments and/or herbal products in topical or oral routes (i.e. experimental condition). Out of 1166 retrieved records, 28 RCTs were included. Studies used different poly and single herbal formulations. Based on the meta-analysis, administration of standard care plus daily dressing of the ulcer site with olive oil for 28 days significantly increased the total ulcer healing score (3 RCTs; weighted mean difference [WMD] = 89.30; p < 0.001), raised frequency of complete ulcer healing (2 RCTs; risk ratio [RR] = 12.44; p = 0.039) and declined ulcer degree (3 RCTs; WMD = -22.28; p = 0.002). Also, daily use of the bitter melon leaf extract in oral form for 28 days significantly increased the total ulcer healing score (2 RCTs; WMD = 0.40; p = 0.001). Additionally, based on qualitative synthesis, the adjuvant use of herbal agents seems an intriguing choice to manage DFU. Nonetheless, considering the undesirable methodological quality of most studies and the high heterogeneity in administered herbal formulations, more robust trials are required to build a solid conclusion regarding the use of herbal products for healing DFU.
Collapse
Affiliation(s)
- Mina Zamanifard
- Department of Nursing, School of Nursing and MidwiferyJahrom University of Medical SciencesJahromIran
| | - Morteza Nasiri
- Department of Anesthesiology, School of Allied Medical SciencesTehran University of Medical SciencesTehranIran
| | - Fatemeh Yarahmadi
- Department of Nursing, Broujerd School of NursingLorestan University of Medical SciencesKhorramabadIran
| | - Sahar Zonoori
- Department of Nursing, Broujerd School of NursingLorestan University of Medical SciencesKhorramabadIran
| | - Omolbanin Razani
- Department of Nursing, Doroud BranchIslamic Azad UniversityDoroudIran
| | - Zahra Salajegheh
- Department of Medical‐Surgical Nursing, School of Nursing and MidwiferyKerman University of Medical SciencesKermanIran
| | - Mohammad Imanipour
- Department of Medical‐Surgical Nursing, Faculty of NursingAja University of Medical SciencesTehranIran
| | | | - Nabi Jomehzadeh
- Department of Medical Bacteriology, School of MedicineAbadan University of Medical SciencesAbadanIran
| | - Masoomeh Asadi
- Department of Operating Room NursingAbadan University of Medical SciencesAbadanIran
| |
Collapse
|
10
|
Dehzad MJ, Ghalandari H, Nouri M, Askarpour M. Effects of curcumin/turmeric supplementation on glycemic indices in adults: A grade-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Diabetes Metab Syndr 2023; 17:102855. [PMID: 37748368 DOI: 10.1016/j.dsx.2023.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023]
Abstract
INTRODUCTION Glycemic control is of utmost importance both as a preventive measure in individuals at risk of diabetes and in the management of patients with disturbed glycemia. Turmeric/curcumin has been extensively studied in this field. In the present systematic review and meta-analysis, we aimed at investigating the impact of turmeric/curcumin supplementation on glycemic control. METHODS Major online databases (PubMed, Scopus, Web of Science, Cochrane Library and Google Scholar) were systematically searched from inception up to October 2022. Relevant randomized controlled trials (RCTs) meeting our eligible criteria were included. Weighted mean differences (WMDs) with confidence intervals (CIs) were expressed using a random-effect model. Subgroup analyses were conducted to find the sources of heterogeneities. To detect risk of bias in the included studies, we used the Cochrane risk-of-bias tool. The registration number was CRD42022374874. RESULTS Out of 4182 articles retrieved from the initial search, 59 RCTs were included. Our findings suggested that turmeric/curcumin supplementation was significantly effective in improving fasting blood sugar (WMD: 4.60 mg/dl; 95% CI: 5.55, -3.66), fasting insulin levels (WMD: 0.87 μIU/ml; 95% CI: 1.46, -0.27), hemoglobin A1c (HbA1c) (WMD: 0.32%; 95% CI: 0.45, -0.19), and homeostatic model assessment of insulin resistance (HOMA-IR) (WMD: 0.33; 95% CI: 0.43, -0.22). CONCLUSION Our results indicate that turmeric/curcumin supplementation can be considered as a complementary method in the management of disturbed glycemia.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Askarpour
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran; Students' Research Committee, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Pathomwichaiwat T, Jinatongthai P, Prommasut N, Ampornwong K, Rattanavipanon W, Nathisuwan S, Thakkinstian A. Effects of turmeric (Curcuma longa) supplementation on glucose metabolism in diabetes mellitus and metabolic syndrome: An umbrella review and updated meta-analysis. PLoS One 2023; 18:e0288997. [PMID: 37471428 PMCID: PMC10359013 DOI: 10.1371/journal.pone.0288997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
AIMS This study aims to comprehensively review the existing evidence and conduct analysis of updated randomized controlled trials (RCTs) of turmeric (Curcuma longa, CL) and its related bioactive compounds on glycemic and metabolic parameters in patients with type 2 diabetes (T2DM), prediabetes, and metabolic syndrome (MetS) together with a sub-group analysis of different CL preparation forms. METHODS An umbrella review (UR) and updated systematic reviews and meta-analyses (SRMAs) were conducted to evaluate the effects of CL compared with a placebo/standard treatment in adult T2DM, prediabetes, and MetS. The MEDLINE, Embase, The Cochrane Central Register of Control Trials, and Scopus databases were searched from inception to September 2022. The primary efficacy outcomes were hemoglobin A1C (HbA1C) and fasting blood glucose (FBG). The corrected covered area (CCA) was used to assess overlap. Mean differences were pooled across individual RCTs using a random-effects model. Subgroup and sensitivity analyses were performed for various CL preparation forms. RESULTS Fourteen SRMAs of 61 individual RCTs were included in the UR. The updated SRMA included 28 studies. The CCA was 11.54%, indicating high overlap across SRMAs. The updated SRMA revealed significant reduction in FBG and HbA1C with CL supplementation, obtaining a mean difference (95% confidence interval [CI]) of -8.129 (-12.175, -4.084) mg/dL and -0.134 (-0.304, -0.037) %, respectively. FBG and HbA1C levels decreased with all CL preparation forms as did other metabolic parameters levels. The results of the sensitivity and subgroup analyses were consistent with those of the main analysis. CONCLUSION CL supplementation can significantly reduce FBG and HbA1C levels and other metabolic parameters in T2DM and mitigate related conditions, including prediabetes and MetS. TRIAL REGISTRATION PROSPERO (CRD42016042131).
