1
|
Bi S, He C, Zhou Y, Liu R, Chen C, Zhao X, Zhang L, Cen Y, Gu J, Yan B. Versatile conductive hydrogel orchestrating neuro-immune microenvironment for rapid diabetic wound healing through peripheral nerve regeneration. Biomaterials 2025; 314:122841. [PMID: 39293307 DOI: 10.1016/j.biomaterials.2024.122841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Diabetic wound (DW), notorious for prolonged healing processes due to the unregulated immune response, neuropathy, and persistent infection, poses a significant challenge to clinical management. Current strategies for treating DW primarily focus on alleviating the inflammatory milieu or promoting angiogenesis, while limited attention has been given to modulating the neuro-immune microenvironment. Thus, we present an electrically conductive hydrogel dressing and identify its neurogenesis influence in a nerve injury animal model initially by encouraging the proliferation and migration of Schwann cells. Further, endowed with the synergizing effect of near-infrared responsive release of curcumin and nature-inspired artificial heterogeneous melanin nanoparticles, it can harmonize the immune microenvironment by restoring the macrophage phenotype and scavenging excessive reactive oxygen species. This in-situ formed hydrogel also exhibits mild photothermal therapy antibacterial efficacy. In the infected DW model, this hydrogel effectively supports nerve regeneration and mitigates the immune microenvironment, thereby expediting the healing progress. The versatile hydrogel exhibits significant therapeutic potential for application in DW healing through fine-tuning the neuro-immune microenvironment.
Collapse
Affiliation(s)
- Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Changyuan He
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610000, China
| | - Yannan Zhou
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Chong Chen
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610000, China
| | - Xueshan Zhao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Li Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China.
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China.
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610000, China.
| |
Collapse
|
2
|
Zheng Z, Zhang Y, Xing J, Li X, Zhu Z, Ye M, Shen S, Xu RX. Combinatory electric-field-guided deposition for spatial microparticles patterning. Mater Today Bio 2024; 28:101207. [PMID: 39285943 PMCID: PMC11403263 DOI: 10.1016/j.mtbio.2024.101207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Spatial deposition and patterning of microparticles are crucial in chemistry, medicine, and biology. Existing technologies like electric force manipulation, despite precise trajectory control, struggle with complex and personalized patterns. Key challenges include adjusting the quantity of particles deposited in different areas and accurately depositing particles in non-continuous patterns. Here, we present a rational process termed combinatory electric-field-guided deposition (CED) for achieving spatially regulated microparticle deposition on insulative substrates. This process involves coating the substrates with insulating materials like PVP and positioning it on a relief-patterned negative electrode. The negative electric field generated by the electrode attracts microparticles, while the positive surface charges on the substrates repel microparticles, resulting in the formation of a potential well over the electrode area. Consequently, this configuration enables precise control over microparticle deposition without the need for direct contact with the substrate's surface, simplifying the process of switching masks to meet varying microparticle deposition requirements. Furthermore, we demonstrate the customization of patterned microparticles on superhydrophobic coatings to regulate cell distribution, as well as the successful loading of drug-laden microparticles onto antibacterial bandages to match the areas of skin lesions. These applications underscore the versatility of CED across chemical, medical, and bioengineering domains.
Collapse
Affiliation(s)
- Zhiyuan Zheng
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jinyu Xing
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Xin Li
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
| | - Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
| | - Min Ye
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
| | - Shuwei Shen
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
| | - Ronald X Xu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
| |
Collapse
|
3
|
Sampaio OGM, Santos SAAR, Damasceno MDBMV, Joventino LB, Schneider A, Masternak MM, Campos AR, Cavalcante MB. Impact of repeated ovarian hyperstimulation on the reproductive function. J Reprod Immunol 2024; 164:104277. [PMID: 38889661 DOI: 10.1016/j.jri.2024.104277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
One of six couples (17.5 % of the adult population) worldwide is affected by infertility during their lifetime. This number represents a substantial increase in the prevalence of this gynecological condition over the last decade. Ovulatory dysfunction and anovulation are the main causes of female infertility. Timed intercourse, intrauterine insemination, and assisted reproductive technology (ART), such as in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), are the most common interventions for infertile couples. Ovulation induction protocols for IVF/ICSI routinely use supraphysiological doses of gonadotropins to stimulate many preovulatory follicles. Animal and human studies suggested that ovarian hyperstimulation, alone or repeatedly, for ART cycles can induce changes in the immune response and increase the oxidative stress (OS) in the ovarian microenvironment. The consequences of repeated ovarian hyperstimulation on the human ovary remain poorly understood, particularly in relation to the effects of ovarian stimulation on the immune system and the potential for ovarian stimulation to cause OS. Animal studies have observed that repeated cycles of ovarian hyperstimulation can accelerate ovarian aging. Changes in ovarian hormone levels, accelerated loss of ovarian reserve, disorders in ovarian ultrastructure, ovarian senescence, and decreased reproductive performance represent possible long-term effects of repeated ovarian hyperstimulation. The short and long-term impact of the combination of antioxidant agents in ovarian hyperstimulation protocols in women undergoing ART must urgently be better understood. The recent increase in the number of ART and fertility preservation cycles may accelerate ovarian aging in these women, promoting consequences beyond the reproductive function and including health deterioration.
