1
|
Janarathanam VA, Issac PK, Pan I, Kamaraj N, Ansar S, Kumar YA, Guru A. Investigating antioxidant effects of hamamelitannin-conjugated zinc oxide nanoparticles on oxidative stress-Induced neurotoxicity in zebrafish larvae model. Mol Biol Rep 2024; 51:1087. [PMID: 39436450 DOI: 10.1007/s11033-024-09998-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND An excessive amount of reactive oxygen species triggers oxidative stress, leading to an imbalance in cellular homeostasis. Antioxidant therapy is an effective tool for lowering the oxidative stress and associated ailments. Recently, green nano-based drug formulations have demonstrated promising antioxidant activity and neutralizing oxidative stress. In this study, a tannin molecule Hamamelitannin (HAM), was utilized to synthesize zinc oxide nanoparticles HAM-ZnO NPs, to mitigate oxidative stress and associated ailments . METHODOLOGY The HAM-ZnO NPs were synthesized and characterized by XRD, SEM, and FTIR. The antioxidant potentials of HAM-ZnO NPs were analyzed by in vitro antioxidant assays. Zebrafish embryos and larvae were used as in-vivo models to assess the toxicity and antioxidant protective mechanism. Hydrogen peroxide (1mM) was employed to induce oxidative stress and treated with HAM-ZnO NPs to study the cognitive impairment and antioxidant enzyme levels. Levels of reactive oxygen species and cell death due to oxidative stress induction were studied by 2',7'-dichlorodihydrofluorescein diacetate and Acridine orange staining methods. Additionally, expression of Antioxidant genes such as SOD, CAT, GPx, and GSR were studied. . RESULTS HAM-ZnO NPs exhibited a spherical morphology and size ranges between 48 and 53 nm. In vitro antioxidant studies revealed the antioxidant properties of HAM-ZnO NPs. Furthermore, in vivo studies indicated that HAM-ZnO NPs don't possess any cytotoxic effects in zebrafish larvae at concentrations between (5-25 µg/ml), The study also observed that HAM-ZnO NPs significantly reduced Hydrogen Peroxide-induced stress and increased antioxidant activity in zebrafish larvae. Also, the antioxidant gene expression was upregulated in the HAM-ZnO NPs zebrafish larvae. CONCLUSION Findings in this study showed that HAM-ZnO NPs might be a potential intervention for diseases linked to oxidative stress.
Collapse
Affiliation(s)
- Vishnu Adith Janarathanam
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India.
| | - Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Nagalakshmi Kamaraj
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, Chinna Kolambakkam, Chengalpattu District, Padalam, India
| | - Sabah Ansar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Yedluri Anil Kumar
- Department of Chemistry, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ajay Guru
- Department of Cariology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| |
Collapse
|
2
|
Dou Y, Zhao R, Wu H, Yu Z, Yin C, Yang J, Yang C, Luan X, Cheng Y, Huang T, Bian Y, Han S, Zhang Y, Xu X, Chen ZJ, Zhao H, Zhao S. DENND1A desensitizes granulosa cells to FSH by arresting intracellular FSHR transportation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1620-1634. [PMID: 38709439 DOI: 10.1007/s11427-023-2438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/27/2023] [Indexed: 05/07/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder. Genome-wide association studies (GWAS) have identified several genes associated with this condition, including DENND1A. DENND1A encodes a clathrin-binding protein that functions as a guanine nucleotide exchange factor involved in vesicular transport. However, the specific role of DENND1A in reproductive hormone abnormalities and follicle development disorders in PCOS remain poorly understood. In this study, we investigated DENND1A expression in ovarian granulosa cells (GCs) from PCOS patients and its correlation with hormones. Our results revealed an upregulation of DENND1A expression in GCs from PCOS cases, which was positively correlated with testosterone levels. To further explore the functional implications of DENND1A, we generated a transgenic mouse model overexpressing Dennd1a (TG mice). These TG mice exhibited subfertility, irregular estrous cycles, and increased testosterone production following PMSG stimulation. Additionally, the TG mice displayed diminished responsiveness to FSH, characterized by smaller ovary size, less well-developed follicles, and abnormal expressions of FSH-priming genes. Mechanistically, we found that Dennd1a overexpression disrupted the intracellular trafficking of follicle stimulating hormone receptor (FSHR), promoting its internalization and inhibiting recycling. These findings shed light on the reproductive role of DENND1A and uncover the underlying mechanisms, thereby contributing valuable insights into the pathogenesis of PCOS and providing potential avenues for drug design in PCOS treatment.
Collapse
Affiliation(s)
- Yunde Dou
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Rusong Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, 215008, China
- Gusu School, Nanjing Medical University, Suzhou, 215000, China
| | - Han Wu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Zhiheng Yu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Changjian Yin
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Jie Yang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Chaoyan Yang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Xiaohua Luan
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Yixiao Cheng
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Tao Huang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Yuehong Bian
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Shan Han
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, China
| | - Yuqing Zhang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Xin Xu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Zi-Jiang Chen
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200127, China
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Han Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China.
