1
|
Kosurkar UB, Mamilla J, Dadmal TL, Choudante PC, Mali SN, Misra S, Kumbhare RM. Synthesis of Novel Thiazolidine-4-One Derivatives, Their Cytotoxicity, Antifungal Properties, Molecular Docking and Molecular Dynamics. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2023. [DOI: 10.1134/s1068162023020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
2
|
Kosurkar UB, Pamanji R, Janardhan S, Nanubolu J, Dadmal TL, Mali SN, Kumbhare RM. Synthesis, Structure, Bioactivity and Computational Avenue to Identify Structural Requirements of Novel 2-Imino-4-thiazolidinones as Anti-Tumour Agents. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162023010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Zhao Y, Liu X, Ouyang J, Wang Y, Xu S, Tian D, Si H. Studies on the IC50 of Metabolically Stable 1-(3,3-diphenylpropyl)- piperidinyl Amides and Ureas as Human CCR5 Receptor Antagonists Based on QSAR. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817666200320105725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
In this study, modulators of human Chemotactic cytokine receptor 5
(CCR5) were described using a quantitative structure-activity relationship model (QSAR). This
model was based on the molecule’s chemical structure.
Methods::
All 56 compounds of CCR5 receptor antagonists were randomly separated into two sets,
43 were reserved for training and the other 13 for testing. In the course of this study, molecular
models were drawn using ChemDraw software. By means of Hyperchem software as well as optimized
with both AM1 (semi-empirical self-consistent-field molecular orbital) and MM+ (molecular
mechanics plus force field), molecular models were described through numerous descriptors using
CODESSA software.
Results:
Linear models were obtained by Heuristic Method (HM) software and nonlinear models
were obtained using APS software with optimal descriptor combinations used to build linear QSAR
models, involving a group of selected descriptors. As a result, values of the above two different sets
were shown to result from 0.82 in testing and 0.86 in training in HM while 0.83 in testing and 0.88
in training in Gene Expression Programming (GEP).
Conclusion:
From this method, the activity of molecules could be predicted, and the molecular
structure could be changed to alter its IC50, avoiding the testing of large numbers of compounds.
Collapse
Affiliation(s)
- Yutao Zhao
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Xiaoqian Liu
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Jing Ouyang
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Yan Wang
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Shanyu Xu
- School of Stomatology, Qingdao University, Qingdao, 266071, China
| | - Dongdong Tian
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Hongzong Si
- Institute for Computational Science and Engineering, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
4
|
Functionalized olympicene (C19H12) as anode material for Li-ion batteries: a DFT approach. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02500-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Venkatesh R, Kasaboina S, Jain N, Janardhan S, Holagunda UD, Nagarapu L. Design and synthesis of novel sulphamide tethered quinazolinone hybrids as potential antitumor agents. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Janardhan S, John L, Prasanthi M, Poroikov V, Narahari Sastry G. A QSAR and molecular modelling study towards new lead finding: polypharmacological approach to Mycobacterium tuberculosis. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:815-832. [PMID: 29183232 DOI: 10.1080/1062936x.2017.1398782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Developing effective inhibitors against Mycobacterium tuberculosis (Mtb) is a challenging task, primarily due to the emergence of resistant strains. In this study, we have proposed and implemented an in silico guided polypharmacological approach, which is expected to be effective against resistant strains by simultaneously inhibiting several potential Mtb drug targets. A combination of pharmacophore and QSAR based virtual screening strategy taking three key targets such as InhA (enoyl-acyl-carrier-protein reductase), GlmU (N-acetyl-glucosamine-1-phosphate uridyltransferase) and DapB (dihydrodipicolinate reductase) have resulted in initial 784 hits from Asinex database of 435,000 compounds. These hits were further subjected to docking with 33 Mtb druggable targets. About 110 potential polypharmacological hits were taken by integrating the aforementioned screening protocols. Further screening was conducted by taking various parameters and properties such as cell permeability, drug-likeness, drug-induced phospholipidosisand structural alerts. A consensus analysis has yielded 59 potential hits that pass through all the filters and can be prioritized for effective drug-resistant tuberculosis. This study proposes about nine potential hits which are expected to be promising molecules, having not only drug-like properties, but also being effective against multiple Mtb targets.