Collapse
Affiliation(s)
| | | | | | | | - Augusto Schneider
- Nutrition College, Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA; Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Adriana Rolim Campos
- Graduate Program in Medical Sciences, Universidade de Fortaleza (UNIFOR), Fortaleza, CE 60.811-905, Brazil
| | - Marcelo Borges Cavalcante
- Graduate Program in Medical Sciences, Universidade de Fortaleza (UNIFOR), Fortaleza, CE 60.811-905, Brazil; Medical School, Universidade de Fortaleza (UNIFOR), Fortaleza, CE 60.811-905, Brazil; CONCEPTUS - Reproductive Medicine, Fortaleza, CE 60.170-240, Brazil.
| |
Collapse
|
4
|
Wang W, Xu X, Xu Y, Zhan Y, Wu C, Xiao X, Cheng C, Gao C. Quercetin, a key active ingredient of Jianpi Zishen Xiehuo Formula, suppresses M1 macrophage polarization and platelet phagocytosis by inhibiting STAT3 activation based on network pharmacology. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4219-4233. [PMID: 38055068 DOI: 10.1007/s00210-023-02870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
Primary immune thrombocytopenia (ITP) is an autoimmune hemorrhagic disease, and abnormal M1 macrophage polarization participates in the pathogenesis of ITP. Jianpi Zishen Xiehuo (JZX) Formula has a good therapeutic effect on ITP. However, its key active ingredients and molecular mechanisms remain unclear. In this study, we explored the key active ingredients and potential targets of JZX in treating ITP using network pharmacology combined with in vitro experimental verification. A total of 157 active ingredients of JZX were identified from public databases, and quercetin was the most important one. One hundred sixty-five intersection targets of active ingredients in JZX, ITP, and macrophage polarization were obtained by Venn diagram. The top three potential targets were signal transducer and activator of transcription 3 (STAT3), protein kinase B (PKB/AKT) 1, and c-JUN through protein-protein interaction analysis. Molecular docking showed that quercetin had strong binding affinities with them all. In vitro experiment, CD16+ monocytes increased in ITP patients compared with healthy controls, which indicated a M1/M2 polarization imbalance in ITP. The expression levels of M1 polarization markers, CD86, CD80, and inducible nitric oxide synthase (iNOS), M1 polarization-associated cytokines, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6), and antibody-opsonized platelet phagocytosis significantly increased in THP-1 macrophages stimulated with lipopolysaccharide (LPS). Quercetin markedly inhibited the expressions of M1 markers, decreased the levels of TNF-α and IL-6, and down-regulated the phosphorylated STAT3 (p-STAT3) protein, which confirmed the prediction by network pharmacology and molecular docking. Importantly, quercetin significantly reduced the phagocytosis of antibody opsonised platelet. In conclusion, quercetin suppressed platelet phagocytosis in M1 macrophages via its anti-inflammatory effects and may serve as a potential drug for the treatment of ITP. Quercetin could be a key ingredient for JZX against ITP.