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.
| | - Shigang Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Jinan, 250012, China.
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong University, Jinan, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.
| |
Collapse
|
3
|
Teng X, Wang Z, Wang X. Enhancing angiogenesis and inhibiting apoptosis: evaluating the therapeutic efficacy of bone marrow mesenchymal stem cell-derived exosomes in a DHEA-induced PCOS mouse model. J Ovarian Res 2024; 17:121. [PMID: 38840218 PMCID: PMC11151599 DOI: 10.1186/s13048-024-01445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Polycystic Ovary Syndrome (PCOS) is a widespread endocrine disorder among women, characterized by symptoms like ovarian cysts, hormonal imbalance, and metabolic issues. This research evaluates the therapeutic potential of Bone Marrow Mesenchymal Stem Cell-derived exosomes (BMSC-Exo) in treating PCOS symptoms within a mouse model. METHODS BMSC-Exo were isolated from NMRI mice, characterized using Transmission Electron Microscopy (TEM) and Nanoparticle Tracking Analysis (NTA), and administered to a PCOS mouse model induced by dehydroepiandrosterone (DHEA). The efficacy of BMSC-Exo was assessed in three groups of mice: a control group, a PCOS group, and a PCOS group treated with intravenous BMSC-Exo. Morphological changes in ovarian tissue were examined by Hematoxylin and Eosin (H&E) staining, apoptosis was determined using the TUNEL assay, and CD31 expression was analyzed through immunofluorescent staining to assess angiogenic activity. RESULTS The existence of BMSCs-Exo was confirmed via TEM and NTA, revealing their distinct cup-shaped morphology and a size range of 30 to 150 nanometers. H&E staining revealed that BMSCs-Exo treatment improved ovarian morphology in PCOS models, increasing corpora lutea and revitalizing granulosa cell layers, suggesting a reversal of PCOS-induced damage. TUNEL assays showed that BMSCs-Exo treatment significantly reduced apoptosis in PCOS-affected ovarian cells to levels comparable with the control group, highlighting its role in mitigating PCOS-induced cellular apoptosis. Immunofluorescence for CD31 indicated that BMSCs-Exo treatment normalized endothelial marker expression and angiogenic activity in PCOS models, suggesting its effectiveness in modulating the vascular irregularities of PCOS. Collectively, these findings demonstrate the therapeutic potential of BMSCs-Exo in addressing ovarian dysfunction, cellular apoptosis, and aberrant angiogenesis associated with PCOS. CONCLUSION The study substantiates the role of BMSC-Exo in mitigating the deleterious effects of PCOS on ovarian tissue, with implications for enhanced follicular development and reduced cellular stress. The modulation of CD31 by BMSC-Exo further highlights their potential in normalizing PCOS-induced vascular anomalies. These findings propel the need for clinical investigations to explore BMSC-Exo as a promising therapeutic avenue for PCOS management.
Collapse
Affiliation(s)
- Xiaojing Teng
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Zhiyi Wang
- Department of Clinical Laboratory, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), No. 369, Kunpeng Road, Shangcheng District, Hangzhou, Zhejiang, 310008, China.
| | - Xiaolei Wang
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Priyanka GCL, Mahalakshmi NC, Almutairi MH, Almutairi BO, Sudhakaran G, Premkumar B, Arockiaraj J. Tanshinone IIA from Salvia miltiorrhiza alleviates follicular maturation arrest symptoms in zebrafish via binding to the human androgen receptors and modulating Tox3 and Dennd1a. Tissue Cell 2024; 88:102404. [PMID: 38759521 DOI: 10.1016/j.tice.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Abstract
Follicular maturation arrest is a prevalent endocrine disorder characterized by hormonal imbalance, ovarian dysfunction, and metabolic disturbances leading to Polycystic ovarian syndrome (PCOS). Tanshinone IIA (TIIA), a bioactive compound derived from Salvia miltiorrhiza, has shown promising therapeutic potential in various diseases, including cardiovascular diseases and cancer. However, its effects on reproductive health and gynecological disorders, particularly PCOS, remain poorly understood. In this study, we investigated the potential therapeutic effects of TIIA on ovarian function. Using a combination of experimental and computational approaches, we elucidated the molecular mechanisms underlying TIIA's pharmacological impact on ovarian function, follicular development, and androgen receptor signaling. Molecular docking and dynamics simulations revealed that TIIA interacts with the human androgen receptor (HAR), modulating its activity and downstream signaling pathways. Our results demonstrate that TIIA treatment alleviates PCOS-like symptoms in a zebrafish model, including improved follicular development, lowered GSI index, improved antioxidant status (SOD, CAT), decreased LDH levels, and enhanced AChE levels by regulating Tox3 and Dennd1a pathway. Our findings suggest that TIIA may hold promise as a novel therapeutic agent for the management of PCOS or ovulation induction.