Collapse
Affiliation(s)
- Thanika Pathomwichaiwat
- Faculty of Pharmacy, Department of Pharmaceutical Botany, Mahidol University, Bangkok, Thailand
| | - Peerawat Jinatongthai
- Faculty of Pharmaceutical Sciences, Pharmacy Practice Division, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Napattaoon Prommasut
- Faculty of Pharmacy, Department of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Kanyarat Ampornwong
- Faculty of Pharmacy, Department of Pharmacy, Mahidol University, Bangkok, Thailand
| | | | - Surakit Nathisuwan
- Faculty of Pharmacy, Department of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Ammarin Thakkinstian
- Faculty of Medicine Ramathibodi Hospital, Department of Clinical Epidemiology and Biostatistics, Mahidol University, Bangkok, Thailand
| |
Collapse
|
12
|
Talebpour A, Mohammadifard M, Zare Feyzabadi R, Mahmoudzadeh S, Rezapour H, Saharkhiz M, Tajik M, Ferns GA, Bahrami A. Effect of curcumin on inflammatory biomarkers and iron profile in patients with premenstrual syndrome and dysmenorrhea: A randomized controlled trial. Physiol Rep 2023; 11:e15763. [PMID: 37394650 PMCID: PMC10315327 DOI: 10.14814/phy2.15763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023] Open
Abstract
Premenstrual syndrome (PMS) and primary dysmenorrhea are common gynecological problems and inflammation may have a role in their etiology. Curcumin is a polyphenolic natural product for which there is increasing evidence of anti-inflammatory and iron chelation effects. This study assessed the effects of curcumin on inflammatory biomarkers and iron profile in young women with PMS and dysmenorrhea. A sample of 76 patients was included in this triple-blind, placebo-controlled clinical trial. Participants were randomly allocated to curcumin (n = 38) and control groups (n = 38). Each participant received one capsule (500 mg of curcuminoid+ piperine, or placebo) daily, from 7 days before until 3 days after menstruation for three consecutive menstrual cycles. Serum iron, ferritin, total iron-binding capacity (TIBC) and high-sensitivity C-reactive protein (hsCRP), as well as white blood cell, lymphocyte, neutrophil, platelet counts, mean platelet volume (MPV) and red blood cell distribution width (RDW), were quantified. Neutrophil: lymphocyte ratio (NLR), platelet: lymphocyte ratio (PLR), and RDW: platelet ratio (RPR) were also calculated. Curcumin significantly decreased the median (interquartile range) serum levels of hsCRP [from 0.30 mg/L (0.0-1.10) to 0.20 mg/L (0.0-1.3); p = 0.041] compared with placebo, but did not show any difference for neutrophil, RDW, MPV, NLR, PLR and RPR values (p > 0.05). The treatment schedule was well-tolerated, and none of markers of iron metabolism statistically changed after the intervention in the curcumin group (p > 0.05). Curcumin supplementation may have positive effects on serum hsCRP, a marker of inflammation, with no any changes on iron homeostasis in healthy women with PMS and dysmenorrhea.
Collapse
Affiliation(s)
- Amir Talebpour
- Department of Cardiology, Cardiovascular Diseases Research Centre, School of MedicineBirjand University of Medical SciencesBirjandIran
- Student Research CommitteeBirjand University of Medical SciencesBirjandIran
| | - Mahtab Mohammadifard
- Infectious Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| | - Reza Zare Feyzabadi
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
| | - Sara Mahmoudzadeh
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
| | - Hadis Rezapour
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
| | - Mansoore Saharkhiz
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
| | - Mahboube Tajik
- Student Research CommitteeBirjand University of Medical SciencesBirjandIran
| | - Gordon A. Ferns
- Division of Medical EducationBrighton & Sussex Medical SchoolBrightonSussexUK
| | - Afsane Bahrami
- Clinical Research Development Unit of Akbar Hospital, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
13
|
Dehzad MJ, Ghalandari H, Amini MR, Askarpour M. Effects of curcumin/turmeric supplementation on lipid profile: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Complement Ther Med 2023; 75:102955. [PMID: 37230418 DOI: 10.1016/j.ctim.2023.102955] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Numerous approaches have been assigned to treat dyslipidemia (DLP). Turmeric/curcumin have been widely investigated with this regard. In the current study, we explored the effect of curcumin/turmeric supplementation on lipid profile. METHODS Online databases were searched up to October 2022. The outcomes included triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), apolipoprotein B (Apo-B), and apolipoprotein A (Apo-A). We used the Cochrane quality assessment tool to evaluate the risk of bias. The effect sizes were estimated as weighted mean difference (WMD) and 95% confidence intervals (CIs). RESULTS Out of 4182 articles retrieved from the initial search, 64 randomized clinical trials (RCTs) were included in the study. Between-study heterogeneity was significant. Meta-analysis showed that turmeric/curcumin supplementation exerts statistically significant improvements on blood levels of TC (WMD = -3.99mg/dL; 95% CI = -5.33, -2.65), TG (WMD = -6.69mg/dL; 95% CI = -7.93, -5.45), LDL-c (WMD = -4.89mg/dL; 95% CI = -5.92, -3.87), and HDL-c (WMD = 1.80mg/dL; 95% CI = 1.43, 2.17). However, turmeric/curcumin supplementation was not associated with improvements in blood levels of Apo-A or Apo-B. The studies did not thoroughly address the issues of potency, purity, or consumption with other foods. CONCLUSION Turmeric/curcumin supplementation seems to be effective in improving blood levels of TC, TG, LDL-c, and HDL-c; but may not be capable of improving their pertinent apolipoproteins. Since the evidence was assessed to be low and very low concerning the outcomes, these findings should be dealt with caution.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Accipe L, Abadie A, Neviere R, Bercion S. Antioxidant Activities of Natural Compounds from Caribbean Plants to Enhance Diabetic Wound Healing. Antioxidants (Basel) 2023; 12:antiox12051079. [PMID: 37237945 DOI: 10.3390/antiox12051079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic wound healing is a global medical challenge. Several studies showed that delayed healing in diabetic patients is multifactorial. Nevertheless, there is evidence that excessive production of ROS and impaired ROS detoxification in diabetes are the main cause of chronic wounds. Indeed, increased ROS promotes the expression and activity of metalloproteinase, resulting in a high proteolytic state in the wound with significant destruction of the extracellular matrix, which leads to a stop in the repair process. In addition, ROS accumulation increases NLRP3 inflammasome activation and macrophage hyperpolarization in the M1 pro-inflammatory phenotype. Oxidative stress increases the activation of NETosis. This leads to an elevated pro-inflammatory state in the wound and prevents the resolution of inflammation, an essential step for wound healing. The use of medicinal plants and natural compounds can improve diabetic wound healing by directly targeting oxidative stress and the transcription factor Nrf2 involved in the antioxidant response or the mechanisms impacted by the elevation of ROS such as NLRP3 inflammasome, the polarization of macrophages, and expression or activation of metalloproteinases. This study of the diabetic pro-healing activity of nine plants found in the Caribbean highlights, more particularly, the role of five polyphenolic compounds. At the end of this review, research perspectives are presented.