Collapse
Affiliation(s)
- Wei Wang
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan He Road, Shanghai, 200437, China
| | - Xuewen Xu
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan He Road, Shanghai, 200437, China
| | - Yang Xu
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan He Road, Shanghai, 200437, China
| | - Yueping Zhan
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan He Road, Shanghai, 200437, China
| | - Chuanyong Wu
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan He Road, Shanghai, 200437, China
| | - Xiao Xiao
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan He Road, Shanghai, 200437, China
| | - Cheng Cheng
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan He Road, Shanghai, 200437, China
| | - Chunfang Gao
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan He Road, Shanghai, 200437, China.
| |
Collapse
|
5
|
Azarkar S, Abedi M, Lavasani ASO, Ammameh AH, Goharipanah F, Baloochi K, Bakhshi H, Jafari A. Curcumin as a natural potential drug candidate against important zoonotic viruses and prions: A narrative review. Phytother Res 2024; 38:3080-3121. [PMID: 38613154 DOI: 10.1002/ptr.8119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 04/14/2024]
Abstract
Zoonotic diseases are major public health concerns and undeniable threats to human health. Among Zoonotic diseases, zoonotic viruses and prions are much more difficult to eradicate, as they result in higher infections and mortality rates. Several investigations have shown curcumin, the active ingredient of turmeric, to have wide spectrum properties such as anti-microbial, anti-vascular, anti-inflammatory, anti-tumor, anti-neoplastic, anti-oxidant, and immune system modulator properties. In the present study, we performed a comprehensive review of existing in silico, in vitro, and in vivo evidence on the antiviral (54 important zoonotic viruses) and anti-prion properties of curcumin and curcuminoids in PubMed, Google Scholar, Science Direct, Scopus, and Web of Science databases. Database searches yielded 13,380 results, out of which 216 studies were eligible according to inclusion criteria. Of 216 studies, 135 (62.5%), 24 (11.1%), and 19 (8.8%) were conducted on the effect of curcumin and curcuminoids against SARS-CoV-2, Influenza A virus, and dengue virus, respectively. This review suggests curcumin and curcuminoids as promising therapeutic agents against a wide range of viral zoonoses by targeting different proteins and signaling pathways.
Collapse
Affiliation(s)
- Setareh Azarkar
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoud Abedi
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | | | - Fatemeh Goharipanah
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Kimiya Baloochi
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hasan Bakhshi
- Vector-Borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirsajad Jafari
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Zamanian MY, Alsaab HO, Golmohammadi M, Yumashev A, Jabba AM, Abid MK, Joshi A, Alawadi AH, Jafer NS, Kianifar F, Obakiro SB. NF-κB pathway as a molecular target for curcumin in diabetes mellitus treatment: Focusing on oxidative stress and inflammation. Cell Biochem Funct 2024; 42:e4030. [PMID: 38720663 DOI: 10.1002/cbf.4030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 08/03/2024]
Abstract
Diabetes mellitus (DM) is a collection of metabolic disorder that is characterized by chronic hyperglycemia. Recent studies have demonstrated the crucial involvement of oxidative stress (OS) and inflammatory reactions in the development of DM. Curcumin (CUR), a natural compound derived from turmeric, exerts beneficial effects on diabetes mellitus through its interaction with the nuclear factor kappa B (NF-κB) pathway. Research indicates that CUR targets inflammatory mediators in diabetes, including tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6), by modulating the NF-κB signaling pathway. By reducing the expression of these inflammatory factors, CUR demonstrates protective effects in DM by improving pancreatic β-cells function, normalizing inflammatory cytokines, reducing OS and enhancing insulin sensitivity. The findings reveal that CUR administration effectively lowered blood glucose elevation, reinstated diminished serum insulin levels, and enhanced body weight in Streptozotocin -induced diabetic rats. CUR exerts its beneficial effects in management of diabetic complications through regulation of signaling pathways, such as calcium-calmodulin (CaM)-dependent protein kinase II (CaMKII), peroxisome proliferator-activated receptor gamma (PPAR-γ), NF-κB, and transforming growth factor β1 (TGFB1). Moreover, CUR reversed the heightened expression of inflammatory cytokines (TNF-α, Interleukin-1 beta (IL-1β), IL-6) and chemokines like MCP-1 in diabetic specimens, vindicating its anti-inflammatory potency in counteracting hyperglycemia-induced alterations. CUR diminishes OS, avert structural kidney damage linked to diabetic nephropathy, and suppress NF-κB activity. Furthermore, CUR exhibited a protective effect against diabetic cardiomyopathy, lung injury, and diabetic gastroparesis. Conclusively, the study posits that CUR could potentially offer therapeutic benefits in relieving diabetic complications through its influence on the NF-κB pathway.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Abeer Mhussan Jabba