Collapse
Affiliation(s)
- G C Leela Priyanka
- Department of Pharmacology, K.K College of Pharmacy, Affiliated to The Tamilnadu Dr. M.G.R. Medical University, Grugambakkam 600128, India
| | - N C Mahalakshmi
- Department of Pharmacology, K.K College of Pharmacy, Affiliated to The Tamilnadu Dr. M.G.R. Medical University, Grugambakkam 600128, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Thandalam, Kancheepuram District, Tamil Nadu 600077, India.
| | - B Premkumar
- Department of Pharmacology, K.K College of Pharmacy, Affiliated to The Tamilnadu Dr. M.G.R. Medical University, Grugambakkam 600128, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India.
| |
Collapse
|
5
|
Sudhakaran G, Priya PS, Haridevamuthu B, Murugan R, Kannan J, Almutairi MH, Almutairi BO, Guru A, Arockiaraj J. Mechanistic interplay of dual environmental stressors: Bisphenol-A and cadmium-induced ovarian follicular damage and hepatocyte dysfunction in vivo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171706. [PMID: 38490420 DOI: 10.1016/j.scitotenv.2024.171706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
This study investigates the individual and combined toxic effects of Bisphenol A (BPA) and Cadmium (Cd) in zebrafish, recognizing the complex mixture of pollutants organisms encounter in their natural environment. Examining developmental, neurobehavioral, reproductive, and physiological aspects, the study reveals significant adverse effects, particularly in combined exposures. Zebrafish embryos exposed to BPA + Cd exhibit synergistically increased mortality, delayed hatching, and morphological abnormalities, emphasizing the heightened toxicity of the combination. Prolonged exposure until 10 days post-fertilization underscores enduring effects on embryonic development. BPA and Cd induce oxidative stress, as evidenced by increased production of reactive oxygen species and lipid peroxidation. This oxidative stress disrupts cellular functions, affecting lipid metabolism and immune response. Adult zebrafish exposed to BPA and Cd for 40 days display compromised neurobehavioral functions, altered antioxidant defenses, and increased oxidative stress, suggesting potential neurotoxicity. Additionally, disruptions in ovarian follicle maturation and skeletal abnormalities indicate reproductive and skeletal impacts. Histological analysis reveals significant liver damage, emphasizing the synergistic hepatotoxicity of BPA and Cd. Molecular assessments further demonstrate compromised cellular defense mechanisms, synaptic function, and elevated cellular stress and inflammation-related gene expression in response to combined exposures. Bioaccumulation analysis highlights differential tissue accumulation patterns. In conclusion, this study provides comprehensive insights into the multifaceted toxicological effects of BPA and Cd in zebrafish, raising concerns about potential adverse impacts on environmental ecosystems and human health.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - Jagan Kannan
- Department of Biotechnology, SRM Arts and Science College, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ajay Guru
- Department of Cardiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203 Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
6
|
Adhikari M, Biswas C, Mazumdar P, Sarkar S, Pramanick K. Evaluating the potential of daily intake of polystyrene microplastics via drinking water in inducing PCOS and its ovarian fibrosis progression using female zebrafish. NANOIMPACT 2024; 34:100507. [PMID: 38663500 DOI: 10.1016/j.impact.2024.100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Polystyrene microplastics, extensively considered endocrine disrupting chemicals, disturb the reproductive system of living organisms. Polycystic ovary syndrome (PCOS), the reproductive endocrinopathy, is longstanding concern due to its eternal impacts as reproductive disorder and infertility. Despite several reports in reproductive and endocrine toxicity, there is inadequate literature regarding the daily intake of polystyrene-microplastics via drinking water in causing PCOS and leading to ovarian fibrosis in long-term. The present study investigated whether daily consumption of polystyrene-microplastics at doses equivalent to human exposure can cause PCOS and progress to ovarian fibrosis, using female zebrafish as model. Resembling letrozole-PCOS zebrafish model, daily intake of polystyrene-microplastics displayed hallmark PCOS pathophysiology; like excess body weight and %Gonadosomatic index, decreased Follicle Stimulating Hormone and β-estradiol, increased Luteinising Hormone, brain and ovarian Testosterone (39.3% and 75% respectively). Correspondingly, ovarian histology revealed more developing (stage I and II) oocytes and less mature oocytes alongwith cystic lesions; like follicular membrane disorganization, zona pellucida invagination, theca hypertrophy, basophilic granular accumulation and oocyte buddings. Lipid deposition in intestinal and ovarian tissues was evidenced and increased fasting blood glucose manifesting insulin resistance. The expression of PCOS biomarkers (tox3, dennd1a, fem1a) was significantly disturbed. Polystyrene microplastics played vital role in inducing PCOS further enhancing oxidative stress, which positively influences inflammation and aggravate ovarian mitophagy, shedding light on its ability to harshen PCOS into ovarian fibrosis, which is characterized by collagen deposition and upregulation of pro-fibrogenic biomarker genes. These findings illustrate the potential of daily microplastics intake via drinking water in triggering PCOS and its progression to ovarian fibrosis.