Collapse
Affiliation(s)
- Laura Accipe
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
| | - Alisson Abadie
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
| | - Remi Neviere
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
- CHU Martinique, University Hospital of Martinique, 97200 Fort de France, France
| | - Sylvie Bercion
- UR5_3 PC2E Cardiac Pathology, Environmental Toxicity and Envenomations, Université des Antilles, BP 250, CEDEX, 97157 Pointe à Pitre, France
| |
Collapse
|
15
|
Lin Q, Li K, Chen Y, Xie J, Wu C, Cui C, Deng B. Oxidative Stress in Diabetic Peripheral Neuropathy: Pathway and Mechanism-Based Treatment. Mol Neurobiol 2023:10.1007/s12035-023-03342-7. [PMID: 37115404 DOI: 10.1007/s12035-023-03342-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/04/2023] [Indexed: 04/29/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a major complication of diabetes mellitus with a high incidence. Oxidative stress, which is a crucial pathophysiological pathway of DPN, has attracted much attention. The distortion in the redox balance due to the overproduction of reactive oxygen species (ROS) and the deregulation of antioxidant defense systems promotes oxidative damage in DPN. Therefore, we have focused on the role of oxidative stress in the pathogenesis of DPN and elucidated its interaction with other physiological pathways, such as the glycolytic pathway, polyol pathway, advanced glycosylation end products, protein kinase C pathway, inflammation, and non-coding RNAs. These interactions provide novel therapeutic options targeting oxidative stress for DPN. Furthermore, our review addresses the latest therapeutic strategies targeting oxidative stress for the rehabilitation of DPN. Antioxidant supplements and exercise have been proposed as fundamental therapeutic strategies for diabetic patients through ROS-mediated mechanisms. In addition, several novel drug delivery systems can improve the bioavailability of antioxidants and the efficacy of DPN.
Collapse
Affiliation(s)
- Qingxia Lin
- Department of Psychiatry, First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Kezheng Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yinuo Chen
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jiali Xie
- Department of Neurology, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| | - Chunxue Wu
- Department of Neurology, Wencheng County People's Hospital, Wenzhou, People's Republic of China
| | - Can Cui
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Binbin Deng
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
16
|
Kunnumakkara AB, Hegde M, Parama D, Girisa S, Kumar A, Daimary UD, Garodia P, Yenisetti SC, Oommen OV, Aggarwal BB. Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials. ACS Pharmacol Transl Sci 2023; 6:447-518. [PMID: 37082752 PMCID: PMC10111629 DOI: 10.1021/acsptsci.2c00012] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 03/08/2023]
Abstract
Turmeric (Curcuma longa) has been used for thousands of years for the prevention and treatment of various chronic diseases. Curcumin is just one of >200 ingredients in turmeric. Almost 7000 scientific papers on turmeric and almost 20,000 on curcumin have been published in PubMed. Scientific reports based on cell culture or animal studies are often not reproducible in humans. Therefore, human clinical trials are the best indicators for the prevention and treatment of a disease using a given agent/drug. Herein, we conducted an extensive literature survey on PubMed and Scopus following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The keywords "turmeric and clinical trials" and "curcumin and clinical trials" were considered for data mining. A total of 148 references were found to be relevant for the key term "turmeric and clinical trials", of which 70 were common in both PubMed and Scopus, 44 were unique to PubMed, and 34 were unique to Scopus. Similarly, for the search term "curcumin and clinical trials", 440 references were found to be relevant, of which 70 were unique to PubMed, 110 were unique to Scopus, and 260 were common to both databases. These studies show that the golden spice has enormous health and medicinal benefits for humans. This Review will extract and summarize the lessons learned about turmeric and curcumin in the prevention and treatment of chronic diseases based on clinical trials.
Collapse
Affiliation(s)
- Ajaikumar B. Kunnumakkara
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Mangala Hegde
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Dey Parama
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Sosmitha Girisa
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Aviral Kumar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Uzini Devi Daimary
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Prachi Garodia
- Integrative
Research Center, Miami, Florida 33125, United States
| | - Sarat Chandra Yenisetti
- Department
of Zoology, Drosophila Neurobiology Laboratory, Nagaland University (Central), Lumami, Nagaland-798627, India
| | - Oommen V. Oommen
- Department
of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala-695581, India
| | - Bharat B. Aggarwal
- Inflammation
Research Center, San Diego, California 92109, United States
| |
Collapse
|
17
|
Brockmueller A, Samuel SM, Mazurakova A, Büsselberg D, Kubatka P, Shakibaei M. Curcumin, calebin A and chemosensitization: How are they linked to colorectal cancer? Life Sci 2023; 318:121504. [PMID: 36813082 DOI: 10.1016/j.lfs.2023.121504] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023]
Abstract
Colorectal cancer (CRC) is one of the leading malignant diseases worldwide with a high rate of metastasis and poor prognosis. Treatment options include surgery, which is usually followed by chemotherapy in advanced CRC. With treatment, cancer cells could become resistant to classical cytostatic drugs such as 5-fluorouracil (5-FU), oxaliplatin, cisplatin, and irinotecan, resulting in chemotherapeutic failure. For this reason, there is a high demand for health-preserving re-sensitization mechanisms including the complementary use of natural plant compounds. Calebin A and curcumin, two polyphenolic turmeric ingredients derived from the Asian Curcuma longa plant, demonstrate versatile anti-inflammatory and cancer-reducing abilities, including CRC-combating capacity. After an insight into their epigenetics-modifying holistic health-promoting effects, this review compares functional anti-CRC mechanisms of multi-targeting turmeric-derived compounds with mono-target classical chemotherapeutic agents. Furthermore, the reversal of resistance to chemotherapeutic drugs was presented by focusing on calebin A's and curcumin's capabilities to chemosensitize or re-sensitize CRC cells to 5-FU, oxaliplatin, cisplatin, and irinotecan. Both polyphenols enhance the receptiveness of CRC cells to standard cytostatic drugs converting them from chemoresistant into non-chemoresistant CRC cells by modulating inflammation, proliferation, cell cycle, cancer stem cells, and apoptotic signaling. Therefore, calebin A and curcumin can be tested for their ability to overcome cancer chemoresistance in preclinical and clinical trials. The future perspective of involving turmeric-ingredients curcumin or calebin A as an additive treatment to chemotherapy for patients with advanced metastasized CRC is explained.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar.
| | - Alena Mazurakova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia; Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Mala Hora 4, 036 01 Martin, Slovakia.