Collapse
Affiliation(s)
- S Janardhan
- a Centre for Molecular Modelling , CSIR-Indian Institute of Chemical Technology , Hyderabad - 500007 , India
| | - L John
- a Centre for Molecular Modelling , CSIR-Indian Institute of Chemical Technology , Hyderabad - 500007 , India
| | - M Prasanthi
- a Centre for Molecular Modelling , CSIR-Indian Institute of Chemical Technology , Hyderabad - 500007 , India
| | - V Poroikov
- b Institute of Biomedical Chemistry , Moscow , 119121 , Russia
| | - G Narahari Sastry
- a Centre for Molecular Modelling , CSIR-Indian Institute of Chemical Technology , Hyderabad - 500007 , India
| |
Collapse
|
7
|
Janardhan S, Ram Vivek M, Narahari Sastry G. Modeling the permeability of drug-like molecules through the cell wall of Mycobacterium tuberculosis: an analogue based approach. MOLECULAR BIOSYSTEMS 2017; 12:3377-3384. [PMID: 27604290 DOI: 10.1039/c6mb00457a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of drug resistant strains of Mycobacterium Tuberculosis (Mtb) accentuates the urgent need for the development of novel antitubercular drugs. The major causes of drug resistance are genetic mutations, the influx-efflux transporter system, and the complex cell wall system of Mtb, which can function as permeability barriers. The driving force for permeability of small molecules through a biological system depends on various physicochemical factors. To understand the permeability of small molecules and subsequent cell inhibition, we have developed predictive QSAR models based on reported enzyme-based (IC50) and cell-based (MIC) Mtb inhibitory data. The compounds that are highly active in enzyme-based assays and have significant variation in cell-based assays are assumed to possess the required permeability through the Mtb cell wall. The obtained models suggest the importance of molecular connectivity, lipophilicity (log P, size, shape), electrotopology (relative atomic mass, polarizability, electronegativity, ionization potential, atomic charges, van der Waals volume, hybridization, hydrogen bond acceptors/donors, number of fused rings) and functional groups (hydroxyl groups, primary and secondary amines) of a molecule in determining both its inhibitory potency and Mtb cell permeability. The models were validated with known Mtb inhibitors (9804) collected from the ChEMBL database, Mtb drugs (27) and clinical candidates (5). Further, these validated models were used to screen and prioritize a large database of compounds, including Zinc (152 128), Asinex (435 215), DrugBank (6531) and antimicrobial compounds (1324). The results obtained from 2D-QSAR analysis could improve our understanding towards Mtb cell permeability, which may aid in the rational design of novel potent molecules for tuberculosis (TB).
Collapse
Affiliation(s)
- Sridhara Janardhan
- Centre for Molecular Modeling, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad-500 007, India.
| | - M Ram Vivek
- Centre for Molecular Modeling, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad-500 007, India.
| | - G Narahari Sastry
- Centre for Molecular Modeling, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad-500 007, India.
| |
Collapse
|
8
|
Murahari M, Kharkar PS, Lonikar N, Mayur YC. Design, synthesis, biological evaluation, molecular docking and QSAR studies of 2,4-dimethylacridones as anticancer agents. Eur J Med Chem 2017; 130:154-170. [PMID: 28246041 DOI: 10.1016/j.ejmech.2017.02.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Manikanta Murahari
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore 560 054, India
| | - Prashant S Kharkar
- Department of Pharmaceutical Chemistry, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai 400 056, India
| | - Nitin Lonikar
- Department of Pharmaceutical Chemistry, AME's V.L. College of Pharmacy, Raichur 584103, India
| | - Y C Mayur
- Department of Pharmaceutical Chemistry, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai 400 056, India.
| |
Collapse
|
9
|
Novel benzothiazine-piperazine derivatives by peptide-coupling as potential anti-proliferative agents. Bioorg Med Chem Lett 2016; 27:354-359. [PMID: 27964883 DOI: 10.1016/j.bmcl.2016.10.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/06/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
In an attempt to develop potential and selective anti-proliferative agents, a series of novel benzothiazine-piperazine derivatives 8a-i and 10a-g were synthesized by coupling of 2H-1,4-benzothiazin-3(4H)-one with various amines 7a-i and 9a-g in excellent yields and evaluated for their in vitro anti-proliferative activity against four cancer cell lines, HeLa (cervical), MIAPACA (pancreatic), MDA-MB-231 (breast) and IMR32 (neuroblastoma). In vitro inhibitory activity indicated that compounds 8a, 8d, 8g, 10a, 10b, 10e, 10f were found to be good anti-proliferative agents. Among them the derivatives 8g, 10e and 10f were found to be the most active members exhibiting remarkable growth inhibitory activity. Molecular docking was undertaken to investigate the probable binding mode and key active site interactions in HDAC8 and EHMT2 proteins. The docking results are complementary to the experimental results.
