1
|
Zaikin VG, Borisov RS. Options of the Main Derivatization Approaches for Analytical ESI and MALDI Mass Spectrometry. Crit Rev Anal Chem 2021; 52:1287-1342. [PMID: 33557614 DOI: 10.1080/10408347.2021.1873100] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The inclusion of preliminary chemical labeling (derivatization) in the analysis process by such powerful and widespread methods as electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is a popular and widely used methodological approach. This is due to the need to remove some fundamental limitations inherent in these powerful analytic methods. Although a number of special reviews has been published discussing the utilization of derivatization approaches, the purpose of the present critical review is to comprehensively summarize, characterize and evaluate most of the previously developed and practically applied, as well as recently proposed representative derivatization reagents for ESI-MS and MALDI-MS platforms in their mostly sensitive positive ion mode and frequently hyphenated with separation techniques. The review is focused on the use of preliminary chemical labeling to facilitate the detection, identification, structure elucidation, quantification, profiling or MS imaging of compounds within complex matrices. Two main derivatization approaches, namely the introduction of permanent charge-fixed or highly proton affinitive residues into analytes are critically evaluated. In situ charge-generation, charge-switch and charge-transfer derivatizations are considered separately. The potential of using reactive matrices in MALDI-MS and chemical labeling in MS-based omics sciences is given.
Collapse
Affiliation(s)
- Vladimir G Zaikin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| | - Roman S Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
2
|
O'Rourke MB, Town SEL, Dalla PV, Bicknell F, Koh Belic N, Violi JP, Steele JR, Padula MP. What is Normalization? The Strategies Employed in Top-Down and Bottom-Up Proteome Analysis Workflows. Proteomes 2019; 7:proteomes7030029. [PMID: 31443461 PMCID: PMC6789750 DOI: 10.3390/proteomes7030029] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022] Open
Abstract
The accurate quantification of changes in the abundance of proteins is one of the main applications of proteomics. The maintenance of accuracy can be affected by bias and error that can occur at many points in the experimental process, and normalization strategies are crucial to attempt to overcome this bias and return the sample to its regular biological condition, or normal state. Much work has been published on performing normalization on data post-acquisition with many algorithms and statistical processes available. However, there are many other sources of bias that can occur during experimental design and sample handling that are currently unaddressed. This article aims to cast light on the potential sources of bias and where normalization could be applied to return the sample to its normal state. Throughout we suggest solutions where possible but, in some cases, solutions are not available. Thus, we see this article as a starting point for discussion of the definition of and the issues surrounding the concept of normalization as it applies to the proteomic analysis of biological samples. Specifically, we discuss a wide range of different normalization techniques that can occur at each stage of the sample preparation and analysis process.
Collapse
Affiliation(s)
- Matthew B O'Rourke
- Bowel Cancer & Biomarker Lab, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney Lvl 8, Kolling Institute. Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Stephanie E L Town
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
| | - Penelope V Dalla
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Glebe 2037, Australia
| | - Fiona Bicknell
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
| | - Naomi Koh Belic
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
| | - Jake P Violi
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
| | - Joel R Steele
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia
| | - Matthew P Padula
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, The University of Technology Sydney, Ultimo 2007, Australia.
| |
Collapse
|
3
|
Guo C, Guo X, Zhao L, Chen D, Wang J, Sun J. Optimization of carbamylation conditions and study on the effects on the product ions of carbamylation and dual modification of the peptide by Q-TOF MS. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2018; 24:384-396. [PMID: 30041545 DOI: 10.1177/1469066718788665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Modified peptides fragmented by collision-induced dissociation can offer additional sequence information, which is beneficial for the de novo sequencing of peptides. Here, the model peptide VQGESNDLK was carbamylated. The optimal conditions were as follows: temperature of 90℃, pH of 7, and the time of 60 min. Then, we studied the b- and y-series ions of the native, carbamylated, and dual-modified peptides. The results were as follows. The short carbamylated peptides (≤10 amino acid residues) produced more b-series ions (including b1 ion). The long carbamylated peptides (>10 amino acid residues) produced additional b1 ion but fewer y-series ions (especially in the high-mass region). The short dual-modified peptides produced more b-series ions (including b1 ion) and more y-series ions, and their peptide sequence coverage was almost 100%. The long dual-modified peptides produce b1 ion and more y-series ions, and their peptide sequence coverage was nearly above 90%. Therefore, both carbamylation and the dual modification method could be used to identify the N-terminal amino acid, and the dual modification method was also excellent for the de novo sequencing of the tryptic peptides.