Collapse
Affiliation(s)
- Madhuchhanda Adhikari
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Chayan Biswas
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Piyali Mazumdar
- Reproductive Endocrinology and Stem Cell Biology Laboratory, Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Shampa Sarkar
- Reproductive Endocrinology and Stem Cell Biology Laboratory, Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Kousik Pramanick
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata 700073, India.
| |
Collapse
|
7
|
Sudhakaran G, Kesavan D, Selvam M, Arasu A, Guru A, Arockiaraj J. Gonorrhea caused due to antimicrobial-resistant bacteria Neisseria gonorrhoeae treated using probiotic peptide. In Silico Pharmacol 2024; 12:17. [PMID: 38525049 PMCID: PMC10957827 DOI: 10.1007/s40203-023-00185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/14/2023] [Indexed: 03/26/2024] Open
Abstract
Neisseria gonorrhea is a sexually transmitted disease from gonorrhea that lacks treatment; despite the urgency, the absence of adequate drugs, lack of human correlates of protection, and inadequate animal models of infection have delayed progress toward the prevention of gonococcal infection. Lactobacillus crispatus is a lactic acid bacterium typically found in the human vaginal microbiota. Peptides from L. crispatus have shown a potential therapeutic option for targetting N. gonorrhea. Bioinformatics analysis is important for speeding up drug target acquisition, screening refinement, and evaluating adverse effects and drug resistance prediction. Therefore, this study identified an antimicrobial peptide from the bacteriocin immunity protein (BIP) of L. crispatus using the bioinformatics tool and Collection of Antimicrobial Peptide (CAMPR3). Based on the AMP score and highest ADMET properties, the peptide SM20 was chosen for docking analysis. SM20 was docked against multiple proteins from the genome of the AMR bacterium N. gonorrhea using an online tool; protein-peptide interactions were established and visualized using the PyMol visualizing tool. Molecular docking was carried out using the CABSdock tool, and multiple conformations were obtained against the membrane proteins of N. gonorrhoea. The peptide SM20 exhibited higher docking scores and ADMET properties. Therefore, SM20 could be further encapsulated with cellulose; it can be applied topically to the genital tract to target N. gonorrhea infection. The controlled release of the antimicrobial peptide from the gel can provide sustained delivery of the treatment, increasing its efficacy and reducing the risk of resistance development.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077 Tamil Nadu India
| | - D. Kesavan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203 Tamil Nadu India
| | - Madesh Selvam
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203 Tamil Nadu India
| | - Abirami Arasu
- Department of Microbiology, SRM Arts and Science College, Kattankulathur, Chennai, 603203 Tamil Nadu India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077 Tamil Nadu India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, 603203 Tamil Nadu India
| |
Collapse
|
8
|
Boopathi S, Kesavan D, Sudhakaran G, Priya PS, Haridevamuthu B, Dhanaraj M, Seetharaman S, Almutairi BO, Arokiyaraj S, Guru A, Arockiaraj J. Exploring the Efficacy of Pellitorine as an Antiparasitic Agent Against Argulus: Impacts on Antioxidant Levels and Immune Responses in Goldfish (Carassius auratus). Acta Parasitol 2024; 69:734-746. [PMID: 38411855 DOI: 10.1007/s11686-024-00792-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2024]
Abstract
INTRODUCTION Argulus spp. infestation is a significant challenge for aquaculture, currently, there are no approved medications available to efficiently manage this parasite. Consequently, mechanical removal of parasites using forceps and natural substances like herbs are being explored as alternative treatment methods. Pellitorine (PLE) is a naturally occurring compound found in several plant species. It is classified as an alkaloid and belongs to the class of compounds known as amides. MATERIALS AND METHODS This study aimed to evaluate the effectiveness of PLE in preventing Argulus spp. infestations in goldfish (Carassius auratus) and to determine the optimal dosage of PLE for the detachment of Argulus spp. RESULTS The findings of this study revealed that PLE enhanced the immune response of goldfish by promoting superoxide dismutase (SOD) and catalase (CAT) in Argulus-infected goldfish. Additionally, PLE induces reactive oxygen species (ROS) generation and cellular damage in the Argulus. PLE at a dosage of 5 mg/mL was able to detach 80% of the argulus from goldfish within 12 h. Therapeutic index was found to be 5.99, suggesting that PLE is the safest drug. CONCLUSIONS Therefore, our findings suggest that PLE can be a suitable and effective treatment option for preventing Argulus infestations in goldfish. The results of this study can guide the use of PLE at an optimal dosage to control Argulus infestation in goldfish.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - D Kesavan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - M Dhanaraj
- Foundation for Aquaculture Innovations and Technology Transfer (FAITT), 4th Cross Street, Kumaran Kudil, Thoraipakkam, Chennai, Tamil Nadu, 600097, India
| | - S Seetharaman
- Foundation for Aquaculture Innovations and Technology Transfer (FAITT), 4th Cross Street, Kumaran Kudil, Thoraipakkam, Chennai, Tamil Nadu, 600097, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science and Biotechnology, Sejong University, Seoul, 05006, Korea
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600 077, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India.