Collapse
|
10
|
Synthesis and evaluation of antiproliferative activity of novel quinazolin-4(3H)-one derivatives. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1632-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Arlauckas SP, Popov AV, Delikatny EJ. Choline kinase alpha-Putting the ChoK-hold on tumor metabolism. Prog Lipid Res 2016; 63:28-40. [PMID: 27073147 PMCID: PMC5360181 DOI: 10.1016/j.plipres.2016.03.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/14/2016] [Accepted: 03/26/2016] [Indexed: 12/24/2022]
Abstract
It is well established that lipid metabolism is drastically altered during tumor development and response to therapy. Choline kinase alpha (ChoKα) is a key mediator of these changes, as it represents the first committed step in the Kennedy pathway of phosphatidylcholine biosynthesis and ChoKα expression is upregulated in many human cancers. ChoKα activity is associated with drug resistant, metastatic, and malignant phenotypes, and represents a robust biomarker and therapeutic target in cancer. Effective ChoKα inhibitors have been developed and have recently entered clinical trials. ChoKα's clinical relevance was, until recently, attributed solely to its production of second messenger intermediates of phospholipid synthesis. The recent discovery of a non-catalytic scaffolding function of ChoKα may link growth receptor signaling to lipid biogenesis and requires a reinterpretation of the design and validation of ChoKα inhibitors. Advances in positron emission tomography, magnetic resonance spectroscopy, and optical imaging methods now allow for a comprehensive understanding of ChoKα expression and activity in vivo. We will review the current understanding of ChoKα metabolism, its role in tumor biology and the development and validation of targeted therapies and companion diagnostics for this important regulatory enzyme. This comes at a critical time as ChoKα-targeting programs receive more clinical interest.
Collapse
Affiliation(s)
- Sean P Arlauckas
- Department of Radiology, 317 Anatomy-Chemistry Building, 3620 Hamilton Walk, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anatoliy V Popov
- Department of Radiology, 317 Anatomy-Chemistry Building, 3620 Hamilton Walk, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E James Delikatny
- Department of Radiology, 317 Anatomy-Chemistry Building, 3620 Hamilton Walk, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Design, synthesis and biological activity evaluation of novel pefloxacin derivatives as potential antibacterial agents. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1544-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Affiliation(s)
- A. Subha Mahadevi
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India 500607
| | - G. Narahari Sastry
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India 500607
| |
Collapse
|
14
|
Gao S, Shi G, Fang H. Impact of cation-π interactions on the cell voltage of carbon nanotube-based Li batteries. NANOSCALE 2016; 8:1451-1455. [PMID: 26676257 DOI: 10.1039/c5nr06456b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Carbon nanotube (CNT)-based Li batteries have attracted wide attention because of their high capacity, high cyclability and high energy density and are believed to be one of the most promising electrochemical energy storage systems. In CNT-based Li batteries, the main interaction between the Li(+) ions and the CNT is the cation-π interaction. However, up to now, it is still not clear how this interaction affects the storage characteristics of CNT-based Li batteries. Here, using density functional theory (DFT) calculations, we report a highly favorable impact of cation-π interactions on the cell voltage of CNT-based Li batteries. Considering both Li(+)-π interaction and Li-π interaction, we show that cell voltage enhances with the increase of the CNT diameter. In addition, when the Li(+) ion adsorbs on the external wall, the cell voltage is larger than that when it adsorbs on the internal wall. This suggests that CNTs with a large diameter and a low array density are more advantageous to enhance storage performance of CNT-based Li batteries. Compared with Li(+) ions on the (4,4) CNT internal wall, the cell voltage of Li(+) on the (10,10) CNT external wall is 0.55 V higher, which indicates an improvement of about 38%. These results will be helpful for the design of more efficient CNT-based Li batteries.
