1
|
Wesdemiotis C, Williams-Pavlantos KN, Keating AR, McGee AS, Bochenek C. Mass spectrometry of polymers: A tutorial review. MASS SPECTROMETRY REVIEWS 2024; 43:427-476. [PMID: 37070280 DOI: 10.1002/mas.21844] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Ever since the inception of synthetic polymeric materials in the late 19th century, the number of studies on polymers as well as the complexity of their structures have only increased. The development and commercialization of new polymers with properties fine-tuned for specific technological, environmental, consumer, or biomedical applications requires powerful analytical techniques that permit the in-depth characterization of these materials. One such method with the ability to provide chemical composition and structure information with high sensitivity, selectivity, specificity, and speed is mass spectrometry (MS). This tutorial review presents and exemplifies the various MS techniques available for the elucidation of specific structural features in a synthetic polymer, including compositional complexity, primary structure, architecture, topology, and surface properties. Key to every MS analysis is sample conversion to gas-phase ions. This review describes the fundamentals of the most suitable ionization methods for synthetic materials and provides relevant sample preparation protocols. Most importantly, structural characterizations via one-step as well as hyphenated or multidimensional approaches are introduced and demonstrated with specific applications, including surface sensitive and imaging techniques. The aim of this tutorial review is to illustrate the capabilities of MS for the characterization of large, complex polymers and emphasize its potential as a powerful compositional and structural elucidation tool in polymer chemistry.
Collapse
Affiliation(s)
| | | | - Addie R Keating
- Department of Chemistry, The University of Akron, Akron, Ohio, USA
| | - Andrew S McGee
- Department of Chemistry, The University of Akron, Akron, Ohio, USA
| | - Calum Bochenek
- Department of Chemistry, The University of Akron, Akron, Ohio, USA
| |
Collapse
|
2
|
Chen Y, Che J, Wang J, Tuo Y, Zhao H, Chen Y, Sai L, Zhao H, Zhang R. Functional Melanin Nanoparticles-Assisted Laser Desorption Ionization Mass Spectrometry for High-Sensitivity Detection of TBBPA and TBBPS Contaminations in Animal-Derived Foodstuffs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6744-6753. [PMID: 38498411 DOI: 10.1021/acs.jafc.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Tetrabromobisphenol A (TBBPA) and tetrabromobisphenol S (TBBPS) have been widely used as additives in various products; however, their residues damage human health mainly via dietary ingestion. The current detection techniques remain challenging in directly and sensitively identifying TBBPA and TBBPS from food samples. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has great potential as an alternative tool for the analysis of low-mass environmental pollution. Herein, we successfully screened and optimized COOH-MNP-COOH as a novel MALDI matrix to enhance deprotonation for the analysis of TBBPA and TBBPS from animal-derived food samples in negative-ion mode. Notably, COOH-MNP-COOH was synthesized by a facile self-assembly strategy and characterized by TEM, FT-IR, UV-vis, and zeta potential analysis. Compared with conventional and control matrices, the COOH-MNP-COOH matrix exhibited excellent performance of TBBPA and TBBPS with high chemical stability, favorable reproducibility, remarkable salt and protein tolerance, and high sensitivity owing to abundant active groups, stronger UV-vis absorption at 355 nm, and better hydrophilicity and biocompatibility. TBBPA and TBBPS were detected with the assistance of an internal standard with limits of detection (LODs) of 300 and 200 pg/mL, respectively. Moreover, this method was applied to directly identify the residues of TBBPA and TBBPS in milk products, followed by basa catfish and meat. This research may provide a promising approach for the analysis of environmental pollutants in foodstuffs.