Collapse
Affiliation(s)
- Cheng Guo
- State Forestry Administration Key Open Laboratory, International Centre for Bamboo and Rattan, Beijing, China
| | - Xuefeng Guo
- State Forestry Administration Key Open Laboratory, International Centre for Bamboo and Rattan, Beijing, China
| | - Lei Zhao
- State Forestry Administration Key Open Laboratory, International Centre for Bamboo and Rattan, Beijing, China
| | - Dandan Chen
- State Forestry Administration Key Open Laboratory, International Centre for Bamboo and Rattan, Beijing, China
| | - Jin Wang
- State Forestry Administration Key Open Laboratory, International Centre for Bamboo and Rattan, Beijing, China
| | - Jia Sun
- State Forestry Administration Key Open Laboratory, International Centre for Bamboo and Rattan, Beijing, China
| |
Collapse
|
4
|
Leitner A. A review of the role of chemical modification methods in contemporary mass spectrometry-based proteomics research. Anal Chim Acta 2018; 1000:2-19. [DOI: 10.1016/j.aca.2017.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
|
5
|
Ye J, Zhang Y, Huang L, Li Q, Huang J, Lu J, Li Y, Zhang X. An optimized guanidination method for large-scale proteomic studies. Proteomics 2016; 16:1837-46. [DOI: 10.1002/pmic.201500226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Juanying Ye
- State Key Laboratory of Genetic Engineering; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai P. R. China
| | - Yang Zhang
- State Key Laboratory of Genetic Engineering; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai P. R. China
| | - Lin Huang
- State Key Laboratory of Genetic Engineering; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai P. R. China
| | - Qingqing Li
- State Key Laboratory of Genetic Engineering; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai P. R. China
| | - Jingnan Huang
- State Key Laboratory of Genetic Engineering; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai P. R. China
| | - Jianan Lu
- State Key Laboratory of Genetic Engineering; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai P. R. China
| | - Yanhong Li
- State Key Laboratory of Genetic Engineering; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai P. R. China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai P. R. China
| |
Collapse
|
6
|
Yang W, Kernstock R, Simmons N, Alak A. Guanidinated protein internal standard for immunoaffinity-liquid chromatography/tandem mass spectrometry quantitation of protein therapeutics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1489-1500. [PMID: 24861599 DOI: 10.1002/rcm.6924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE A protein internal standard (IS) is essential and superior to a peptide IS to achieve reproducible results in the quantitation of protein therapeutics using immunoaffinity-liquid chromatography/tandem mass spectrometry (LC/MS/MS). Guanidination has been used as a protein post-modification technique for more than half a century. A decade ago, the modification was applied to lysine-ending peptides to enhance their MALDI responses and peptide sequencing coverage. However, rarely has tryptic digestion of guanidinated proteins been investigated, likely due to the early conclusion that trypsin did not hydrolyze peptide bonds involving homoarginine in guanidinated proteins. In this study, the opposite was observed. Guanidinated lysine residues of proteins did not hinder the access of trypsin allowing for proteolytic digestion. Based on this observation, a new concept of internal standard, named Guanidinated Protein Internal Standard (GP-IS), was proposed for LC/MS/MS quantitation of protein therapeutics. METHODS The GP-IS is prepared by treating a portion of the therapeutic protein (analyte) with guanidine to convert arginine residues in the protein into homoarginine residues. After tryptic digestion, the GP-IS produces a series of homoarginine-ending peptides plus another series of arginine-ending peptides. One of the homoarginine-ending peptides, which corresponds to the analyte surrogate (lysine-ending) peptide, was chosen as a peptide internal standard (GP-PIS) for LC/MS/MS quantitation. RESULTS Using this GP-IS approach, a sensitive and robust immunoaffinity-LC/MS/MS assay was developed and fully validated with a linearity range from 10 to 1000 ng/mL using 200 μL of human serum for the quantitation of an Astellas protein drug in clinical development. CONCLUSIONS The proposed strategy allows LC/MS/MS to play an ever-increasing role in bioanalytical support for protein therapeutics development because of its capability of completely tracking all variations from the beginning to the end of sample analysis, easier preparation compared to isotope-labeled protein-IS, and greater flexibility for changing to alternate analyte surrogate peptides.