Collapse
Affiliation(s)
- Shaohua Gao
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guosheng Shi
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China.
| | - Haiping Fang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China.
| |
Collapse
|
15
|
Venkatesh R, Kasaboina S, Gaikwad HK, Janardhan S, Bantu R, Nagarapu L, Sastry GN, Banerjee SK. Design and synthesis of 3-(3-((9H-carbazol-4-yl)oxy)-2-hydroxypropyl)-2-phenylquinazolin-4(3H)-one derivatives to induce ACE inhibitory activity. Eur J Med Chem 2015; 96:22-9. [DOI: 10.1016/j.ejmech.2015.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 03/31/2015] [Accepted: 04/03/2015] [Indexed: 01/06/2023]
|
16
|
Venkatesh R, Ramaiah MJ, Gaikwad HK, Janardhan S, Bantu R, Nagarapu L, Sastry GN, Ganesh AR, Bhadra M. Luotonin-A based quinazolinones cause apoptosis and senescence via HDAC inhibition and activation of tumor suppressor proteins in HeLa cells. Eur J Med Chem 2015; 94:87-101. [PMID: 25757092 DOI: 10.1016/j.ejmech.2015.02.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/06/2015] [Accepted: 02/28/2015] [Indexed: 12/19/2022]
Abstract
A series of novel quinazolinone hybrids were synthesized by employing click chemistry and evaluated for anti-proliferative activities against MCF-7, HeLa and K562 cell lines. Among these cell lines, HeLa cells were found to respond effectively to these quinazolinone hybrids with IC50 values ranging from 5.94 to 16.45 μM. Some of the hybrids (4q, 4r, 4e, 4k, 4t, 4w) with promising anti-cancer activity were further investigated for their effects on the cell cycle distribution. FACS analysis revealed the G1 cell cycle arrest nature of these hybrids. Further to assess the senescence inducing ability of these compounds, a senescence associated β-gal assay was performed. The senescence inducing nature of these compounds was supported by the effect of hybrid (4q) on p16 promoter activity, the marker for senescence. Moreover, cells treated with most effective compound (4q) show up-regulation of p53, p21 and down-regulation of HDAC-1, HDAC-2, HDAC-5 and EZH2 mRNA levels. Docking results suggest that, the triazole nitrogen showed Zn(+2) mediated interactions with the histidine residue of HDACs.
Collapse
Affiliation(s)
- Ramineni Venkatesh
- Organic Chemistry Division II, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - M Janaki Ramaiah
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500607, India
| | - Hanmant K Gaikwad
- Organic Chemistry Division II, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Sridhara Janardhan
- Centre for Molecular Modeling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500607, India
| | - Rajashaker Bantu
- Organic Chemistry Division II, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | - Lingaiah Nagarapu
- Organic Chemistry Division II, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India.
| | - G Narahari Sastry
- Centre for Molecular Modeling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500607, India
| | - A Raksha Ganesh
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500607, India
| | - Manikapal Bhadra
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500607, India
| |
Collapse
|
17
|
Satbhaiya S, Chourasia OP. Scaffold and cell line based approaches for QSAR studies on anticancer agents. RSC Adv 2015. [DOI: 10.1039/c5ra18295f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Importance of 2D QSAR in drug discovery, lower number of descriptors containing models shows best statistical parameters, number of involved scaffolds in models affects the statistical values.
Collapse
Affiliation(s)
- Shruti Satbhaiya
- Heterocyclic Research Laboratory
- Department of Chemistry
- Dr Hari Singh Gour Vishwavidyalaya
- Sagar
- India
| | - O. P. Chourasia
- Heterocyclic Research Laboratory
- Department of Chemistry
- Dr Hari Singh Gour Vishwavidyalaya
- Sagar
- India
| |
Collapse
|
18
|
Srivastava HK, Sastry GN. Efficient estimation of MMGBSA-based BEs for DNA and aromatic furan amidino derivatives. J Biomol Struct Dyn 2013; 31:522-37. [DOI: 10.1080/07391102.2012.703071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Mahadevi AS, Sastry GN. Cation-π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev 2012; 113:2100-38. [PMID: 23145968 DOI: 10.1021/cr300222d] [Citation(s) in RCA: 769] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- A Subha Mahadevi
- Molecular Modeling Group, CSIR-Indian Institute of Chemical Technology Tarnaka, Hyderabad 500 607, Andhra Pradesh, India