Collapse
Affiliation(s)
- Yuan Chen
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Jiaying Che
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Jiagui Wang
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Yuanyuan Tuo
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Huayu Zhao
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Yi Chen
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Luheng Sai
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Huifang Zhao
- Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, Fifth Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030012, China
| |
Collapse
|
3
|
Chen XY, Wang YH, Ren SY, Li S, Wang Y, Qin K, Li S, Han DP, Peng Y, Han T, Gao ZX, Gao BX, Zhou HY. Amorphous poly- N-vinylcarbazole polymer as a novel matrix for the determination of low molecular weight compounds by MALDI-TOF MS. RSC Adv 2022; 12:15215-15221. [PMID: 35693227 PMCID: PMC9116175 DOI: 10.1039/d2ra01602h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/02/2022] [Indexed: 12/18/2022] Open
Abstract
Traditional matrices for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) are usually crystalline small molecules. The heterogeneous co-crystallization of the analyte and the matrix creates a sweet spot effect and reduces point-to-point reproducibility. In this study, an amorphous poly-N-vinylcarbazole polymer (PVK) was studied as a novel matrix for MALDI-TOF MS to detect various low molecular weight compounds (LMWCs) in the negative ion mode. The PVK achieved excellent matrix action and showed high sensitivity, good salt tolerance, and reproducibility. These results significantly broaden the design rules for new and efficient polymeric MALDI matrices. Amorphous, highly salt tolerant and stable polymer PVK as a negative ion mode matrix was successfully achieved for the qualitative and quantitative detection of small molecule compounds by MALDI MS.![]()
Collapse
Affiliation(s)
- Xiu-Ying Chen
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, College of Chemical and Environmental Sciences, Hebei University Baoding 071002 China .,Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China .,Nanpu Development Zone Administrative Examination and Approval Bureau Tangshan 063305 China
| | - Yong-Hui Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| | - Shu-Yue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| | - Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| | - Kang Qin
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| | - Sen Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| | - Dian-Peng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| | - Tie Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| | - Zhi-Xian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| | - Bao-Xiang Gao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, College of Chemical and Environmental Sciences, Hebei University Baoding 071002 China
| | - Huan-Ying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| |
Collapse
|
4
|
Pizzala H, Chendo C, Charles L. Using solid-state nuclear magnetic resonance to rationalize best efficiency of 2,6-dihydroxybenzoic acid over other 2,X-dihydroxybenzoic acid isomers in solvent-free matrix-assisted laser desorption/ionization of poly(ethylene glycol). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e8966. [PMID: 33037742 DOI: 10.1002/rcm.8966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Among isomers of dihydroxybenzoic acid (DHB), 2,5-DHB is often the most efficient matrix in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for a great variety of compounds. Yet, when performing solvent-free MALDI, 2,6-DHB yields better results for poly(ethylene glycol [PEG]). This intriguing feature is explored here using solid-state nuclear magnetic resonance (NMR). METHODS Ternary mixtures were prepared by grinding 2,X-DHB (X = 3-6), poly(ethylene glycol) (Mn = 2000 g mol-1 ) and lithium fluoride (LiF) in a matrix/analyte/salt molar ratio of 50/1/10 for 16 min under a controlled atmosphere. After mixing, a few grains were applied to the MALDI target for MS analysis, whereas the major part of the ground sample was transferred into rotors to perform 13 C, 7 Li, and 19 F NMR experiments. RESULTS Lithiated PEG chains are mainly formed with 2,6-DHB in solvent-free MALDI, but their abundance increases with 2,3-DHB and 2,4-DHB when water uptake is favored by a humid atmosphere. Solid-state NMR shows that grinding 2,6-DHB-based samples in atmospheric conditions leads to a solid phase in which the matrix, PEG, and salt molecules exhibit a high mobility compared with systems involving other 2,X-DHB isomers. This mobile environment would favor (as a solvent) LiF dissociation and best promote PEG cationization. CONCLUSIONS Complementary data in 13 C, 7 Li, and 19 F NMR spectra are consistent with the formation of a solid phase of high mobility composed of 2,6-DHB, PEG, and the two salt components that ultimately favor the production of lithiated PEG chains.