- Colleges of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Kadhem Abid
- Department of Anesthesia, College of Health & Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Abhishek Joshi
- Department of Liberal Arts School of Liberal Arts, Uttaranchal University, Dehradun, India
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Noor S Jafer
- Department of Medical Laboratory Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Farzaneh Kianifar
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samuel Baker Obakiro
- Department of Pharmacology and Therapeutics, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| |
Collapse
|
7
|
Wei L, Li S, Ma Y, Ye S, Yuan Y, Zeng Y, Raza T, Xiao F. Curcumin attenuates diphenyl phosphate-induced apoptosis in GC-2spd(ts) cells through activated autophagy via the Nrf2/P53 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2032-2042. [PMID: 38095090 DOI: 10.1002/tox.24092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/19/2023] [Accepted: 12/01/2023] [Indexed: 03/09/2024]
Abstract
Diphenyl phosphate (DPhP) is one of the frequently used derivatives of aryl phosphate esters and is used as a plasticizer in industrial production. Like other plasticizers, DPhP is not chemically bound and can easily escape into the environment, thereby affecting human health. DPhP has been associated with developmental toxicity, reproductive toxicity, neurodevelopmental toxicity, and interference with thyroid homeostasis. However, understanding of the underlying mechanism of DPhP on the reproductive toxicity of GC-2spd(ts) cells remains limited. For the first time, we investigated the effect of DPhP on GC-2spd(ts) cell apoptosis. By decreasing nuclear factor erythroid-derived 2-related factor (Nrf2)/p53 signaling, DPhP inhibited autophagy and promoted apoptosis. DPhP reduced total antioxidant capacity and nuclear Nrf2 and its downstream target gene expression. In addition, we investigated the protective effects of Curcumin (Cur) against DPhP toxicity. Cur attenuated the DPhP-induced rise in p53 expression while increasing Nrf2 expression. Cur inhibited DPhP-induced apoptosis in GC-2spd(ts) cells by activating autophagy via Nrf2/p53 signaling. In conclusion, our study provides new insights into the reproductive toxicity hazards of DPhP and demonstrates that Cur is an important therapeutic agent for alleviating DPhP-induced reproductive toxicity by regulating Nrf2/p53 signaling.
Collapse
Affiliation(s)
- Lai Wei
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Siwen Li
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Yu Ma
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Shuzi Ye
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Yu Yuan
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Yuan Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Tausif Raza
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, People's Republic of China
| |
Collapse
|
8
|
Sharawi ZW, Ibrahim IM, Abd-Alhameed EK, Althagafy HS, Jaber FA, Harakeh S, Hassanein EHM. Baicalin and lung diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1405-1419. [PMID: 37725153 DOI: 10.1007/s00210-023-02704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
Studies focusing on natural products have been conducted worldwide, and the results suggest that their natural ingredients effectively treat a wide range of illnesses. Baicalin (BIA) is a glycoside derived from the flavonoid baicalein present in Scutellaria baicalensis of the Lamiaceae family. Interestingly, BIA has been shown to protect the lungs in several animal models used in numerous studies. Therefore, we fully analyzed the data of the studies that focused on BIA's lung protective function against various injuries and included them in this review. Interestingly, BIA exhibits promising effects against acute lung injury, lung fibrosis, pulmonary embolism, and lung remodelling associated with COPD, LPS, and paraquat insecticide. BAI exhibits anticancer activity against lung cancer. Additionally, BIA potently attenuates lung damage associated with infections. BIA primarily exerts its therapeutic effects by suppressing inflammation, oxidative stress immune response, and apoptosis pathways. Nrf2/HO-1, PI3K/Akt, NF-κB, STAT3, MAPKs, TLR4, and NLRP3 are important targets in the pulmonary therapeutic effects of BIA on different lung disease models. Consequently, we recommend using it in future potential clinical applications, its contribution to treatment guidelines, and translating its promising effects to clinical practice in lung diseases.