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany.
| |
Collapse
|
18
|
Dehzad MJ, Ghalandari H, Nouri M, Askarpour M. Antioxidant and anti-inflammatory effects of curcumin/turmeric supplementation in adults: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Cytokine 2023; 164:156144. [PMID: 36804260 DOI: 10.1016/j.cyto.2023.156144] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
Turmeric and its prominent bioactive compound, curcumin, have been the subject of many investigations with regard to their impact on inflammatory and oxidative balance in the body. In this systematic review and meta-analysis, we summarized the existing literature on randomized controlled trials (RCTs) which examined this hypothesis. Major databases (PubMed, Scopus, Web of Science, Cochrane Library and Google Scholar) were searched from inception up to October 2022. Relevant studies meeting our eligibility criteria were obtained. Main outcomes included inflammatory markers (i.e. C-reactive protein(CRP), tumour necrosis factorα(TNF-α), interleukin-6(IL-6), and interleukin 1 beta(IL-1β)) and markers of oxidative stress (i.e. total antioxidant capacity (TAC), malondialdehyde(MDA), and superoxide dismutase (SOD) activity). Weighted mean differences (WMDs) were reported. P-values < 0.05 were considered significant. Sixty-six RCTs were included in the final analysis. We observed that turmeric/curcumin supplementation significantly reduces levels of inflammatory markers, including CRP (WMD: -0.58 mg/l, 95 % CI: -0.74, -0.41), TNF-α (WMD: -3.48 pg/ml, 95 % CI: -4.38, -2.58), and IL-6 (WMD: -1.31 pg/ml, 95 % CI: -1.58, -0.67); except for IL-1β (WMD: -0.46 pg/ml, 95 % CI: -1.18, 0.27) for which no significant change was found. Also, turmeric/curcumin supplementation significantly improved anti-oxidant activity through enhancing TAC (WMD = 0.21 mmol/l; 95 % CI: 0.08, 0.33), reducing MDA levels (WMD = -0.33 µmol /l; 95 % CI: -0.53, -0.12), and SOD activity (WMD = 20.51 u/l; 95 % CI: 7.35, 33.67). It seems that turmeric/curcumin supplementation might be used as a viable intervention for improving inflammatory/oxidative status of individuals.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Student Research Committee, Department of community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Student Research Committee, Department of community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Hegde M, Girisa S, BharathwajChetty B, Vishwa R, Kunnumakkara AB. Curcumin Formulations for Better Bioavailability: What We Learned from Clinical Trials Thus Far? ACS OMEGA 2023; 8:10713-10746. [PMID: 37008131 PMCID: PMC10061533 DOI: 10.1021/acsomega.2c07326] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 05/30/2023]
Abstract
Curcumin has been credited with a wide spectrum of pharmacological properties for the prevention and treatment of several chronic diseases such as arthritis, autoimmune diseases, cancer, cardiovascular diseases, diabetes, hemoglobinopathies, hypertension, infectious diseases, inflammation, metabolic syndrome, neurological diseases, obesity, and skin diseases. However, due to its weak solubility and bioavailability, it has limited potential as an oral medication. Numerous factors including low water solubility, poor intestinal permeability, instability at alkaline pH, and fast metabolism contribute to curcumin's limited oral bioavailability. In order to improve its oral bioavailability, different formulation techniques such as coadministration with piperine, incorporation into micelles, micro/nanoemulsions, nanoparticles, liposomes, solid dispersions, spray drying, and noncovalent complex formation with galactomannosides have been investigated with in vitro cell culture models, in vivo animal models, and humans. In the current study, we extensively reviewed clinical trials on various generations of curcumin formulations and their safety and efficacy in the treatment of many diseases. We also summarized the dose, duration, and mechanism of action of these formulations. We have also critically reviewed the advantages and limitations of each of these formulations compared to various placebo and/or available standard care therapies for these ailments. The highlighted integrative concept embodied in the development of next-generation formulations helps to minimize bioavailability and safety issues with least or no adverse side effects and the provisional new dimensions presented in this direction may add value in the prevention and cure of complex chronic diseases.
Collapse
|
20
|
Miraj SS, Kurian SJ, Rodrigues GS, Saravu K, Rao M, Raychaudhuri SP, Downs BW, Bagchi D. Phytotherapy in Diabetic Foot Ulcers: A Promising Strategy for Effective Wound Healing. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:295-310. [PMID: 35512780 DOI: 10.1080/07315724.2022.2034069] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Despite the advancement in wound care, the effective therapy of chronic diabetic ulcers continues to be a challenge. Wound healing is a highly controlled process, which involves a sequence of complex overlapping steps. This healing pathway comprises of hemostasis, inflammation, proliferative, and remodeling phases. Recent evidence suggests that phytomedicines can prevent or repair different kinds of destructive cellular damage, including chronic wounds. Several phytochemicals such as polyphenols, alkaloids, flavonoids, terpenoids, and glycosides have pleiotropic effects, including stimulation of fibroblast proliferation, the main step in wound healing. Besides, the mechanism involves induction of collagen synthesis, migration, and reepithelization and their antimicrobial, antioxidant, anti-inflammatory, and immunomodulatory actions. Similarly, the use of phytochemicals alone or as an adjuvant with standard therapy has demonstrated promising results in managing complications in the diabetic foot. For instance, the extract of Carica papaya has been shown antioxidant, antimicrobial, and anti-inflammatory, and immunomodulatory effects, which, together with proteolytic enzymatic activity, contributes to its wound healing property. It is generally believed that phytotherapy has no or minimal toxicity than synthetic therapeutic agents, favoring its use in diabetic foot ulcer management. The current review highlights the selected phytochemicals and their sources; and potential application in diabetic foot ulcer management.Key teaching points and nutritional relevanceCurrently, phytochemicals have been shown wide potential in disease. management including alleviating clinical manifestations, preventing degenerative disease, and curing illness.Increased evidence of phytochemical as anti-infective and anti-inflammatory suggests its role in the management of diabetic foot ulcer(DFU).Potential benefit along with minimal adverse effect favors its application as adjuvant therapy.Further research is needed to standardize its dose and formulation to enhance its clinical application in DFU management.