| | | |
Collapse
|
20
|
Zeng GH, Wu WJ, Zhang R, Sun J, Xie WG, Shen Y. 3D-QSAR and Docking Studies of Pyrido[2,3-d]pyrimidine Derivatives as Wee1 Inhibitors. CHINESE J CHEM PHYS 2012. [DOI: 10.1088/1674-0068/25/03/297-307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Bohari MH, Sastry GN. FDA approved drugs complexed to their targets: evaluating pose prediction accuracy of docking protocols. J Mol Model 2012; 18:4263-74. [PMID: 22562231 DOI: 10.1007/s00894-012-1416-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 03/26/2012] [Indexed: 11/29/2022]
Abstract
Efficient drug discovery programs can be designed by utilizing existing pools of knowledge from the already approved drugs. This can be achieved in one way by repositioning of drugs approved for some indications to newer indications. Complex of drug to its target gives fundamental insight into molecular recognition and a clear understanding of putative binding site. Five popular docking protocols, Glide, Gold, FlexX, Cdocker and LigandFit have been evaluated on a dataset of 199 FDA approved drug-target complexes for their accuracy in predicting the experimental pose. Performance for all the protocols is assessed at default settings, with root mean square deviation (RMSD) between the experimental ligand pose and the docked pose of less than 2.0 Å as the success criteria in predicting the pose. Glide (38.7 %) is found to be the most accurate in top ranked pose and Cdocker (58.8 %) in top RMSD pose. Ligand flexibility is a major bottleneck in failure of docking protocols to correctly predict the pose. Resolution of the crystal structure shows an inverse relationship with the performance of docking protocol. All the protocols perform optimally when a balanced type of hydrophilic and hydrophobic interaction or dominant hydrophilic interaction exists. Overall in 16 different target classes, hydrophobic interactions dominate in the binding site and maximum success is achieved for all the docking protocols in nuclear hormone receptor class while performance for the rest of the classes varied based on individual protocol.
Collapse
Affiliation(s)
- Mohammed H Bohari
- Molecular Modeling Group, Indian Institute of Chemical Technology, Hyderabad,, 500 607, Andhra Pradesh, India
| | | |
Collapse
|
22
|
LIAO SIYAN, QIAN LI, MIAO TIFANG, SHEN YONG, ZHENG KANGCHENG. 3D-QSAR STUDIES OF SUBSTITUTED 4-ARYL/HETEROARYL-4H-CHROMENES AS APOPTOSIS INDUCERS USING CoMFA AND CoMSIA. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633609004599] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Three-dimensional (3D) quantitative structure–activity relationships (QSARs) of 36 apoptosis inducers, substituted 4-aryl/heteroaryl-4H-chromenes with anticancer activity against human breast cancer cell lines T47D, have been studied by using methods of comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA). The established 3D-QSAR models in training set show not only significant statistical quality, but also predictive ability, with high correlation coefficient (R2) values and cross-validation coefficient (q2) values: CoMFA (R2, q2: 0.944, 0.747), CoMSIA (R2, q2: 0.944, 0.704). Moreover, the predictive abilities of the CoMFA and CoMSIA models were further confirmed by a test set, giving the predictive correlation coefficients ([Formula: see text] values) of 0.845 and 0.851, respectively. Based on the CoMFA and CoMSIA contour map analyses, some key factors responsible for anticancer activity of this series of compounds have been found as follows: the steric interaction plays a decisive role in determining the anticancer activities of these compounds; bulky groups as substituent R 1 are not tolerated; in addition to a steric moderation, higher degree of electropositivity and hydrophobicity on the terminal alkyl of substituent R 2 might be favorable to the activity; the substituent R 3 should be hydrophobic; bulky and strong electron withdrawing groups for the substituent R 4 are not advantageous to the activity; simultaneously introducing large electronegative atoms as hydrogen-acceptors to the first atoms of the substituents R 5 and R 6 may increase the activity, but substituents R 5 and R 6 with a linking group – OCH 2 O – may decrease the activity. Such results can offer some useful theoretical references for understanding the action mechanism, designing more potent derivatives, and predicting their activities prior to synthesis.