Collapse
Affiliation(s)
- Zeina W Sharawi
- Biological Sciences Department, Faculty of Sciences, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah, 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdul Lateef Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| |
Collapse
|
9
|
Yönden Z, Bonyadi F, Yousefi Y, Daemi A, Hosseini ST, Moshari S. Nanomicelle curcumin-induced testicular toxicity: Implications for altered mitochondrial biogenesis and mitophagy following redox imbalance. Biomed Pharmacother 2023; 166:115363. [PMID: 37660650 DOI: 10.1016/j.biopha.2023.115363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
The purpose of this study was to examine the effects of nano-micelle curcumin (NMC)-induced redox imbalance on mitochondrial biogenesis and mitophagy. For this purpose, 24 mature male Wistar rats were divided into control and NMC-received groups (7.5, 15, and 30 mg/kg) groups. After 48 days, the Nrf1, Nrf2, and SOD (Cu/Zn) expression levels, as well as GSH/GSSG, NADP+ /NADPH relative balances (elements involved in redox homeostasis) were analyzed. Moreover, to explore the effect of NMC on mitochondrial biogenesis, the expression levels of Mfn1, Mfn2, OPA1, Fis1, and Drp1 were investigated. Finally, the expression levels of Parkin/PARK and PINK (genes involved in mitochondrial quality control), as well as LC3-I/II (mitophagy marker), were analyzed. Observations showed that NMC, dose-dependently, altered GSH/GSSG, NADP+ /NADPH relative balances, suppressed SOD expression and diminished its biochemical level, and repressed Nrf1 and Nrf2 expression levels. Moreover, it could change the Mfn1, Mfn2, OPA1, Fis1, and Drp1 expression pattern and stimulate the Parkin/PARK and PINK as well as LC3-I/II expression levels, dose-dependently. In conclusion, chronic and high-dose NMC is able to suppress the redox capacity by down-regulating the Nrf1 and Nrf2 expression. Finally, at high-dose levels, it is able to trigger mitophagy signaling in the testicles.
Collapse
Affiliation(s)
- Zafer Yönden
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Farzaneh Bonyadi
- RASTA Specialized Research Institute (RSRI), West Azerbaijan Science and Technology Park (WASTP), Urmia, Iran
| | | | - Amin Daemi
- Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey.
| | - Seyyedeh Touran Hosseini
- Department of Biotechnology, Institute of Natural and Applied Sciences, Cukurova University, Adana, Turkey
| | - Sana Moshari
- RASTA Specialized Research Institute (RSRI), West Azerbaijan Science and Technology Park (WASTP), Urmia, Iran; Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| |
Collapse
|
10
|
Chiang TC, Chang JY, Chou TH. Formulation and Characteristics of Edible Oil Nanoemulsions Modified with Polymeric Surfactant for Encapsulating Curcumin. Polymers (Basel) 2023; 15:2864. [PMID: 37447509 DOI: 10.3390/polym15132864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Curcumin (Cur) is a beneficial phytochemical with numerous health advantages. However, its limited solubility in oil and poor stability hinder its potential for biomedical applications. In this study, we employed a mixture of food-grade Tween 60, a polymeric surfactant, and Span 60 to adjust the hydrophilic lipophilic balance number (HLBt) and prepared nanoemulsions (NEs) of coconut oil (Cc oil) as carriers for Cur. The effects of HLBt values, surfactant-to-oil ratio, and oil ratio on the physicochemical characteristics of the food-grade oil-NEs were investigated using dynamic light scattering, transmission electron microscopy, differential scanning calorimetry, fluorescence polarization spectroscopy, and viscometry. Increasing the addition ratio of Tween 60 in the NEs, thereby increasing the HLBt, resulted in a reduction in NE size and an improvement in their storage stability. The temperature and size of the phase transition region of the NEs decreased with increasing HLBt. NEs with higher HLBt exhibited a disordering effect on the intra-NE molecular packing of Cc oil. NEs with high HLBt displayed low viscosity and demonstrated nearly Newtonian fluid behavior, while those with lower HLBt exhibited pseudoplastic fluid behavior. Cur was effectively encapsulated into the Cc oil-NEs, with higher encapsulation efficiency observed in NEs with higher HLBt values. Furthermore, the Cur remaining activity was significantly enhanced through encapsulation within stable NEs. The biocompatibility of the Cc oil-NEs was also demonstrated in vitro. In summary, this study highlights the preparation of stable NEs of Cc oil by adjusting the HLBt using Tween 60, facilitating effective encapsulation of Cur. These findings provide valuable insights for the development of Cur carriers with improved solubility, stability, and bioavailability.