Collapse
Affiliation(s)
- Sonal Sekhar Miraj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shilia Jacob Kurian
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gabriel Sunil Rodrigues
- Department of Surgery, Kasturba Medical College and Hospital, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kavitha Saravu
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Infectious Diseases, Kasturba Medical College and Hospital, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of High Education, Manipal, Karnataka, India
| | - Siba Prasad Raychaudhuri
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, California, USA
- VA Medical Centre, Sacramento, California, USA
| | | | - Debasis Bagchi
- Department of R&D, VNI Inc, Bonita Springs, Florida, USA
- Department of Pharmaceutical Sciences, Texas Southern University, Houston, Texas, USA
- Department of Biology, Adelphi University, Garden City, New York, USA
| |
Collapse
|
21
|
Cui J, Zhang S, Cheng S, Shen H. Current and future outlook of loaded components in hydrogel composites for the treatment of chronic diabetic ulcers. Front Bioeng Biotechnol 2023; 11:1077490. [PMID: 36860881 PMCID: PMC9968980 DOI: 10.3389/fbioe.2023.1077490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
Due to recalcitrant microangiopathy and chronic infection, traditional treatments do not easily produce satisfactory results for chronic diabetic ulcers. In recent years, due to the advantages of high biocompatibility and modifiability, an increasing number of hydrogel materials have been applied to the treatment of chronic wounds in diabetic patients. Research on composite hydrogels has received increasing attention since loading different components can greatly increase the ability of composite hydrogels to treat chronic diabetic wounds. This review summarizes and details a variety of newly loaded components currently used in hydrogel composites for the treatment of chronic diabetic ulcers, such as polymer/polysaccharides/organic chemicals, stem cells/exosomes/progenitor cells, chelating agents/metal ions, plant extracts, proteins (cytokines/peptides/enzymes) and nucleoside products, and medicines/drugs, to help researchers understand the characteristics of these components in the treatment of diabetic chronic wounds. This review also discusses a number of components that have not yet been applied but have the potential to be loaded into hydrogels, all of which play roles in the biomedical field and may become important loading components in the future. This review provides a "loading component shelf" for researchers of composite hydrogels and a theoretical basis for the future construction of "all-in-one" hydrogels.
Collapse
Affiliation(s)
- Jiaming Cui
- Sichuan Provincial Orthopaedic Hospital, Chengdu, Sichuan, China,*Correspondence: Jiaming Cui,
| | - Siqi Zhang
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Songmiao Cheng
- Sichuan Provincial Orthopaedic Hospital, Chengdu, Sichuan, China
| | - Hai Shen
- Sichuan Provincial Orthopaedic Hospital, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Li Y, Ju S, Li X, Li W, Zhou S, Wang G, Cai Y, Dong Z. Characterization of the microenvironment of diabetic foot ulcers and potential drug identification based on scRNA-seq. Front Endocrinol (Lausanne) 2023; 13:997880. [PMID: 36686438 PMCID: PMC9845942 DOI: 10.3389/fendo.2022.997880] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/02/2022] [Indexed: 01/05/2023] Open
Abstract
Background Diabetes foot ulcers (DFUs) are a type of foot infection, ulcer, and/or deep tissue destruction caused by neuropathy and vascular disease in the distal extremities of diabetic patients. Its pathogenesis and its microenvironment are not entirely understood. Methods Initially, the GSE165816 data set from the GEO database was utilized for single cell analysis to reveal the microenvironment and functional status of DFUs. The GSE199939 RNA-seq data set was utilized for external validation. On the basis of the logistic regression machine learning algorithm (OCLR), pseudo time series analysis, dryness index analysis, and drug target gene analysis were then performed. By constructing drug-gene and gene-gene networks, we can locate the most recent DFUs treatments. Finally, immunofluorescence technology was used to detect the cell-related markers of the DFUs microenvironment, and qPCR was used to detect the expression of drug targets in DFUs. Results Firstly, we used the Cell Maker database to obtain information about human cells and related gene markers, and manually reviewed a total of 45 kinds of cells and maker information that may appear in the DFUs microenvironment, which were divided into 17 cell clusters after annotation. Subsequently, we counted the proportions of DM and DFUs in different types of cells, and the results showed that the proportions of macrophages, white blood cells, and monocytes were higher in patients with DFUs, while the proportions of pluripotent stem cells and stromal cells were higher in patients with DM. The Pseudo-time series analysis of cells in DFUs showed that the differentiation pathways of immune cells, mesenchymal cells and stem cells were similar in the three states, while the other cells were distributed in different stages. At the level of a single cell, the scores of both multipotential stem cells and hematopoietic stem cells were significantly lower in DFU healing and non-healing than in DM. Additionally, the highly expressed genes in DFU were chosen as drug targets. We identified seven potential target genes and discovered twenty drugs with high significance. Finally, the colocalization relationship between CD19, ITGAM, and HLA-DR expression in monocytes and macrophages of DFU skin tissue and healthy subjects was analyzed by laser confocal microscopy with the immunofluorescence triple labeling method. The results showed that the expressions of CD19, ITGAM, and HLA-DR in the skin of DFUs were significantly higher than those in the skin of healthy subjects, and the co-localization relationship was significant in DFUs. Conclusion This study can serve as a resource for the treatment of DFUs.
Collapse
Affiliation(s)
- Yao Li
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
| | - Shuai Ju
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Li
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
| | - Wenqiang Li
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
| | - Siyuan Zhou
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Guili Wang
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunmin Cai
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
| | - Zhihui Dong
- Vascular and wound center, Jinshan Hospital, Fudan University, Shanghai, China
- Department of vascular surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Malakoti F, Mohammadi E, Akbari Oryani M, Shanebandi D, Yousefi B, Salehi A, Asemi Z. Polyphenols target miRNAs as a therapeutic strategy for diabetic complications. Crit Rev Food Sci Nutr 2022; 64:1865-1881. [PMID: 36069329 DOI: 10.1080/10408398.2022.2119364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
MiRNAs are a large group of non-coding RNAs which participate in different cellular pathways like inflammation and oxidation through transcriptional, post-transcriptional, and epigenetic regulation. In the post-transcriptional regulation, miRNA interacts with the 3'-UTR of mRNAs and prevents their translation. This prevention or dysregulation can be a cause of pathological conditions like diabetic complications. A huge number of studies have revealed the association between miRNAs and diabetic complications, including diabetic nephropathy, cardiomyopathy, neuropathy, retinopathy, and delayed wound healing. To address this issue, recent studies have focused on the use of polyphenols as selective and safe drugs in the treatment of diabetes complications. In this article, we will review the involvement of miRNAs in diabetic complications' occurrence or development. Finally, we will review the latest findings on targeting miRNAs by polyphenols like curcumin, resveratrol, and quercetin for diabetic complications therapy.