Collapse
Affiliation(s)
- Hélène Pizzala
- Aix Marseille Université, CNRS, Institut de Chimie Radicalaire, Marseille, France
| | - Christophe Chendo
- Aix Marseille Université, CNRS, Fédération des Sciences Chimiques de Marseille, Marseille, France
| | - Laurence Charles
- Aix Marseille Université, CNRS, Institut de Chimie Radicalaire, Marseille, France
| |
Collapse
|
5
|
Yoo HJ, Kim DH, Shin D, Oh Y, Lee S, Lee JY, Choi YJ, Lee SH, Lee KS, Kim Y, Cho K. Recent developments in pre-treatment and analytical techniques for synthetic polymers by MALDI-TOF mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5767-5800. [PMID: 33241791 DOI: 10.1039/d0ay01729a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A great deal of effort has been expended to develop accurate means of determining the properties of synthetic polymers using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS). Many studies have focused on the importance of sample pre-treatment to obtain accurate analysis results. This review discusses the history of synthetic polymer characterization and highlights several applications of MALDI-TOF MS that recognize the importance of pre-treatment technologies. The subject area is of significance in the field of analytical chemistry, especially for users of the MALDI technique. Since the 2000s, many such technologies have been developed that feature improved methods and conditions, including solvent-free systems. In addition, the recent diversification of matrix types and the development of carbon-based matrix materials are described herein together with the current status and future directions of MALDI-TOF MS hardware and software development. We provide a summary of processes used for obtaining the best analytical results with synthetic polymeric materials using MALDI-TOF MS.
Collapse
Affiliation(s)
- Hee-Jin Yoo
- Center for Research Equipment, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28119, Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Satoh T, Nakamura S, Fouquet T, Sato H, Ueda Y. A mass spectrometry imaging method for visualizing synthetic polymers by using average molecular weight and dispersity as indices. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8653. [PMID: 31721332 DOI: 10.1002/rcm.8653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Matrix-assisted laser desorption/ionization mass spectrometric imaging (MSI) is considered to be a powerful tool for visualizing the spatial distribution of synthetic polymers. However, a conventional method extracting an image of a specific m/z value is not suitable for polymers, which have a mass distribution. It is necessary to develop the visualization method to show the spatial distribution of entire polymer series. METHODS The mass peaks included in polymer series were specified from the average mass spectrum of the entire MSI measurement region by using Kendrick mass defect analysis. The images of those mass peaks were extracted and the number average molecular weight (Mn ), the weight average molecular weight (Mw ) and dispersity (Đ) were calculated for each pixel. Finally, the spatial distribution of the polymer series was summarized to images using Mn , Mw and Đ as indices. RESULTS The effects of the methods were investigated by (i) polymers with different mass distributions and (ii) polymers with different repeat units and end-groups. In both cases, the spatial distribution of specific polymer series including several dozens to hundreds of mass peaks was summarized into three images related to Mn , Mw and Đ, which are familiar indices in polymer analysis. The results are able to provide an overview of the spatial variation of each polymer more intuitively. CONCLUSIONS The visualization of Mn , Mw and Đ will help provide an overview of the spatial distribution of polymer series combined with ion intensity distribution made by conventional methods. It can be also applied to other mass spectrometric imaging methods such as desorption electrospray ionization (DESI) or time-of-flight secondary ion mass spectrometry (TOF-SIMS).
Collapse
Affiliation(s)
| | - Sayaka Nakamura
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Thierry Fouquet
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Hiroaki Sato
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | | |
Collapse
|
7
|
Wei WW, Zhong Y, Zou T, Chen XF, Ren L, Qi Z, Liu G, Chen ZF, Cai Z. Fe 3O 4-assisted laser desorption ionization mass spectrometry for typical metabolite analysis and localization: Influencing factors, mechanisms, and environmental applications. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121817. [PMID: 31843410 DOI: 10.1016/j.jhazmat.2019.121817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/19/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Fe3O4 has been suggested as an efficient matrix for small-molecule analysis by laser desorption ionization mass spectrometry (LDI-MS), but thus far there has been no systematic study exploring the influencing factors of nano-Fe3O4 on the detection of typical metabolites, or the mechanism by which nano-Fe3O4 assists the desorption and ionization of analytes after receiving laser energy. In this study, Fe3O4 nanoparticles with different physicochemical properties were synthesized and characterized. The results revealed that smaller particle size and greater surface hydroxyl amount of nano-spherical Fe3O4 could improve the intensity and relative standard deviation of typical metabolites by LDI-MS. The thermally driven desorption process played a vital role in LDI performance, but the chemical interactions between nano-Fe3O4 and analytes did not. Good intra- or inter-spot repeatability and linearity of analytes were obtained by the optimum Fe3O4-assisted LDI-MS. Finally, the developed method was successfully used for the rapid analysis and localization of endogenous metabolites in biofluids and whole zebrafish tissue section samples. Our results not only elucidate the influencing factors and mechanisms of nano-Fe3O4 for the detection of typical metabolites in LDI-MS but also reveal an innovative tool for the imaging of chemicals in the regions of interest in terms of eco-toxicological research.