Collapse
Affiliation(s)
- Wenchu Yang
- Bioanalysis-US, Astellas Research Institute of America, Skokie, IL, 60077, USA
| | | | | | | |
Collapse
|
7
|
Chowdhury SM, Munske GR, Yang J, Zhukova D, Nguen H, Bruce JE. Solid-phase N-terminal peptide enrichment study by optimizing trypsin proteolysis on homoarginine-modified proteins by mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:635-644. [PMID: 24519826 PMCID: PMC3969842 DOI: 10.1002/rcm.6820] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/21/2013] [Accepted: 12/25/2013] [Indexed: 06/03/2023]
Abstract
RATIONALE Proteolytic cleavages generate active precursor proteins by creating new N-termini in the proteins. A number of strategies have recently been published regarding the enrichment of original or newly formed N-terminal peptides using guanidination of lysine residues and amine-reactive reagents. For effective enrichment of N-terminal peptides, the efficiency of trypsin proteolysis on homoarginine (guanidinated) modified proteins must be understood and simple and versatile solid-phase N-terminal capture strategies should be developed. METHODS We present here a mass spectrometry (MS)-based study to evaluate and optimize the trypsin proteolysis on a guanidinated-modified protein. Trypsin proteolysis was studied using different amounts of trypsin to modified protein ratios. To capture the original N-termini, after guanidination of proteins, original N-termini were acetylated and the proteins were digested with trypsin. The newly formed N-terminal tryptic peptides were captured with a new amine reactive acid-cleavable solid-phase reagent. The original N-terminal peptides were then collected from the supernatant of the solution. RESULTS We demonstrated a detailed study of the efficiency of enzyme trypsin on homoarginine-modified proteins. We observed that the rate of hydrolysis of homoarginine residues compared to their lysine/arginine counterparts were slower but generally cleaved after an overnight digestion period depending on the protein to protease concentration ratios. Selectivity of the solid-phase N-terminal reagent was studied by enrichment of original N-terminal peptides from two standard proteins, ubiquitin and RNaseS. CONCLUSIONS We found enzyme trypsin is active in the guanidinated form of the protein depending on the enzyme to protein concentrations, time and the proximity of arginine residues in the sequence. The novel solid-phase capture reagent also successfully enriched N-terminal peptides from the standard protein mixtures. We believe this trypsin proteolysis study on homoarginine-modified proteins and our simple and versatile solid-phase capture strategy could be very useful for enrichment and sequence determination of proteins N-termini by MS.
Collapse
Affiliation(s)
- Saiful M. Chowdhury
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX
| | - Gerhard R. Munske
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Jonathon Yang
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX
| | - Daria Zhukova
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX
| | - Hamilton Nguen
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX
| | - James E. Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA
| |
Collapse
|
8
|
Al-Majdoub ZM, Carroll KM, Gaskell SJ, Barber J. Quantification of the Proteins of the Bacterial Ribosome Using QconCAT Technology. J Proteome Res 2014; 13:1211-22. [DOI: 10.1021/pr400667h] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Zubida M. Al-Majdoub
- Manchester Institute for Biotechnology, 131 Princess Street, Manchester M1 7DS, United Kingdom
- Manchester
Pharmacy School, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Kathleen M. Carroll
- Manchester Institute for Biotechnology, 131 Princess Street, Manchester M1 7DS, United Kingdom
| | - Simon J. Gaskell
- Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Jill Barber
- Manchester Institute for Biotechnology, 131 Princess Street, Manchester M1 7DS, United Kingdom
- Manchester
Pharmacy School, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
9
|
Baker MR, Li QX. Guanidination of tryptic peptides without desalting for matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis. Anal Chem 2013; 85:8873-80. [PMID: 23964694 DOI: 10.1021/ac402246r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Derivatizations that enhance mass spectral quality often require desalting, which presents as a bottleneck in matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS)-proteomics. Guanidination, which converts lysine to homoarginine, an arginine analogue, can increase detection of those peptides 5-15-fold. Our aim was to improve guanidination by using a novel reagent, O-methylisourea-freebase. In a simple reaction, interfering salts were removed prior to guanidination. Freebase preparation took about 30 min and could be applied to samples all at once as opposed to desalting samples one-by-one for 5 min each. For freebase guanidinated BSA tryptic peptides, more than 6-times the peptides were observed relative to tryptic peptides or those guanidinated with the conventional reagent, O-methylisourea hemisulfate. Peptide signals increased more than 10-fold relative to those from guanidination with the conventional reagent and were equivalent to those from conventional guanidination with desalting. In addition, freebase guanidination allowed for a lower limit of detection when combined with another derivatization, N-terminal sulfonation, as evidenced by tandem mass spectrometry (MS/MS) fragmentation analysis of in-gel digests of cytochrome c. Freebase guanidination of rat lung proteins after 2-D gel electrophoresis allowed for identification of all tested protein spots regardless of protein characteristics (MW or pI) or abundance. Co-derivatization with N-terminal sulfonation confirmed the identity of low-abundance proteins in 2-D gel spots that contained more than one protein. The freebase guanidination reagent is simple to prepare and to implement. Desalting is not needed prior to MALDI-TOF MS. Freebase guanidination effectively increases the dynamic range of detection of lysine-containing peptides while decreasing the work needed for sample preparation.