Collapse
Affiliation(s)
- Faezeh Malakoti
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Mohammadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Darioush Shanebandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azadeh Salehi
- Faculty of Pharmacy, Islamic Azad University of Tehran Branch, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
24
|
Mechanistic Investigation of Curcuma Protection against Oral Submucous Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3891598. [PMID: 35982996 PMCID: PMC9381205 DOI: 10.1155/2022/3891598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
Abstract
Objective Oral submucous fibrosis (OSMF) is a chronic, fibrotic disease that affects the oral cavity, showing a high rate of malignant transformation. Curcuma exerts therapeutic potentials in many diseases including OSMF. However, the potential targets and pathways to explain the therapeutic effects of curcuma on OSMF are outside the scope of present knowledge. Herein we intend to reveal the predictive targets and potential pathways of curcuma against OSMF by a network pharmacology-based approach followed by molecular docking technology. Methods We searched the SymMap, GeneCards, and OMIM database to obtain curcuma and OSMF common targets. The protein-protein interaction (PPI) of curcuma and OSMF common targets were then analyzed, followed by functional enrichment analysis. The best binding mode of curcuma and target proteins was analyzed by molecular docking technology. Results We collected 290 putative targets of curcuma molecules and 600 known therapeutic targets of OSMF, with 64 curcuma and OSMF common targets sorted out. In the PPI network, there were 63 nodes with 922 edges. The node indicates protein and the line indicates PPI relation. The most enriched GO term in the BP level is “gland development”, followed by “cellular response to chemical stress”, and then “response to oxygen levels”, while the most enriched GO term in CC and MF is “membrane raft” and “cytokine receptor binding”, respectively. We also found 131 KEGG pathways significantly enriched by curcuma and OSMF common targets. The binding energy of curcuma to ALB, TNF, TP53, IL6, and VEGFA was −9.5 kcal/mol, −3.9 kcal/mol, −3.5 kcal/mol, −3.6 kcal/mol, and −8.9 kcal/mol, respectively, which suggested ALB and VEGFA were regarded as main targets involving in the potential mechanism of curcuma against OSMF. Conclusion The present study illustrated that the therapeutic effects of curcuma on OSMF were achieved by targeting ALB and VEGFA, which giving reference to further drug design and development for OSMF.
Collapse
|
25
|
Darmian MA, Hoseini R, Amiri E, Golshani S. Downregulated hs-CRP and MAD, upregulated GSH and TAC, and improved metabolic status following combined exercise and turmeric supplementation: a clinical trial in middle-aged women with hyperlipidemic type 2 diabetes. J Diabetes Metab Disord 2022; 21:275-283. [PMID: 35106289 PMCID: PMC8795726 DOI: 10.1007/s40200-022-00970-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/31/2021] [Indexed: 12/30/2022]
Abstract
Background Aerobic training (AT) and Turmeric Supplementation (TS) are known to exert multiple beneficial effects including metabolic status and Oxidative Stress. To our knowledge, data on the effects of AT and TS on metabolic status and oxidative stress biomarkers related to inflammation in subjects with Hyperlipidemic Type 2 Diabetes Mellitus (HT2DM) are scarce. Objectives This study was conducted to evaluate the effects of AT and TS on metabolic status and oxidative stress biomarkers related to inflammation in subjects with HT2DM. Methods This randomized single-blinded, placebo-controlled trial was conducted among 42 subjects with HT2DM, aged 45-60 years old. Participants were randomly assigned to four groups; AT+TS (n = 11), AT+placebo (AT; n = 10), TS (n = 11), and Control+placebo (C; n = 10). The AT program consisted of 60-75% of Maximum heart rate (HRmax), 20-40 min/day, three days/week for eight weeks. The participants in the TS group consumed three 700 mg capsules/day containing turmeric powder for eight weeks. Metabolic status and oxidative stress biomarkers were assessed at baseline and end of treatment. The data were analyzed through paired t-test and one-way analysis of variance (ANOVA) and Bonferroni post hoc test at the signification level of P < 0.05. Results After eight weeks, significant improvements were observed in metabolic status, oxidative stress biomarkers and high-sensitivity C-reactive protein (hs-CRP) in the AT+TS, TS, and AT compared to C. Additionally, a significant decrease of Metabolic Syndrome (MetS) Z scores (p = 0.001; p = 0.011), hs-CRP (p = 0.028; p = 0.041), Malondialdehyde (MAD) (p = 0.023; p = 0.001), and significantly higher Glutathione (GSH) (p = 0.003; p = 0.001), and Total Antioxidant Capacity (TAC) (p = 0.001; p = 0.001) compared to the AT and TS groups. The results also revealed a significant difference in terms of MetS Z scores (p = 0.001), hs-CRP (p = 0.018), MAD (p = 0.011), GSH (p = 0.001) and TAC (p = 0.025) between the AT and TS. Conclusions The findings suggest that AT+TS improves metabolic status, oxidative stress biomarkers, and hs-CRP more effectively compared to TS or AT in middle-aged females with T2DM and hyperlipidemia.
Collapse
Affiliation(s)
- Mahsa Ahmadi Darmian
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, No. 9, Taq Bostan, Kermanshah, Iran
| | - Rastegar Hoseini
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, No. 9, Taq Bostan, Kermanshah, Iran
| | - Ehsan Amiri
- Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, No. 9, Taq Bostan, Kermanshah, Iran
| | - Sanam Golshani
- Kermanshah University of Medical Sciences, Army Hospital No. 520, Kermanshah, Iran
| |
Collapse
|
26
|
Surma S, Sahebkar A, Urbański J, Penson PE, Banach M. Curcumin - The Nutraceutical With Pleiotropic Effects? Which Cardiometabolic Subjects Might Benefit the Most? Front Nutr 2022; 9:865497. [PMID: 35662932 PMCID: PMC9159377 DOI: 10.3389/fnut.2022.865497] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
Despite continuous advances in pharmacotherapy, atherosclerotic cardiovascular disease remains the world's leading killer. Atherosclerosis relates not only to an increased level of cholesterol, but involves the development of atherosclerotic plaques, which are formed as a result of processes including inflammation and oxidative stress. Therefore, in addition to the classical risk factors for ASCVD (such as type 2 diabetes, overweight, obesity, hypertension and metabolic syndrome), residual risk factors such as inflammation and oxidative stress should also be reduced. The most important intervention in ASCVD is prevention, which includes promoting a healthy diet based on products of natural origin. Curcumin, which is often present in the diet, has been demonstrate to confer several benefits to health. It has been shown in numerous clinical trials that curcumin exhibited anti-diabetic, lipid-lowering, antihypertensive, antioxidant and anti-inflammatory effects, as well as promoting weight loss. All this means that curcumin has a comprehensive impact on the most important risk factors of ASCVD and may be a beneficial support in the treatment of these diseases. Recently, it has also been shown that curcumin may have a beneficial effect on the course of SARS-CoV-2 infection and might be helpful in the prevention of long-COVID complications. The aim of this review is to summarize the current knowledge regarding the safety and efficacy of curcumin in the prevention and treatment of cardiometabolic diseases.