Collapse
Affiliation(s)
- Tzu-Chi Chiang
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliu 64022, Taiwan
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Tzung-Han Chou
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliu 64022, Taiwan
| |
Collapse
|
11
|
Monika P, Chandraprabha MN, Murthy KNC. Catechin, epicatechin, curcumin, garlic, pomegranate peel and neem extracts of Indian origin showed enhanced anti-inflammatory potential in human primary acute and chronic wound derived fibroblasts by decreasing TGF-β and TNF-α expression. BMC Complement Med Ther 2023; 23:181. [PMID: 37268940 DOI: 10.1186/s12906-023-03993-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 05/09/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Although chronic wounds are devastating and can cause burden at multiple levels, chronic wound research is still far behind. Chronic wound treatment is often less efficient due to delay in diagnosis and treatment, non-specific treatment mainly due to lack of knowledge of wound healing or healing resistance genes. It's known that chronic wounds do not progress towards healing, because it gets stalled in inflammatory phase of wound healing. OBJECTIVE We aimed to use phytoextracts possessing excellent anti-inflammatory properties to regulate the unbalanced levels of cytokines responsible for increased inflammation. METHODS Evaluation of anti-inflammatory activity of selected phytoextracts namely, Camellia sinensis (L.) Kuntze, Acacia catechu (L.f) Willd., Curcuma longa (L.), Allium sativum (L.), Punica granatum (L.) and Azadirachta indica A. hereafter, called as catechin, epicatechin, curcumin, garlic, pomegranate and neem extracts, respectively in Acute wound fibroblasts (AWFs) and Chronic wound fibroblasts (CWFs) using flow cytometry. RESULTS The phytoextracts exhibited no cytotoxicity below 100 μg/ml on normal Human Dermal fibroblasts (HDFs), while garlic extract showed highest cell viability followed by catechin, epicatechin, curcumin, pomegranate peel and neem based on IC50 value. Garlic, catechin and epicatechin extracts showed highest anti-inflammatory activities for both TGF-β and TNF-α in both AWFs and CWFs treated cells. After treatment of AWFs with catechin, epicatechin and garlic extracts, TGF-β and TNF-α expression was significantly reduced compared to untreated AWFs and reached to almost normal HDFs level. Also, after treatment of CWFs with catechin, epicatechin and garlic extracts, TGF-β and TNF-α expression was significantly reduced compared to untreated CWFs and was lesser than untreated AWFs. CONCLUSION The present findings reveal the potential of catechin, epicatechin and garlic extracts for the treatment of acute and chronic wounds with excellent anti-inflammatory properties.
Collapse
Affiliation(s)
- Prakash Monika
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, MSR Nagar, MSRIT Post, Bangalore, 560054, India
- Visvesvaraya Technological University, Jnana Sangama, Belgaum, 590018, India
| | - M N Chandraprabha
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, MSR Nagar, MSRIT Post, Bangalore, 560054, India.
- M S Ramaiah Institute of Technology, Center for Bio and Energy Materials Innovation, Bangalore, 560054, India.
| | - K N Chidambara Murthy
- Neuberg Anand Academy of Laboratory Medicine, Anand Tower, 54, Bowring Hospital Road, Shivajinagar, Bangalore, 560001, India.
| |
Collapse
|
12
|
Roles of Curcumin on Cognitive Impairment Induced by a Mixture of Heavy Metals. Neurotox Res 2022; 40:1774-1792. [PMID: 36197595 DOI: 10.1007/s12640-022-00583-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 12/31/2022]
Abstract
We aimed to explore the molecular mechanisms of curcumin's protective action against heavy metal-related cognitive impairment (CI). In silico analysis, CTD, SwissADME, AutoDock Vina, Metascape, GeneMania, and MIENTURNET were key approaches. The server-predicted interactions (41.7%) and physical interactions (35.7%) were found to be the most important interactions in the gene network analysis. The most important pathways involved in curcumin's protective activity against heavy metals were categorized as "regulation of neuron apoptotic process" and "negative regulation of apoptotic signaling route". These pathways were also emphasized in the protein-protein interaction enrichment analysis. Curcumin was also well-positioned inside the CASP3 binding region. Three key miRNAs linked to CI, mixed heavy metals, and curcumin (hsa-miR-34a-5p, hsa-miR-24-3p, and hsa-miR-128-3p) were observed. These miRNAs were found to be related to the important pathways related to CI and involved in curcumin's protective activity against mixed heavy metals such as "apoptosis multiple species", "apoptosis", and "Alzheimer's disease". We also created and tested in silico sponges that inhibited these miRNAs. Curcumin's physicochemical characteristics and pharmacokinetics are consistent with its therapeutic benefits in CI, owing to its high gastrointestinal absorption and ability to cross the blood-brain barrier, and it is not a P-glycoprotein substrate. Our findings emphasize the protective effects of curcumin in CI caused by heavy metal mixtures and pave the way for molecular mechanisms involved in CI pathology.