| |
Collapse
|
9
|
Sudhakaran G, Kesavan D, Kandaswamy K, Guru A, Arockiaraj J. Unravelling the epigenetic impact: Oxidative stress and its role in male infertility-associated sperm dysfunction. Reprod Toxicol 2024; 124:108531. [PMID: 38176575 DOI: 10.1016/j.reprotox.2023.108531] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Male infertility is a multifactorial condition influenced by epigenetic regulation, oxidative stress, and mitochondrial dysfunction. Oxidative stress-induced damage leads to epigenetic modifications, disrupting gene expression crucial for spermatogenesis and fertilization. Paternal exposure to oxidative stress induces transgenerational epigenetic alterations, potentially impacting male fertility in offspring. Mitochondrial dysfunction impairs sperm function, while leukocytospermia exacerbates oxidative stress-related sperm dysfunction. Therefore, this review focuses on understanding these mechanisms as vital for developing preventive strategies, including targeting oxidative stress-induced epigenetic changes and implementing lifestyle modifications to prevent male infertility. This study investigates how oxidative stress affects the epigenome and sperm production, function, and fertilization. Unravelling the molecular pathways provides valuable insights that can advance our scientific understanding. Additionally, these findings have clinical implications and can help to address the significant global health issue of male infertility.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - D Kesavan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Karthikeyan Kandaswamy
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
10
|
Valan AS, Krithikadatta J, Guru A. Exploring Periostracum as an Alternative Root Canal Irrigant: Insights From Zebrafish Embryo Experiments. Cureus 2024; 16:e56638. [PMID: 38646289 PMCID: PMC11032143 DOI: 10.7759/cureus.56638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Objectives Root canal treatments aim to eliminate biofilms effectively. Considering the limitations of chemical irrigants, there is growing interest in natural alternatives like periostracum due to their antibacterial and fouling-resistant properties. This study aimed to assess periostracum's toxicity as a root canal irrigant by investigating its effects on zebrafish embryos' heart rate, survival rate, and hatching rate, as well as inflammation studies using neutral red assays comparing it to standard irrigants like ethylenediaminetetraacetic acid (EDTA), chlorhexidine (CHX), and sodium hypochlorite (NaOCl). Materials and methods Zebrafish embryos were exposed to varying concentrations of periostracum irrigant and standard irrigants. Heart rate, survival rate, and hatching rate were evaluated as indicators of developmental toxicity using microscopy. Statistical analysis, utilizing GraphPad Prism software (version 5.03, GraphPad Software, LLC, San Diego, California, United States), involved one-way ANOVA and Tukey's post-hoc test to determine significance levels (p < 0.05) across control and other groups based on triplicate means and standard deviation. Results The periostracum irrigant demonstrated superior survival rates, heart rates, and hatching rates at specific concentrations compared to standard irrigants (p < 0.01), maintaining favorable heart rates and hatching rates at those concentrations. However, higher concentrations resulted in diminished hatching rates (p < 0.05). Additionally, this study revealed increased inflammation when larvae were treated with NaOCl, EDTA, and CHX. Conversely, no inflammation was observed when subjected to periostracum irrigants. These findings suggest potential advantages of periostracum as a root canal irrigant due to its increased biocompatibility. Conclusion Periostracum displayed promising attributes in zebrafish embryo experiments, such as stable heart rate, hatching rate, and survival rate, along with reduced developmental toxicity and inflammation, indicating potential advantages as a root canal irrigant, including reduced toxicity compared to conventional agents. Further research involving diverse demographics and long-term effects is crucial to validate periostracum's clinical applicability and safety in endodontic therapies.