Collapse
Affiliation(s)
- Stanisław Surma
- Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Club of Young Hypertensiologists, Polish Society of Hypertension, Gdańsk, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Peter E. Penson
- Clinical Pharmacy and Therapeutics Research Group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Łódź, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Góra, Poland
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Łódź, Poland
- *Correspondence: Maciej Banach
| |
Collapse
|
27
|
Sun Z, Wei X, Bai J, Li W, Yang J, Deng Z, Wu M, Ying T, He G. The effects of curcumin on anthropometric and cardiometabolic parameters of patients with metabolic related diseases: a systematic review and dose-effect meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2022; 63:9282-9298. [PMID: 35475714 DOI: 10.1080/10408398.2022.2067826] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective:To perform a meta-analysis of published randomized controlled trials (RCTs) to assess the effects of curcumin supplementation with different formulations on anthropometric and cardiometabolic indices in patients with metabolism-related diseases (MRDs). Methods: Six databases, including PubMed, Embase, Web of Science, China national knowledge internet (CNKI), Wanfang and China Biology Medicine (CBM), were systematically searched to find relevant articles from 2011 to July 2021. The effect sizes were expressed as weighted mean difference (WMD) with 95% confidence intervals (CI). Between-study heterogeneity was assessed using I2. Subgroup analysis was conducted to find possible sources of heterogeneity. Curcumin formulations in this study were divided as low bioavailability, high bioavailability and nanocurcumin. Results: Of the retrieved 1585 articles, 31 were included in the final analysis. Combined effect sizes suggested a significant effect of curcumin supplementation on reduced body weight (BW) (WMD: -0.94 kg, 95% CI: -1.40, -0.47) and body mass index (BMI) (WMD: -0.40 kg/m2, 95% CI: -0.60, -0.19), respectively. The results also showed significant improvements of fasting plasma glucose (FPG) (WMD: -0.50 mg/dL, 95% CI: -0.72, -0.28), glycosylated hemoglobin (Hb1Ac) (WMD: -0.42%, 95% CI: -0.57, -0.26), insulin (INS) (WMD: -1.70 μIU/mL, 95%CI: -2.03, -1.38), homeostasis model assessment-insulin resistance (HOMA-IR) (WMD: -0.71, 95%CI: -1.11, -0.31), high-density lipoprotein cholesterol (HDL-C) (WMD: 1.73 mg/dL, 95%CI: 0.78, 2.68) and high sensitivity C-reactive protein (Hs-CRP) (WMD: -1.11, 95%CI: -2.16, -0.05). Nanocurcumin showed a greater reduction in FPG (WMD: -1.78 mg/dL, 95% CI: -2.49, -1.07), INS (WMD: -1.66 μIU/mL, 95% CI: -3.21, -0.11), TC (WMD: -12.64 mg/dL (95% CI: -23.72, -1.57) and LDL-C (WMD: -8.95 mg/dL, 95% CI: -16.51, -1.38). The dose-effect analysis showed that there were trends of first rising and then falling between the supplemented curcumin dose and BW, BMI, LDL-C, Hb1Ac, which were clearly distinguished at 80 mg/d due to the strong effect of nanocurcumin on outcomes. A slow upward trend between the dose of curcumin supplementation and HDL-C. No relationships between dose and outcomes were found for FPG and insulin, except for nanocurcumin at 80 mg/d. Conclusions: Our study showed some significant beneficial effects of curcumin supplementation on improving BW, BMI, and the levels of FPG, Hb1Ac, HOMA-IR, HDL-C and Hs-CRP in patients with MRDs. Nanocurcumin may have a greater effect on the reduction of FPG, INS, TC and LDL-C than other curcumin formulations. Considering the potential bias and limitations of studies included, further quality studies with larger sample sizes are needed to confirm these results.
Collapse
Affiliation(s)
- Zhuo Sun
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Xiaohui Wei
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Jianan Bai
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Wenyun Li
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Jiaqi Yang
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Zequn Deng
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Min Wu
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Tao Ying
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
| | - Gengsheng He
- Key Laboratory of Public Healthy Safety, School of Public Health, Ministry of Education, Fudan University, Shanghai, China
- China-DRIs Expert Committee on Other Food Substances, Chinese Nutrition Society, Beijing, China
| |
Collapse
|
28
|
Zhang X, Chen X, Tang Y, Guan X, Deng J, Fan J. Effects of medical plants from Zingiberaceae family on cardiovascular risk factors of type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. J Food Biochem 2022; 46:e14130. [PMID: 35332564 DOI: 10.1111/jfbc.14130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/27/2022]
Abstract
We performed a meta-analysis on randomized controlled trials (RCTs) to evaluate the efficacy of Zingiberaceae on cardiovascular risk factors in type 2 diabetes mellitus (T2DM). PubMed, Web of Science, Embase, The Cochrane Library, and Scopus were searched systematically until October 18, 2021. Thirty-four RCTs with 2154 patients met our inclusion. Pooled analysis indicated that Zingiberaceae can significantly improve body weight (BW) (WMD = -1.012, 95% CI: -1.673, -0.351, p = .003), fasting blood glucose (FBG) (WMD = -14.292, 95% CI: -18.588, -9.995, p < .001), glycosylated hemoglobin 1c (HbA1c) (WMD = -0.432, 95% CI: -0.607, -0.257, p < .001), serum insulin (WMD = -2.036, 95% CI: -2.857, -1.216, p < .001), homeostasis model assessment insulin resistance (HOMA-IR) (WMD = -0.886, 95% CI: -1.375, -0.398, p < .001), high density lipoprotein-cholesterol (HDL-C) (WMD = 0.850, 95% CI: 0.018, 1.682, p = .045), triglyceride (TG) (WMD = -17.636, 95% CI: -27.121, -8.151, p < .001), diastolic blood pressure (DBP) (WMD = -0.642, 95% CI: -1.148, -0.137, p = .013), C-reactive protein (CRP) (WMD = -0.623, 95% CI: -1.061, -0.186, p = .005), tumor necrosis factor-α (TNF-α) (WMD = -3.020, 95% CI: -4.327, -1.712, p < .001), and interleukin 6 (IL-6) (WMD = -1.147, 95% CI: -1.887, -0.406, p = .002). The supplementation of Zingiberaceae may be an effective adjunctive therapy in management of T2DM and prevention cardiovascular complications by decreasing BW, improving blood glucose control, insulin resistance, lipid profiles (HDL-C and TG), blood pressure (DBP), and reducing inflammation (CRP, TNF-α, and IL-6). PRACTICAL APPLICATIONS: Approximately half of the deaths of individuals with diabetes mellitus (DM) are attributable to cardiovascular disease (CVD), and individuals with T2DM have a two-fold increased risk of cardiovascular mortality than healthy individuals. Currently, T2DM is mainly treated with hypoglycemic medication such as sulfonylureas, thiazolidinediones, meglitinides, and biguanides. Nevertheless, most of them with long-term usage could cause side effects, including hypoglycemia and gastrointestinal troubles. Several species of the Zingiberaceae family are used in traditional herbal medicines, which have been widely used in traditional and complementary medicine. Proving the potential benefits of Zingiberaceae on T2DM and its cardiovascular complications has positive clinical implications for the use of this practical herb.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoli Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yujun Tang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoxian Guan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinlan Deng