Collapse
Affiliation(s)
- Margaret R Baker
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa , 1955 East-West Road, Honolulu, Hawaii 96822, United States
| | | |
Collapse
|
10
|
Rey M, Yang M, Burns KM, Yu Y, Lees-Miller SP, Schriemer DC. Nepenthesin from monkey cups for hydrogen/deuterium exchange mass spectrometry. Mol Cell Proteomics 2012. [PMID: 23197791 DOI: 10.1074/mcp.m112.025221] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies of protein dynamics, structure and interactions using hydrogen/deuterium exchange mass spectrometry (HDX-MS) have sharply increased over the past 5-10 years. The predominant technology requires fast digestion at pH 2-3 to retain deuterium label. Pepsin is used almost exclusively, but it provides relatively low efficiency under the constraints of the experiment, and a selectivity profile that renders poor coverage of intrinsically disordered regions. In this study we present nepenthesin-containing secretions of the pitcher plant Nepenthes, commonly called monkey cups, for use in HDX-MS. We show that nepenthesin is at least 1400-fold more efficient than pepsin under HDX-competent conditions, with a selectivity profile that mimics pepsin in part, but also includes efficient cleavage C-terminal to "forbidden" residues K, R, H, and P. High efficiency permits a solution-based analysis with no detectable autolysis, avoiding the complication of immobilized enzyme reactors. Relaxed selectivity promotes high coverage of disordered regions and the ability to "tune" the mass map for regions of interest. Nepenthesin-enriched secretions were applied to an analysis of protein complexes in the nonhomologous end-joining DNA repair pathway. The analysis of XRCC4 binding to the BRCT domains of Ligase IV points to secondary interactions between the disordered C-terminal tail of XRCC4 and remote regions of the BRCT domains, which could only be identified with a nepenthesin-based workflow. HDX data suggest that stalk-binding to XRCC4 primes a BRCT conformation in these remote regions to support tail interaction, an event which may be phosphoregulated. We conclude that nepenthesin is an effective alternative to pepsin for all HDX-MS applications, and especially for the analysis of structural transitions among intrinsically disordered proteins and their binding partners.
Collapse
Affiliation(s)
- Martial Rey
- Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Wang D, Baudys J, Rees J, Marshall KM, Kalb SR, Parks BA, Nowaczyk L, Pirkle JL, Barr JR. Subtyping botulinum neurotoxins by sequential multiple endoproteases in-gel digestion coupled with mass spectrometry. Anal Chem 2012; 84:4652-8. [PMID: 22577857 DOI: 10.1021/ac3006439] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Botulinum neurotoxin (BoNT) is one of the most toxic substances known. BoNT is classified into seven distinct serotypes labeled A-G. Among individual serotypes, researchers have identified subtypes based on amino acid variability within a serotype and toxin variants with minor amino acid sequence differences within a subtype. BoNT subtype identification is valuable for tracing and tracking bacterial pathogens. A proteomics approach is useful for BoNT subtyping since botulism is caused by botulinum neurotoxin and does not require the presence of the bacteria or its DNA. Enzymatic digestion and peptide identification using tandem mass spectrometry determines toxin protein sequences. However, with the conventional one-step digestion method, producing sufficient numbers of detectable peptides to cover the entire protein sequence is difficult, and incomplete sequence coverage results in uncertainty in distinguishing BoNT subtypes and toxin variants because of high sequence similarity. We report here a method of multiple enzymes and sequential in-gel digestion (MESID) to characterize the BoNT protein sequence. Complementary peptide detection from toxin digestions has yielded near-complete sequence coverage for all seven BoNT serotypes. Application of the method to a BoNT-contaminated carrot juice sample resulted in the identification of 98.4% protein sequence which led to a confident determination of the toxin subtype.