Collapse
Affiliation(s)
- Annie Sylvea Valan
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Jogikalmat Krithikadatta
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
11
|
Ravikumar OV, Marunganathan V, Kumar MSK, Mohan M, Shaik MR, Shaik B, Guru A, Mat K. Zinc oxide nanoparticles functionalized with cinnamic acid for targeting dental pathogens receptor and modulating apoptotic genes in human oral epidermal carcinoma KB cells. Mol Biol Rep 2024; 51:352. [PMID: 38400866 DOI: 10.1007/s11033-024-09289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Oral diseases are often attributed to dental pathogens such as S. aureus, S. mutans, E. faecalis, and C. albicans. In this research work, a novel approach was employed to combat these pathogens by preparing zinc oxide nanoparticles (ZnO NPs) capped with cinnamic acid (CA) plant compounds. METHODS The synthesized ZnO-CA NPs were characterized using SEM, FTIR, and XRD to validate their composition and structural features. The antioxidant activity of ZnO-CA NPs was confirmed using DPPH and ABTS free radical scavenging assays. The antimicrobial effects of ZnO-CA NPs were validated using a zone of inhibition assay against dental pathogens. Autodock tool was used to identify the interaction of cinnamic acid with dental pathogen receptors. RESULTS ZnO-CA NPs exhibited potent antioxidant activity in both DPPH and ABTS assays, suggesting their potential as powerful antioxidants. The minimal inhibitory concentration of ZnO-CA NPs against dental pathogens was found 25 µg/mL, indicating their effective antimicrobial properties. Further, ZnO-CA NPs showed better binding affinity and amino acid interaction with dental pathogen receptors. Also, the ZnO-CA NPs exhibited dose-dependent (5 µg/mL, 15 µg/mL, 25 µg/mL, and 50 µg/mL) anticancer activity against Human Oral Epidermal Carcinoma KB cells. The mechanism of action of apoptotic activity of ZnO-CA NPs on the KB cells was identified through the upregulation of BCL-2, BAX, and P53 genes. CONCLUSIONS This research establishes the potential utility of ZnO-CA NPs as a promising candidate for dental applications. The potent antioxidant, anticancer, and effective antimicrobial properties of ZnO-CA NPs make them a valuable option for combating dental pathogens.
Collapse
Affiliation(s)
- O V Ravikumar
- Department of Microbiology, SRM Arts and Science College, Kattankulathur, Chengalpattu District, 603203, Tamil Nadu, India
| | - Vanitha Marunganathan
- Department of Cariology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Meenakshi Sundaram Kishore Kumar
- Biomedical Research Unit and Laboratory Animal Centre (BRULAC), Department of Anatomy, Saveetha Dental College, Chennai, 600 077, Tamil Nadu, India
| | - Magesh Mohan
- Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Baji Shaik
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Ajay Guru
- Department of Cariology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India.
| | - Khairiyah Mat
- Department of Agricultural Sciences, Faculty of Agro‑Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, 17600, Malaysia.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro‑Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, 17600, Malaysia.
| |
Collapse
|
12
|
Marunganathan V, Kumar MSK, Kari ZA, Giri J, Shaik MR, Shaik B, Guru A. Marine-derived κ-carrageenan-coated zinc oxide nanoparticles for targeted drug delivery and apoptosis induction in oral cancer. Mol Biol Rep 2024; 51:89. [PMID: 38184807 DOI: 10.1007/s11033-023-09146-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/12/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Kappaphycus alvarezii, a marine red algae species, has gained significant attention in recent years due to its versatile bioactive compounds. Among these, κ-carrageenan (CR), a sulfated polysaccharide, exhibits remarkable antimicrobial properties. This study emphasizes the synergism attained by functionalizing zinc oxide nanoparticles (ZnO NPs) with CR, thereby enhancing its antimicrobial efficacy and target specificity against dental pathogens. METHODS In this study, we synthesized ZnO-CR NPs and characterized them using SEM, FTIR, and XRD techniques to authenticate their composition and structural attributes. Moreover, our investigation revealed that ZnO-CR NPs possess better free radical scavenging capabilities, as evidenced by their effective activity in the DPPH and ABTS assay. RESULTS The antimicrobial properties of ZnO-CR NPs were systematically assessed using a zone of inhibition assay against dental pathogens of S. aureus, S. mutans, E. faecalis, and C. albicans, demonstrating their substantial inhibitory effects at a minimal concentration of 50 μg/mL. We elucidated the interaction between CR and the receptors of dental pathogens to further understand their mechanism of action. The ZnO-CR NPs demonstrated a dose-dependent anticancer effect at concentrations of 5 μg/mL, 25 μg/mL, 50 μg/mL, and 100 μg/mL on KB cells, a type of Human Oral Epidermal Carcinoma. The mechanism by which ZnO-CA NPs induced apoptosis in KB cells was determined by observing an increase in the expression of the BCL-2, BAX, and P53 genes. CONCLUSION Our findings unveil the promising potential of ZnO-CR NPs as a candidate with significant utility in dental applications. The demonstrated biocompatibility, potent antioxidant and antiapoptotic activity, along with impressive antimicrobial efficacy position these NPs as a valuable resource in the ongoing fight against dental pathogens and oral cancer.