Collapse
Affiliation(s)
- Wen-Wen Wei
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuanhong Zhong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ting Zou
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Fan Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Li Ren
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zenghua Qi
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guoguang Liu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhi-Feng Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zongwei Cai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
8
|
Zhao H, Li Y, Wang J, Cheng M, Zhao Z, Zhang H, Wang C, Wang J, Qiao Y, Wang J. Dual-Ion-Mode MALDI MS Detection of Small Molecules with the O-P,N-Doped Carbon/Graphene Matrix. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37732-37742. [PMID: 30296378 DOI: 10.1021/acsami.8b14643] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is challenging to realize a dual-ion mode of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for detecting small molecules. Herein, graphene coated by porous amorphous carbon with P-O surface group and codoped by phosphorus and nitrogen (O-P,N-C/G) was synthesized from an aerogel formed by phytic acid, polyaniline, and electrochemically exfoliated graphene. The carbon material synthesized has the feature of large surface area (583 m2/g), good electrical conductivity, strong UV absorption, heteroatom doping, and surface functional groups suitable for laser- induced desorption/ionization. It was employed as a novel matrix suitable for both positive-ion and negative-ion modes in MALDI-TOF MS for the analysis of various small molecules including amino acids, small peptides, saccharides, drugs, and environmental pollutants, significantly outperforming control materials and a traditional CHCA (α-cyano-4-hydroxycinnamic acid) or 2,5-dihydroxybenzoic (DHB) matrix. Remarkably, the detection limit of the anticancer drugs (5-fluorouracil and ellagic acid) reaches 50 pmol. In addition, nice MALDI-TOF MS images can be mapped to detect mixed amino acids corresponding to homogeneous distribution of ion intensity. The monosaccharides and disaccharides can be distinguished by using the new matrix. Last but not least, it can be used to quantitatively detect glucose in human serum and soft drinks (glucose/fructose, 203.1 mM) without adding standards.
Collapse
Affiliation(s)
- Huifang Zhao
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yanqiu Li
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , China
| | - Jie Wang
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Miao Cheng
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zheng Zhao
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Huinian Zhang
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Congwei Wang
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , China
| | - Junying Wang
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , China
| | - Yan Qiao
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , China
| | - Junzhong Wang
- CAS Key Laboratory of Carbon Materials, Analytical Instrumentation Center & State Key Laboratory of Coal Conversion , Institute of Coal Chemistry, Chinese Academy of Sciences , Taiyuan 030001 , China
| |
Collapse
|
9
|
Rivas D, Zonja B, Eichhorn P, Ginebreda A, Pérez S, Barceló D. Using MALDI-TOF MS imaging and LC-HRMS for the investigation of the degradation of polycaprolactone diol exposed to different wastewater treatments. Anal Bioanal Chem 2017; 409:5401-5411. [DOI: 10.1007/s00216-017-0371-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/06/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
|
10
|
Liang Q, Sherwood J, Macher T, Wilson JM, Bao Y, Cassady CJ. Citric Acid Capped Iron Oxide Nanoparticles as an Effective MALDI Matrix for Polymers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:409-418. [PMID: 27924493 DOI: 10.1007/s13361-016-1560-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
A new matrix-assisted laser desorption ionization (MALDI) mass spectrometry matrix is proposed for molecular mass determination of polymers. This matrix contains an iron oxide nanoparticle (NP) core with citric acid (CA) molecules covalently bound to the surface. With the assistance of additives, the particulate nature of NPs allows the matrix to mix uniformly with polar or nonpolar polymer layers and promotes ionization, which may simplify matrix selection and sample preparation procedures. Several distinctively different polymer classes (polyethyleneglycol (PEG), polywax/polyethylene, perfluoropolyether, and polydimethylsiloxane) are effectively detected by the water or methanol dispersed NPCA matrix with NaCl, NaOH, LiOH, or AgNO3 as additives. Furtheremore, successful quantitative measurements of PEG1000 using polypropylene glycol 1000 as an internal standard are demonstrated. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Qiaoli Liang