Collapse
Affiliation(s)
- Dongxia Wang
- National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30341, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zimnicka M, Moss CL, Chung TW, Hui R, Tureček F. Tunable charge tags for electron-based methods of peptide sequencing: design and applications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:608-620. [PMID: 21952752 DOI: 10.1007/s13361-011-0184-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 05/24/2011] [Accepted: 05/24/2011] [Indexed: 05/31/2023]
Abstract
Charge tags using basic auxiliary functional groups 6-aminoquinolinylcarboxamido, 4-aminopyrimidyl-1-methylcarboxamido, 2-aminobenzoimidazolyl-1-methylcarboxamido, and the fixed-charge 4-(dimethylamino)pyridyl-1-carboxamido moiety are evaluated as to their properties in electron transfer dissociation mass spectra of arginine C-terminated peptides. The neutral tags have proton affinities that are competitive with those of amino acid residues in peptides. Charge reduction by electron transfer from fluoranthene anion-radicals results in peptide backbone dissociations that improve sequence coverage by providing extensive series of N-terminal c-type fragments without impeding the formation of C-terminal z fragments. Comparison of ETD mass spectra of free and tagged peptides allows one to resolve ambiguities in fragment ion assignment through mass shifts of c ions. Simple chemical procedures are reported for N-terminal tagging of Arg-containing tryptic peptides.
Collapse
Affiliation(s)
- Magdalena Zimnicka
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, WA 98195-1700, USA
| | | | | | | | | |
Collapse
|
13
|
Mjaavatten O, Nygaard G, Berven FS, Selheim F. Minimization of side reactions during Lys Tag derivatization of C-terminal lysine peptides. Anal Chim Acta 2012; 712:101-7. [PMID: 22177071 DOI: 10.1016/j.aca.2011.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 10/15/2022]
Abstract
Several issues need to be considered concerning chemical labeling strategies in proteomics. Some of these are labeling specificity, possible side reactions, completeness of reaction, recovery rate, conserving integrity of sample, hydrolysis of peptide bonds at high pH, and signal suppression in mass spectrometry (MS). We tested the effects of different reaction conditions for 2-methoxy-4,5-dihydro-1H-imidazole (Lys Tag) derivatization of the ε-amine group of lysine (K) residues. By using nanoflow LC-electrospray ionization-MS (LC-ESI-MS) and MS/MS in combination with MSight 2-D image analysis, we found that standard Lys Tag derivatization processes and conditions induce side reactions such as (i) Lys Tag labeling of the N-terminus, (ii) methylation of internal aspartic acid (D), glutamic acid (E) and C- and N-peptide termini and (iii) deamidation of asparagine (N) and glutamine (Q). We found temperature and pH to be the main variables to control side reactions. Lowering the reaction temperature from 55°C to room temperature reduced deamidation from 22.8±1.4% (SEM) to 7.7±5.5% (SEM) and almost totally blocked methylation (7.0±1.2% (SEM) to 0.4±0.4% (SEM) of the internal acidic amino acids (D and E) at high pH. We conclude that lowering the reaction temperature minimizes undesired side reactions during Lys Tag derivatization in solution.
Collapse
Affiliation(s)
- Olav Mjaavatten
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | | | | |
Collapse
|
14
|
Chung TW, Moss CL, Zimnicka M, Johnson RS, Moritz RL, Tureček F. Electron-capture and -transfer dissociation of peptides tagged with tunable fixed-charge groups: structures and dissociation energetics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:13-30. [PMID: 21472540 DOI: 10.1007/s13361-010-0012-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/26/2010] [Accepted: 10/11/2010] [Indexed: 05/30/2023]
Abstract
Pyridiniummethylcarbonyl moieties that were previously designed on the basis of electronic structure analysis are now utilized as fixed-charge tags with tunable electronic properties to be used for N-terminal peptide derivatization and sequencing by electron-transfer dissociation. Dipeptides AK and KA were derivatized at the peptide N-terminus with 4-dimethylaminopyridinium-N-acetyl (DMAP-ac) and pyridinium-N-acetyl (pyrid-ac) tags of increasing intrinsic recombination energies. Upon the capture of a free electron or electron transfer from fluoranthene anions, (DMAP-ac-AK+H)(2+), (DMAP-ac-KA+H)(2+), (pyrid-ac-AK+H)(2+) and (pyrid-ac-KA+H)(2+) ions, as well as underivatized (AK+2H)(2+), completely dissociated. The fixed-charge tags steered the dissociation upon electron transfer to form abundant backbone N-C(α) bond cleavages, whereas the underivatized peptide mainly underwent H-atom and side-chain losses. Precursor ion structures for the tagged peptides were analyzed by an exhaustive conformational search combined with B3LYP/6-31+G(d,p) geometry optimization and single-point energy calculations in order to select the global energy minima. Structures, relative energies, transition states, ion-molecule complexes, and dissociation products were identified for several charge-reduced species from the tagged peptides. The electronic properties of the charge tags and their interactions with the peptide moieties are discussed. Electrospray ionization and electron-transfer dissociation of larger peptides are illustrated with a DMAP-tagged pentapeptide.