Collapse
|
13
|
Therapeutic potency of curcumin for allergic diseases: A focus on immunomodulatory actions. Biomed Pharmacother 2022; 154:113646. [PMID: 36063645 DOI: 10.1016/j.biopha.2022.113646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
In light of increasing research evidence on the molecular mechanisms of allergic diseases, the crucial roles of innate and acquired immunity in the disease's pathogenesis have been well highlighted. In this respect, much attention has been paid to the modulation of unregulated and unabated inflammatory responses aiming to suppress pathologic immune responses in treating allergic diseases. One of the most important natural compounds with a high potency of immune modulation is curcumin, an active polyphenol compound derived from turmeric, Curcuma longa L. Curcumin's immunomodulatory action mainly arises from its interactions with an extensive collection of immune cells such as mast cells, eosinophils, epithelial cells, basophils, neutrophils, and lymphocytes. Up to now, there has been no detailed investigation of curcumin's immunomodulatory actions in allergic diseases. So, the present review study aims to prepare an overview of the immunomodulatory effects of curcumin on the pathologic innate immune responses and dysregulated functions of T helper (TH) subtypes, including TH1, TH2, TH17, and regulator T cells (Tregs) by gathering evidence from several studies of In-vitro and In-vivo. As the second aim of the present review, we also discuss some novel strategies to overcome the limitation of curcumin in clinical use. Finally, this review also assesses the therapeutic potential of curcumin regarding its immunomodulatory actions in allergic diseases.
Collapse
|
14
|
de Oliveira TV, Stein R, de Andrade DF, Beck RCR. Preclinical studies of the antitumor effect of curcumin-loaded polymeric nanocapsules: A systematic review and meta-analysis. Phytother Res 2022; 36:3202-3214. [PMID: 35778819 DOI: 10.1002/ptr.7538] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/09/2022] [Accepted: 06/12/2022] [Indexed: 12/11/2022]
Abstract
Curcumin, a plant-derived compound, has various well-known biological effects (anti-inflammatory, antioxidant, antitumor, among others) as well as some important limitations for formulators, such as poor water solubility and low oral bioavailability. Its nanoencapsulation is reported to overcome these drawbacks and to improve its in vivo efficacy. Here, data from preclinical in vivo studies evaluating the antitumor efficacy of curcumin-loaded polymeric nanocapsules are collected, analyzed, and discussed as a systematic review. Meta-analyses are performed to assess the contribution of this nanoencapsulation compared with nonencapsulated curcumin. Eighteen studies (116 animals) meet the inclusion criteria. The evidence that curcumin-loaded polymeric nanocapsules inhibits tumor growth (SMD: -3.03; 95% CI: -3.84, -2.21; p < 0.00001) and decreases tumor weight (SMD: -3.96; 95% CI: -6.22, -1.70; p = 0.0006) in rodents is established, regardless of the solid tumor model. To assess the quality of the studies included in the review a bias risk analysis was performed using the SYRCLE's RoB tool. Therefore, encapsulation in polymeric nanocapsules represents an important tool to improve the antitumor effects of curcumin, and this systematic review paves the way for future clinical studies and the translation of curcumin formulations into novel nanomedicines for human cancer treatment.
Collapse
Affiliation(s)
- Thayse V de Oliveira
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, Porto Alegre, Brazil
| | - Renan Stein
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, Porto Alegre, Brazil
| | - Diego F de Andrade
- Laboratório Federal de Defesa Agropecuária (LFDA), Secretaria de Defesa Agropecuária (SDA), Ministério da Agricultura, Pecuária e Abastecimento (MAPA), Estrada Retiro da Ponta Grossa, Porto Alegre, Brazil
| | - Ruy C R Beck
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, Porto Alegre, Brazil
| |
Collapse
|