Collapse
Affiliation(s)
- Vanitha Marunganathan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Meenakshi Sundaram Kishore Kumar
- Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre (BRULAC), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro‑Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Malaysia
- Faculty of Agro‑Based Industry, Advanced Livestock and Aquaculture Research Group, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Malaysia
| | - Jayant Giri
- Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Baji Shaik
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
13
|
Arasu A, Prabha N, Devi D, Issac PK, Alarjani KM, Al Farraj DA, Aljeidi RA, Hussein DS, Mohan M, Tayyeb JZ, Guru A, Arockiaraj J. Antimicrobial Efficacy of Allium cepa and Zingiber officinale Against the Milk-Borne Pathogen Listeria monocytogenes. J Microbiol 2023; 61:993-1011. [PMID: 38048022 DOI: 10.1007/s12275-023-00086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 12/05/2023]
Abstract
Listeria monocytogenes is an important food-borne pathogen that causes listeriosis and has a high case fatality rate despite its low incidence. Medicinal plants and their secondary metabolites have been identified as potential antibacterial substances, serving as replacements for synthetic chemical compounds. The present studies emphasize two significant medicinal plants, Allium cepa and Zingiber officinale, and their efficacy against L. monocytogenes. Firstly, a bacterial isolate was obtained from milk and identified through morphology and biochemical reactions. The species of the isolate were further confirmed through 16S rRNA analysis. Furthermore, polar solvents such as methanol and ethanol were used for the extraction of secondary metabolites from A. cepa and Z. officinale. Crude phytochemical components were identified using phytochemical tests, FTIR, and GC-MS. Moreover, the antibacterial activity of the crude extract and its various concentrations were tested against L. monocytogenes. Among all, A. cepa in methanolic extracts showed significant inhibitory activity. Since, the A. cepa for methanolic crude extract was used to perform autography to assess its bactericidal activity. Subsequently, molecular docking was performed to determine the specific compound inhibition. The docking results revealed that four compounds displayed strong binding affinity with the virulence factor Listeriolysin-O of L. monocytogenes. Based on the above results, it can be concluded that the medicinal plant A. cepa has potential antibacterial effects against L. monocytogenes, particularly targeting its virulence.
Collapse
Affiliation(s)
- Abirami Arasu
- Department of Microbiology, SRM Arts and Science College, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| | - Nagaram Prabha
- Department of Microbiology, SRM Arts and Science College, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Durga Devi
- Department of Microbiology, SRM Arts and Science College, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, P.O.2455, 11451, Riyadh, Saudi Arabia
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O.2455, 11451, Riyadh, Saudi Arabia
| | - Reem A Aljeidi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O.2455, 11451, Riyadh, Saudi Arabia
| | - Dina S Hussein
- Department of Chemistry, College of Sciences and Health, Cleveland State University, Cleveland, 44115, USA
| | - Magesh Mohan
- Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, 602105, India
| | - Jehad Zuhair Tayyeb
- Department of Clinical Biochemistry, College of Medicine, University of Jeddah, 23890, Jeddah, Saudi Arabia.
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
14
|
Sudhakaran G, Selvam M, Sreekutty AR, Chandran A, Almutairi BO, Arokiyaraj S, Raman P, Guru A, Arockiaraj J. Luteolin photo-protects zebrafish from environmental stressor ultraviolet radiation (UVB). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:720-734. [PMID: 37609830 DOI: 10.1080/15287394.2023.2249944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Ultraviolet B wavelength ray radiation (UVB) is an environmental stressor with detrimental effects to the aquatic and human systems but also enhances adverse effects when combined with several other environmental factors such as temperature and pollution. UV rays induce cellular oxidative damage and impair motility. This study aimed to examine the photo-protective activity of flavonoid luteolin against UV-B irradiation-induced oxidative stress and cellular damage using zebrafish. An in-vivo photoaging model was established using UV-B irradiation in zebrafish larvae exposed to 100 mJ/cm2. Data demonstrated that UV-B irradiation of swimming water enhanced production of ROS and superoxide anions as well as depleted total glutathione levels in zebrafish larvae. UV-B irradiation also triggered cellular damage and membrane rupture in zebra fish. Further, 100 mJ/cm2 of UV-B radiation exposure to adult-wild type zebrafish co-exposed with intraperitoneally (ip) injected luteolin upregulated the local neuroendocrine axes by activating vascular endothelial growth factor (VEGF) and elevating levels of pro-inflammatory cytokines IL-1β and TNF-α. Histologically, UV-B irradiation induced skin lesions and locomotory defects with clumping and degeneration of brain glial cells. However, luteolin effectively inhibited the excess production of reactive oxygen species (ROS) and decreased superoxide anion levels induced by UV-B irradiation. Luteolin restored the depleted glutathione levels. In addition, luteolin blocked apoptosis and lipidperoxidation. Luteolin protected adult zebrafish by downregulating the pro-inflammatory cytokine protein expression levels and diminishing VEGF activation. Luteolin also alleviated locomotory defects by inhibiting activation of microglia and inflammatory responses by preventing accumulation of glial cells and vacuolation. Data demonstrate that luteolin may protect zebrafish from UV-B-induced photodamage through DNA-protective, antioxidant and anti-inflammatory responses.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - Madesh Selvam
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - A R Sreekutty
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - Abhirami Chandran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, South Korea