Collapse
Affiliation(s)
- SI YAN LIAO
- School of Chemistry and Chemical Engineering, Zhongshan (Sun Yat-Sen) University, Guangzhou 510275, P. R. China
| | - LI QIAN
- School of Chemistry and Chemical Engineering, Zhongshan (Sun Yat-Sen) University, Guangzhou 510275, P. R. China
| | - TI FANG MIAO
- School of Chemistry and Chemical Engineering, Zhongshan (Sun Yat-Sen) University, Guangzhou 510275, P. R. China
| | - YONG SHEN
- School of Chemistry and Chemical Engineering, Zhongshan (Sun Yat-Sen) University, Guangzhou 510275, P. R. China
| | - KANG CHENG ZHENG
- School of Chemistry and Chemical Engineering, Zhongshan (Sun Yat-Sen) University, Guangzhou 510275, P. R. China
| |
Collapse
|
23
|
LIAO SIYAN, QIAN LI, CHEN JINCAN, SHEN YONG, ZHENG KANGCHENG. 2D/3D-QSAR STUDY ON ANALOGUES OF 2-METHOXYESTRADIOL WITH ANTICANCER ACTIVITY. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633608003745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two-dimensional (2D) and three-dimensional (3D) quantitative structure–activity relationships (QSARs) of 23 analogs of 2-Methoxyestradiol with anticancer activity (expressed as p GI50) against MCF-7 human breast cancer cells have been studied by using a combined method of the DFT, MM2 and statistics for 2D, as well as the comparative molecular field analysis (CoMFA) for 3D. The established 2D-QSAR model in training set shows not only significant statistical quality, but also predictive ability, with the square of adjusted correlation coefficient [Formula: see text] and the square of the cross-validation coefficient (q2= 0.779). The same model was further applied to predict p GI50values of the four compounds in the test set, and the resulting [Formula: see text] being as high as 0.827, further confirms that this 2D-QSAR model has high predictive ability for this kind of compound. The 3D-QSAR model also shows good correlative and predictive capabilities in terms of R2(0.927) and q2(0.786) obtained from CoMFA model. The results that 2D- and 3D-QSAR analyses accord with each other, suggest that the electrostatic interaction plays a decisive role in determining the anticancer activity of the studied compounds, and that increasing the negative charge of substituent R2and the positive charge of substituents linking to C17as well as decreasing the size of substituent R1are advantageous to improving the cytotoxicity. Such results can offer some useful theoretical references for directing the molecular design and understanding the action mechanism of this kind of compound with anticancer activity.
Collapse
Affiliation(s)
- SI YAN LIAO
- School of Chemistry and Chemical Engineering, Zhongshan (Sun Yat-Sen) University, Guangzhou, 510275, P. R. China
| | - LI QIAN
- School of Chemistry and Chemical Engineering, Zhongshan (Sun Yat-Sen) University, Guangzhou, 510275, P. R. China
| | - JIN CAN CHEN
- School of Chemistry and Chemical Engineering, Zhongshan (Sun Yat-Sen) University, Guangzhou, 510275, P. R. China
| | - YONG SHEN
- School of Chemistry and Chemical Engineering, Zhongshan (Sun Yat-Sen) University, Guangzhou, 510275, P. R. China
| | - KANG CHENG ZHENG
- School of Chemistry and Chemical Engineering, Zhongshan (Sun Yat-Sen) University, Guangzhou, 510275, P. R. China
| |
Collapse
|
24
|
Bohari MH, Srivastava HK, Sastry GN. Analogue-based approaches in anti-cancer compound modelling: the relevance of QSAR models. Org Med Chem Lett 2011; 1:3. [PMID: 22373294 DOI: 10.1186/2191-2858-1-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/18/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND QSAR is among the most extensively used computational methodology for analogue-based design. The application of various descriptor classes like quantum chemical, molecular mechanics, conceptual density functional theory (DFT)- and docking-based descriptors for predicting anti-cancer activity is well known. Although in vitro assay for anti-cancer activity is available against many different cell lines, most of the computational studies are carried out targeting insufficient number of cell lines. Hence, statistically robust and extensive QSAR studies against 29 different cancer cell lines and its comparative account, has been carried out. RESULTS The predictive models were built for 266 compounds with experimental data against 29 different cancer cell lines, employing independent and least number of descriptors. Robust statistical analysis shows a high correlation, cross-validation coefficient values, and provides a range of QSAR equations. Comparative performance of each class of descriptors was carried out and the effect of number of descriptors (1-10) on statistical parameters was tested. Charge-based descriptors were found in 20 out of 39 models (approx. 50%), valency-based descriptor in 14 (approx. 36%) and bond order-based descriptor in 11 (approx. 28%) in comparison to other descriptors. The use of conceptual DFT descriptors does not improve the statistical quality of the models in most cases. CONCLUSION Analysis is done with various models where the number of descriptors is increased from 1 to 10; it is interesting to note that in most cases 3 descriptor-based models are adequate. The study reveals that quantum chemical descriptors are the most important class of descriptors in modelling these series of compounds followed by electrostatic, constitutional, geometrical, topological and conceptual DFT descriptors. Cell lines in nasopharyngeal (2) cancer average R2 = 0.90 followed by cell lines in melanoma cancer (4) with average R2 = 0.81 gave the best statistical values.