Collapse
Affiliation(s)
- Thomas W Chung
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, WA 98195-1700, USA
| | | | | | | | | | | |
Collapse
|
15
|
García-Murria MJ, Valero ML, Sánchez del Pino MM. Simple chemical tools to expand the range of proteomics applications. J Proteomics 2010; 74:137-50. [PMID: 21074642 DOI: 10.1016/j.jprot.2010.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/08/2010] [Accepted: 11/03/2010] [Indexed: 12/26/2022]
Abstract
Proteomics is an expanding technology with potential applications in many research fields. Even though many research groups do not have direct access to its main analytical technique, mass spectrometry, they can interact with proteomics core facilities to incorporate this technology into their projects. Protein identification is the analysis most frequently performed in core facilities and is, probably, the most robust procedure. Here we discuss a few chemical reactions that are easily implemented within the conventional protein identification workflow. Chemical modification of proteins with N-hydroxysuccinimide esters, 4-sulfophenyl isothiocyanate, O-methylisourea or through β-elimination/Michael addition can be easily performed in any laboratory. The reactions are quite specific with almost no side reactions. These chemical tools increase considerably the number of applications and have been applied to characterize protein-protein interactions, to determine the N-terminal residues of proteins, to identify proteins with non-sequenced genomes or to locate phosphorylated and O-glycosylated.
Collapse
Affiliation(s)
- María Jesús García-Murria
- Laboratorio de Proteómica, Centro de Investigación Príncipe Felipe, Avda, Autopista del Saler 16, 46012 Valencia, Spain
| | | | | |
Collapse
|
16
|
Han HS, Nho SH, Lee AR, Kim JK. Effects of Guanidination with Trypsin, Lys-C, or Glu-C Digestion on Mass Spectrometric Signal Intensity and Protein Sequence Coverage. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.6.1527] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Carabetta VJ, Li T, Shakya A, Greco TM, Cristea IM. Integrating Lys-N proteolysis and N-terminal guanidination for improved fragmentation and relative quantification of singly-charged ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:1050-1060. [PMID: 20207164 PMCID: PMC2873099 DOI: 10.1016/j.jasms.2010.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/04/2010] [Accepted: 02/05/2010] [Indexed: 05/28/2023]
Abstract
The study of isolated protein complexes has greatly benefited from recent advances in mass spectrometry instrumentation and quantitative, isotope labeling techniques. The comprehensive characterization of protein complex components and quantification of their relative abundance relies heavily upon maximizing protein and peptide sequence information obtained from MS and tandem MS studies. Recent work has shown that using a metalloendopeptidase, Lys-N, for proteomic analysis of biological protein mixtures produces complementary protein sequence information compared with trypsin digestion alone. Here, we have investigated the suitability of Lys-N proteolysis for use with MALDI mass spectrometry to characterize the yeast Arp2 complex and E. coli PAP I protein interactions. Although Lys-N digestion resulted in an average decrease in protein sequence coverage of approximately 30% compared with trypsin digestion, CID analysis of singly-charged Lys-N peptides yielded a more extensive b-ions series compared with complementary tryptic peptides. Taking advantage of this improved fragmentation pattern, we utilized differential (15)N/(14)N guanidination of Lys-N peptides and MALDI-MS/MS analysis to relatively quantify the changes in PAP I associations due to deletion of sprE, previously shown to regulate PAP I-dependent polyadenylation. Overall, this Lys-N/guanidination integrative approach is applicable for functional proteomic studies utilizing MALDI mass spectrometry analysis, as it provides an effective and economical mean for relative quantification of proteins in conjunction with increased sensitivity of detection and fragmentation efficiency.