| | - Pachaiappan Raman
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Chennai, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
15
|
Velayutham M, Priya PS, Sarkar P, Murugan R, Almutairi BO, Arokiyaraj S, Kari ZA, Tellez-Isaias G, Guru A, Arockiaraj J. Aquatic Peptide: The Potential Anti-Cancer and Anti-Microbial Activity of GE18 Derived from Pathogenic Fungus Aphanomyces invadans. Molecules 2023; 28:6746. [PMID: 37764521 PMCID: PMC10534430 DOI: 10.3390/molecules28186746] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Small molecules as well as peptide-based therapeutic approaches have attracted global interest due to their lower or no toxicity in nature, and their potential in addressing several health complications including immune diseases, cardiovascular diseases, metabolic disorders, osteoporosis and cancer. This study proposed a peptide, GE18 of subtilisin-like peptidase from the virulence factor of aquatic pathogenic fungus Aphanomyces invadans, which elicits anti-cancer and anti-microbial activities. To understand the potential GE18 peptide-induced biological effects, an in silico analysis, in vitro (L6 cells) and in vivo toxicity assays (using zebrafish embryo), in vitro anti-cancer assays and anti-microbial assays were performed. The outcomes of the in silico analyses demonstrated that the GE18 peptide has potent anti-cancer and anti-microbial activities. GE18 is non-toxic to in vitro non-cancerous cells and in vivo zebrafish larvae. However, the peptide showed significant anti-cancer properties against MCF-7 cells with an IC50 value of 35.34 µM, at 24 h. Besides the anti-proliferative effect on cancer cells, the peptide exposure does promote the ROS concentration, mitochondrial membrane potential and the subsequent upregulation of anti-cancer genes. On the other hand, GE18 elicits significant anti-microbial activity against P. aeruginosa, wherein GE18 significantly inhibits bacterial biofilm formation. Since the peptide has positively charged amino acid residues, it targets the cell membrane, as is evident in the FESEM analysis. Based on these outcomes, it is possible that the GE18 peptide is a significant anti-cancer and anti-microbial molecule.
Collapse
Affiliation(s)
- Manikandan Velayutham
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India
| | - P. Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Purabi Sarkar
- Department of Molecular Medicine, School of Allied Healthcare and Sciences, Jain Deemed-to-be University, Whitefield, Bangalore 560066, Karnataka, India
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Bader O. Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| | | | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India;
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
16
|
Sudhakaran G, Chandran A, Sreekutty AR, Madesh S, Pachaiappan R, Almutairi BO, Arokiyaraj S, Kari ZA, Tellez-Isaias G, Guru A, Arockiaraj J. Ophthalmic Intervention of Naringenin Decreases Vascular Endothelial Growth Factor by Counteracting Oxidative Stress and Cellular Damage in In Vivo Zebrafish. Molecules 2023; 28:5350. [PMID: 37513223 PMCID: PMC10385844 DOI: 10.3390/molecules28145350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes Mellitus is a metabolic disease that leads to microvascular complications like Diabetic retinopathy (DR), a major cause of blindness worldwide. Current medications for DR are expensive and report multiple side effects; therefore, an alternative medication that alleviates the disease condition is required. An interventional approach targeting the vascular endothelial growth factor (VEGF) remains a treatment strategy for DR. Anti-VEGF medicines are being investigated as the main therapy for managing vision-threatening complications of DR, such as diabetic macular oedema. Therefore, this study investigated the effect of flavonoid naringenin (NG) from citrus fruits on inhibiting early DR in zebrafish. When exposed to 130 mM glucose, the zebrafish larvae developed a hyperglycaemic condition accompanied by oxidative stress, cellular damage, and lipid peroxidation. Similarly, when adult zebrafish were exposed to 4% Glucose, high glucose levels were observed in the ocular region and massive destruction in the retinal membrane. High glucose upregulated the expression of VEGF. In comparison, the co-exposure to NG inhibited oxidative stress and cellular damage and restored the glutathione levels in the ocular region of the zebrafish larvae. NG regressed the glucose levels and cellular damage along with an inhibition of macular degeneration in the retina of adult zebrafish and normalized the overexpression of VEGF as a promising strategy for treating DR. Therefore, intervention of NG could alleviate the domestication of alternative medicine in ophthalmic research.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Abhirami Chandran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - A R Sreekutty
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - S Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| | | | - Ajay Guru
- Department of Cardiology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, India
| |
Collapse
|
17
|
Sudhakaran G, Babu SR, Mahendra H, Arockiaraj J. Updated experimental cellular models to study polycystic ovarian syndrome. Life Sci 2023; 322:121672. [PMID: 37028548 DOI: 10.1016/j.lfs.2023.121672] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Polycystic ovarian syndrome (PCOS) develops due to hormonal imbalance and hyperandrogenism. Animal models are widely used to study PCOS because they mimic essential characteristics of human PCOS; however, the pathogenesis of PCOS remains unclear. Different sources of novel drugs are currently being screened as therapeutic strategies to alleviate PCOS and its symptoms. Simplified cell line in-vitro models could be preliminarily used to screen the bioactivity of various drugs. This review describes different cell line models focusing on the PCOS condition and its complications. Therefore, the bioactivity of the drugs could be preliminarily screened in a cell line model before moving to higher animal models.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Sarvesh Ramesh Babu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Hridai Mahendra
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|