Collapse
Affiliation(s)
- Mohammed Hussaini Bohari
- Molecular Modelling Group, Indian Institute of Chemical Technology, Taranaka, Hyderabad 500 607, India.
| | | | | |
Collapse
|
25
|
Srivastava HK, Chourasia M, Kumar D, Sastry GN. Comparison of Computational Methods to Model DNA Minor Groove Binders. J Chem Inf Model 2011; 51:558-71. [DOI: 10.1021/ci100474n] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hemant Kumar Srivastava
- Molecular Modelling Group, Indian Institute of Chemical Technology, Taranaka, Hyderabad 500 607, India
| | - Mukesh Chourasia
- Molecular Modelling Group, Indian Institute of Chemical Technology, Taranaka, Hyderabad 500 607, India
| | - Devesh Kumar
- Molecular Modelling Group, Indian Institute of Chemical Technology, Taranaka, Hyderabad 500 607, India
| | - G. Narahari Sastry
- Molecular Modelling Group, Indian Institute of Chemical Technology, Taranaka, Hyderabad 500 607, India
| |
Collapse
|
26
|
Badrinarayan P, Srivani P, Narahari Sastry G. Design of 1-arylsulfamido-2-alkylpiperazine derivatives as secreted PLA2 inhibitors. J Mol Model 2010; 17:817-31. [PMID: 20571844 DOI: 10.1007/s00894-010-0752-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 05/11/2010] [Indexed: 10/19/2022]
Abstract
Structure and analog based analysis of 3D-QSAR, CoMFA and CoMSIA, along with different docking protocols were used to evaluate the structure activity relationship of 26 analogues of 1-aryl sulfamido-2-alkyl piperazines to model the activities of group I and II secreted phospholipases A(2) (sPLA(2)s) and probe into the chemical space and nature of receptor--ligand interactions. The best CoMFA model yields cross-validated (q(2)) and conventional correlation coefficients (r(2)) of 0.703 and 0.962 respectively whereas CoMSIA model yields q(2) and r(2) values of 0.408 and 0.922 respectively, followed by docking analysis using FlexX and GOLD methodologies on the X-ray structure of human and bovine PLA(2)s. A comparative study was made to find out the differences in the active site residues of both PLA(2)s. The information enunciated from the analysis of CoMFA and CoMSIA maps and docking results were analyzed and employed in the design of 29 new ligands using molecules 4, 21, 22 from the initial set as templates. New ligands for group I and II secreted phospholipases A(2) (sPLA(2)s) have been thus designed based on the 32 analogues of 1-aryl sulfamido-2-alkyl piperazine with a cursory note on its synthetic feasibility. Molecular modeling studies indicate that the newly designed ligands are expected to show high affinity and experimental efforts in this direction is highly rewarding.
Collapse
Affiliation(s)
- Preethi Badrinarayan
- Molecular Modeling Group, Organic Chemical Sciences, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | | | | |
Collapse
|
27
|
Sivakumar PM, Prabhawathi V, Doble M. Antibacterial activity and QSAR of chalcones against biofilm-producing bacteria isolated from marine waters. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2010; 21:247-263. [PMID: 20544550 DOI: 10.1080/10629361003771009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Biofouling in the marine environment is a major problem. In this study, three marine organisms, namely Bacillus flexus (LD1), Pseudomonas fluorescens (MD3) and Vibrio natriegens (MD6), were isolated from biofilms formed on polymer and metal surfaces immersed in ocean water. Phylogenetic analysis of these three organisms indicated that they were good model systems for studying marine biofouling. The in vitro antifouling activity of 47 synthesized chalcone derivatives was investigated by estimating the minimum inhibitory concentration against these organisms using a twofold dilution technique. Compounds C-5, C-16, C-24, C-33, C-34 and C-37 were found to be the most active. In the majority of the cases it was found that these active compounds had hydroxyl substitutions. A quantitative structure-activity relationship (QSAR) was developed after dividing the total data into training and test sets. The statistical measures r(2), [image omitted] (>0.6) q(2) (>0.5) and the F-ratio were found to be satisfactory. Spatial, structural and electronic descriptors were found to be predominantly affecting the antibiofouling activity of these compounds. Among the spatial descriptors, Jurs descriptors showed their contribution in all the three antibacterial QSARs.