Collapse
Affiliation(s)
| | | | | | | | - Ileana M. Cristea
- Address reprint requests to: 210 Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, Tel: 6092589417, Fax: 6092584575,
| |
Collapse
|
18
|
The response regulator SprE (RssB) is required for maintaining poly(A) polymerase I-degradosome association during stationary phase. J Bacteriol 2010; 192:3713-21. [PMID: 20472786 DOI: 10.1128/jb.00300-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poly(A) polymerase I (PAP I) is the enzyme responsible for the addition of poly(A) tails onto RNA molecules in Escherichia coli. Polyadenylation is believed to facilitate the destruction of such RNAs by the mRNA degradosome. Recently, it was discovered that the stationary-phase regulatory protein SprE (RssB) has a second function in the control of polyadenylation that is distinct from its known function in the regulated proteolysis of RpoS. In the work presented herein, we used a targeted proteomic approach to further investigate SprE's involvement in the polyadenylation pathway. Specifically, we used cryogenic cell lysis, immunopurifications on magnetic beads, and mass spectrometry to identify interacting partners of PAP I-green fluorescent protein. We provide the first in vivo evidence that PAP I interacts with the mRNA degradosome during both exponential and stationary phases and find that the degradosome can contain up to 10 different proteins under certain conditions. Moreover, we demonstrate that the majority of these PAP I interactions are formed via protein-protein interactions and that SprE plays an important role in the maintenance of the PAP I-degradosome association during stationary phase.
Collapse
|
19
|
Liu X, Zhang J, Zheng Z, Yang X, Jia W, Li L, Gong Y, Cai Y, Zhu Y, He F, Ying W, Qian X. A systematic N-terminal peptide quantitative labeling strategy for differential proteomic analysis. Proteomics Clin Appl 2010; 4:633-43. [DOI: 10.1002/prca.200900065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 02/04/2010] [Accepted: 02/08/2010] [Indexed: 11/07/2022]
|
20
|
Hennrich ML, Boersema PJ, van den Toorn H, Mischerikow N, Heck AJR, Mohammed S. Effect of Chemical Modifications on Peptide Fragmentation Behavior upon Electron Transfer Induced Dissociation. Anal Chem 2009; 81:7814-22. [DOI: 10.1021/ac901108g] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marco L. Hennrich
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, Netherlands Proteomics Centre, and Centre for Biomedical Genetics
| | - Paul J. Boersema
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, Netherlands Proteomics Centre, and Centre for Biomedical Genetics
| | - Henk van den Toorn
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, Netherlands Proteomics Centre, and Centre for Biomedical Genetics
| | - Nikolai Mischerikow
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, Netherlands Proteomics Centre, and Centre for Biomedical Genetics
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, Netherlands Proteomics Centre, and Centre for Biomedical Genetics
| | - Shabaz Mohammed
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, Netherlands Proteomics Centre, and Centre for Biomedical Genetics
| |
Collapse
|
21
|
Applications of chemical tagging approaches in combination with 2DE and mass spectrometry. Methods Mol Biol 2009; 519:83-101. [PMID: 19381578 DOI: 10.1007/978-1-59745-281-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Chemical modification reactions play an important role in various protocols for mass-spectrometry-based proteome analysis; this applies to both gel-based and gel-free proteomics workflows. In combination with two-dimensional gel electrophoresis (2DE), the addition of "tags" by means of chemical reactions serves several purposes. Potential benefits include increased sensitivity or sequence coverage for peptide mass fingerprinting and improved peptide fragmentation for de novo sequencing studies. Tagging strategies can also be used to obtain complementary quantitative information in addition to densitometry, and they may be employed for the study of post-translational modifications. In combination with the unique advantages of 2DE as a separation technique, such approaches provide a powerful toolbox for proteomic research. In this review, relevant examples from recent literature will be given to illustrate the capabilities of chemical tagging approaches, and methodological requirements will be discussed.
Collapse
|
22
|
Zhu XQ, Wu JL, Yu LR, Lin Y, Lü JQ, Zou SW, Hu Y. Two-dimensional electrophoresis analysis of differential protein expression in squamous carcinoma of the cervix. Chin J Cancer Res 2008. [DOI: 10.1007/s11670-008-0164-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
23
|
Johnson H, Wong SCC, Simpson DM, Beynon RJ, Gaskell SJ. Protein quantification by selective isolation and fragmentation of isotopic pairs using FT-ICR MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:973-977. [PMID: 18450473 DOI: 10.1016/j.jasms.2008.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/25/2008] [Accepted: 03/25/2008] [Indexed: 05/26/2023]
Abstract
Isolation of tryptic peptide ions, along with their differentially labeled analogs derived from an artificial QconCAT protein, is performed using multiple correlated harmonic excitation fields in an FT-ICR cell. Simultaneous fragmentation of the isolated unlabeled and labeled peptide pairs using IRMPD yields specific y-series fragment ions useful for quantification. The mass increment attributed to stable isotope labeling at the C-terminus is maintained in the C-terminal fragment ions, providing multiple measurements of labeled/unlabeled intensity ratios during highly selective detection. The utility of this approach has been demonstrated in the absolute quantification of components of an unfractionated chicken muscle protein mixture.