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jianming Fan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Shan Z, Fa WH, Tian CR, Yuan CS, Jie N. Mitophagy and mitochondrial dynamics in type 2 diabetes mellitus treatment. Aging (Albany NY) 2022; 14:2902-2919. [PMID: 35332108 PMCID: PMC9004550 DOI: 10.18632/aging.203969] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/03/2021] [Indexed: 01/18/2023]
Abstract
The prevalence of type 2 diabetes is associated with inflammatory bowels diseases, nonalcoholic steatohepatitis and even a spectrum of cancer such as colon cancer and liver cancer, resulting in a substantial healthcare burden on our society. Autophagy is a key regulator in metabolic homeostasis such as lipid metabolism, energy management and the balance of cellular mineral substances. Mitophagy is selective autophagy for clearing the damaged mitochondria and dysfunctional mitochondria. A myriad of evidence has demonstrated a major role of mitophagy in the regulation of type 2 diabetes and metabolic homeostasis. It is well established that defective mitophagy has been linked to the development of insulin resistance. Moreover, insulin resistance is further progressed to various diseases such as nephropathy, retinopathy and cardiovascular diseases. Concordantly, restoration of mitophagy will be a reliable and therapeutic target for type 2 diabetes. Recently, various phytochemicals have been proved to prevent dysfunctions of β-cells by mitophagy inductions during diabetes developments. In agreement with the above phenomenon, mitophagy inducers should be warranted as potential and novel therapeutic agents for treating diabetes. This review focuses on the role of mitophagy in type 2 diabetes relevant diseases and the pharmacological basis and therapeutic potential of autophagy regulators in type 2 diabetes.
Collapse
Affiliation(s)
- Zhao Shan
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| | - Wei Hong Fa
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| | - Chen Run Tian
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| | - Chen Shi Yuan
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| | - Ning Jie
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| |
Collapse
|
30
|
Kim B, Ban E, Kim A. Gelatin-Alginate Coacervates Optimized by DOE to Improve Delivery of bFGF for Wound Healing. Pharmaceutics 2021; 13:2112. [PMID: 34959393 PMCID: PMC8705889 DOI: 10.3390/pharmaceutics13122112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/03/2021] [Accepted: 12/02/2021] [Indexed: 01/10/2023] Open
Abstract
Metabolic disorders in diabetic patients are associated with altered protein and lipid metabolism and defects in granulation tissue formation, resulting in non-healing wounds such as diabetic foot ulcers (DFU). Growth factors have essential roles in tissue re-epithelization and angiogenesis during wound healing. In this study, a complex coacervate was evaluated as an enhanced delivery system for fibroblast growth factor (bFGF) to control its release rate and protect it from proteases. Coacervates composed of gelatin Type A (GA) and sodium alginate (SA) were optimized by the Design of Experiments (DOE), with the polymer ratio and the medium's pH as the independent variables, and turbidity, particle size, polydispersity index, and encapsulation efficiency (EE, %) as the responses. The optimized coacervate protected bFGF from trypsin digestion and showed controlled release compared with bFGF in solution or a physical mixture of GA and SA. It enhanced the viability, migration, and procollagen I C-terminal propeptide synthesis of human dermal fibroblasts in hyperglycemic conditions. In summary, the DOE approach was successfully applied to optimize bFGF GA-SA coacervates as a potential novel therapeutic modality to treat DFU.
Collapse
Affiliation(s)
| | | | - Aeri Kim
- Department of Pharmacy, College of Pharmacy, CHA University, Seongnam-si 463-400, Korea; (B.K.); (E.B.)
| |
Collapse
|
31
|
Marton LT, Pescinini-e-Salzedas LM, Camargo MEC, Barbalho SM, Haber JFDS, Sinatora RV, Detregiachi CRP, Girio RJS, Buchaim DV, Cincotto dos Santos Bueno P. The Effects of Curcumin on Diabetes Mellitus: A Systematic Review. Front Endocrinol (Lausanne) 2021; 12:669448. [PMID: 34012421 PMCID: PMC8126655 DOI: 10.3389/fendo.2021.669448] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is an ensemble of metabolic conditions that have reached pandemic proportions worldwide. Pathology's multifactorial nature makes patient management, including lifelong drug therapy and lifestyle modification, extremely challenging. Currently, there is growing evidence about the effectiveness of using herbal supplements in preventing and controlling DM. Curcumin is a bioactive component found Curcuma longa, which exhibits several physiological and pharmacological properties such as antioxidant, anti-inflammatory, anticancer, neuroprotective, and anti-diabetic activities. For these reasons, our objective is to systematically review the effects of Curcuma longa or curcumin on DM. Databases such as PUBMED and EMBASE were searched, and the final selection included sixteen studies that fulfilled the inclusion criteria. The results showed that curcumin's anti-diabetic activity might be due to its capacity to suppress oxidative stress and inflammatory process. Also, it significantly reduces fasting blood glucose, glycated hemoglobin, and body mass index. Nanocurcumin is also associated with a significant reduction in triglycerides, VLDL-c, total cholesterol, LDL-c, HDL-c, serum C reactive protein, and plasma malonaldehyde. Therefore, it can be considered in the therapeutic approach of patients with DM.
Collapse
Affiliation(s)
- Ledyane Taynara Marton
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, Brazil
| | | | - Maria Eduarda Côrtes Camargo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, Brazil
| | - Sandra M. Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation-UNIMAR, Marília, Brazil
- Department of Biochemistry, School of Food and Technology of Marilia (FATEC), Marília, Brazil
- *Correspondence: Sandra M. Barbalho,
| | | | - Renata Vargas Sinatora
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, Brazil
| | | | - Raul J. S. Girio
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, Brazil
| | - Daniela Vieira Buchaim
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation-UNIMAR, Marília, Brazil
| | | |
Collapse
|