Collapse
Affiliation(s)
- P M Sivakumar
- Department of Biotechnology, Indian Institute of Technology-Madras, India
| | | | | |
Collapse
|
28
|
Comparison of the cellular and biochemical properties of Plasmodium falciparum choline and ethanolamine kinases. Biochem J 2009; 425:149-58. [PMID: 19845508 DOI: 10.1042/bj20091119] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The proliferation of the malaria-causing parasite Plasmodium falciparum within the erythrocyte is concomitant with massive phosphatidylcholine and phosphatidylethanolamine biosynthesis. Based on pharmacological and genetic data, de novo biosynthesis pathways of both phospholipids appear to be essential for parasite survival. The present study characterizes PfCK (P. falciparum choline kinase) and PfEK (P. falciparum ethanolamine kinase), which catalyse the first enzymatic steps of these essential metabolic pathways. Recombinant PfCK and PfEK were expressed as His6-tagged fusion proteins from overexpressing Escherichia coli strains, then purified to homogeneity and characterized. Using murine polyclonal antibodies against recombinant kinases, PfCK and PfEK were shown to be localized within the parasite cytoplasm. Protein expression levels increased during erythrocytic development. PfCK and PfEK appeared to be specific to their respective substrates and followed Michaelis-Menten kinetics. The Km value of PfCK for choline was 135.3+/-15.5 microM. PfCK was also able to phosphorylate ethanolamine with a very low affinity. PfEK was found to be an ethanolamine-specific kinase (Km=475.7+/-80.2 microM for ethanolamine). The quaternary ammonium compound hemicholinium-3 and an ethanolamine analogue, 2-amino-1-butanol, selectively inhibited PfCK or PfEK. In contrast, the bis-thiazolium compound T3, which was designed as a choline analogue and is currently in clinical trials for antimalarial treatment, affected PfCK and PfEK activities similarly. Inhibition exerted by T3 was competitive for both PfCK and PfEK and correlated with the impairment of cellular phosphatidylcholine biosynthesis. Comparative analyses of sequences and structures for both kinase types gave insights into their specific inhibition profiles and into the dual capacity of T3 to inhibit both PfCK and PfEK.
Collapse
|
29
|
Chen JC, Chen LM, Liao SY, Qian L, Zheng KC. 3D-QSAR Study of 7,8-Dialkyl-1,3-diaminopyrrolo-[3,2-f] Quinazolines with Anticancer Activity as DHFR Inhibitors. CHINESE J CHEM PHYS 2009. [DOI: 10.1088/1674-0068/22/03/285-289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Srivani P, Sastry GN. Potential choline kinase inhibitors: a molecular modeling study of bis-quinolinium compounds. J Mol Graph Model 2008; 27:676-88. [PMID: 19147382 DOI: 10.1016/j.jmgm.2008.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 10/10/2008] [Accepted: 10/27/2008] [Indexed: 11/19/2022]
Abstract
Choline kinase (ChoK) is reported to involve in cell signaling pathways and cell growth by regulating the intermediate, phosphocholine (PCho), which is the first step to biosynthesis a membrane phospholipid, phosphatidylcholine. The PCho levels are overexpressed due to elevated activation of the protein under carcinogenesis conditions. ChoK has thus evolved as a novel target for various cancers and a range of compounds has been reported in this course as potent ChoK inhibitors. However, not much information is known about the binding site of the inhibitors. Therefore, we ventured to unravel the possible binding site of 39 bis-quinolinium inhibitors from which the structural requirement for better protein-ligand complex was delved. Molecular docking and 3D-QSAR studies namely comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on the series. The knowledge of the active site was obtained from the site id search and molcad surface calculations of Sybyl, which was further considered for docking studies. In 3D-QSAR, the best predictions were obtained from the model where 29 compounds were considered in the training set and remaining 10 in the test set. The best CoMFA statistics were obtained with r(2) of 0.99 and q(2) of 0.81 while, CoMSIA was resulted with r(2) of 0.98 and q(2) of 0.77. A comparative analysis was done with the resulted 3D-QSAR maps and the docked poses by overlaying the maps on the active site residues. Since, there is no reported ligand co-crystallized structure of ChoK the present study provides valuable clues on the binding conformation of the ligand and its interactions with the active site.
Collapse
Affiliation(s)
- P Srivani
- Molecular Modeling Group, Organic Chemical Sciences, Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India
| | | |
Collapse
|
31
|
Liao S, Qian L, Lu H, Shen Y, Zheng K. A Combined 2D‐ and 3D‐QSAR Study on Analogues of ARC‐111 with Antitumor Activity. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/qsar.200730154] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|