Collapse
Affiliation(s)
- Hannah Johnson
- Michael Barber Centre for Mass Spectrometry, School of Chemistry and Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Berlinck RGS, Burtoloso ACB, Kossuga MH. The chemistry and biology of organic guanidine derivatives. Nat Prod Rep 2008; 25:919-54. [DOI: 10.1039/b507874c] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Timmer J, Enoksson M, Wildfang E, Zhu W, Igarashi Y, Denault JB, Ma Y, Dummitt B, Chang YH, Mast A, Eroshkin A, Smith J, Tao W, Salvesen G. Profiling constitutive proteolytic events in vivo. Biochem J 2007; 407:41-8. [PMID: 17650073 PMCID: PMC2267409 DOI: 10.1042/bj20070775] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Most known organisms encode proteases that are crucial for constitutive proteolytic events. In the present paper, we describe a method to define these events in proteomes from Escherichia coli to humans. The method takes advantage of specific N-terminal biotinylation of protein samples, followed by affinity enrichment and conventional LC (liquid chromatography)-MS/MS (tandem mass spectrometry) analysis. The method is simple, uses conventional and easily obtainable reagents, and is applicable to most proteomics facilities. As proof of principle, we demonstrate profiles of proteolytic events that reveal exquisite in vivo specificity of methionine aminopeptidase in E. coli and unexpected processing of mitochondrial transit peptides in yeast, mouse and human samples. Taken together, our results demonstrate how to rapidly distinguish real proteolysis that occurs in vivo from the predictions based on in vitro experiments.
Collapse
Affiliation(s)
- John C. Timmer
- *Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
- †Graduate Program in Molecular Pathology, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Mari Enoksson
- *Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
| | - Eric Wildfang
- *Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
| | - Wenhong Zhu
- *Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
| | - Yoshinobu Igarashi
- *Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
| | - Jean-Benard Denault
- *Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
| | - Yuliang Ma
- *Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
| | - Benjamin Dummitt
- ‡Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1402 S. Grand Boulevard, St. Louis, MO 63124, U.S.A
| | - Yie-Hwa Chang
- ‡Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1402 S. Grand Boulevard, St. Louis, MO 63124, U.S.A
| | - Alan E. Mast
- §Blood Center of Wisconsin, Milwaukee, WI 53201, U.S.A
| | - Alexey Eroshkin
- *Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
| | - Jeffrey W. Smith
- *Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
| | - W. Andy Tao
- ∥Department of Biochemistry and Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Guy S. Salvesen
- *Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, U.S.A
- †Graduate Program in Molecular Pathology, University of California, San Diego, La Jolla, CA 92093, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
26
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:547-558. [PMID: 17385794 DOI: 10.1002/jms.1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
27
|
Gowd KH, Krishnan KS, Balaram P. Identification of Conus amadis disulfide isomerase: minimum sequence length of peptide fragments necessary for protein annotation. MOLECULAR BIOSYSTEMS 2007; 3:554-66. [PMID: 17639131 DOI: 10.1039/b705382g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein disulfide isomerase (PDI) has been identified in a protein extract from the venom duct of the marine snail C. amadis. In-gel tryptic digestion of a thick protein band at approximately 55 kDa yields a mixture of peptides. Analysis of tryptic fragments by MALDI-MS/MS and LC-ESI-MS/MS methods permits sequence assignment. Three tryptic fragments yield two nine residue sequences (FVQDFLDGK and EPQLGDRVR ) and an eleven residue sequence (DQESTGALAFK ). Database analysis using peptides and were consistent with the sequence of PDI and peptide appears to be derived from a co-migrating protein. In identifying proteins based on the characterization of short peptide sequences the question arises about the reliability of identification using peptide fragments. Here we have also demonstrated the minimum length of peptide fragment necessary for unambiguous protein identification using fragments obtained from the experimentally derived sequences. Sequences of length > or =7 residues provide unambiguous identification in conjunction with protein molecular mass as a filter. The length of sequence necessary for unambiguous protein identification is also established using randomly chosen tryptic fragments from a standard dataset of proteins. The results are of significance in the identification of proteins from organisms with unsequenced genomes.
Collapse
Affiliation(s)
- Konkallu Hanumae Gowd
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | |
Collapse
|