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Jennifer Sherwood
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Thomas Macher
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Joseph M Wilson
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Yuping Bao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Carolyn J Cassady
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA
| |
Collapse
|
11
|
Uliyanchenko E. Applications of Hyphenated Liquid Chromatography Techniques for Polymer Analysis. Chromatographia 2017. [DOI: 10.1007/s10337-016-3193-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Lu W, Li Y, Li R, Shuang S, Dong C, Cai Z. Facile Synthesis of N-Doped Carbon Dots as a New Matrix for Detection of Hydroxy-Polycyclic Aromatic Hydrocarbons by Negative-Ion Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. ACS APPLIED MATERIALS & INTERFACES 2016; 8:12976-12984. [PMID: 27180617 DOI: 10.1021/acsami.6b01510] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
N-doping carbon dots (N-CDs) were prepared by microwave-assisted pyrolysis of dl-malic acid and ethanolamine as precursors. The material served as an excellent matrix for the detection of the environmental pollutants hydroxy-polycyclic aromatic hydrocarbons (OH-PAHs) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in negative ion mode. The obtained N-CDs exhibited good UV absorption capacity and favorable solubility. The use of the N-CDs matrix exhibited low matrix background interference and was beneficial to improve the signal response due to the specific π-conjugated polyaromatic structure and the doping of nitrogen atoms. The developed method was found to have good reproducibility and sensitivity. The N-CDs as a new matrix also were employed for the detection of OH-PAHs in real PM2.5 samples. The mass concentrations of Σ-hydroxy-pyrene, Σ-dihydroxy-anthraquinone, and Σ-dihydroxy-benzo(a)pyrene on the collected PM2.5 samples ranged from 0.125 to 0.136 ng/m(3), 0.039 to 0.052 ng/m(3), and 0.053 to 0.072 ng/m(3), respectively. This work extends the application field of N-CDs and provides a good candidate of matrix for MALDI-TOF MS detection of environmental pollutants.
Collapse
Affiliation(s)
- Wenjing Lu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University , Taiyuan 030006, China
| | - Yong Li
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University , Taiyuan 030006, China
| | - Ruijin Li
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University , Taiyuan 030006, China
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University , Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University , Taiyuan 030006, China
| | - Zongwei Cai
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University , Taiyuan 030006, China
- Partner State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University , 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR, China
| |
Collapse
|
13
|
Independent assessment of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) sample preparation quality: A novel statistical approach for quality scoring. Anal Chim Acta 2016; 919:1-10. [PMID: 27086093 DOI: 10.1016/j.aca.2016.03.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 12/25/2022]
Abstract
Preparation of samples according to an optimized method is crucial for accurate determination of polymer sample characteristics by Matrix-Assisted Laser Desorption Ionization (MALDI) analysis. Sample preparation conditions such as matrix choice, cationization agent, deposition technique or even the deposition volume should be chosen to suit the sample of interest. Many sample preparation protocols have been developed and employed, yet finding the optimal sample preparation protocol remains a challenge. Because an objective comparison between the results of diverse protocols is not possible, "gut-feeling" or "good enough" is often decisive in the search for an optimum. This implies that sub-optimal protocols are used, leading to a loss of mass spectral information quality. To address this problem a novel analytical strategy based on MALDI imaging and statistical data processing was developed in which eight parameters were formulated to objectively quantify the quality of sample deposition and optimal MALDI matrix composition and finally sum up to an overall quality score of the sample deposition. These parameters can be established in a fully automated way using commercially available mass spectrometry imaging instruments without any hardware adjustments. With the newly developed analytical strategy the highest quality MALDI spots were selected, resulting in more reproducible and more valuable spectra for PEG in a variety of matrices. Moreover, our method enables an objective comparison of sample preparation protocols for any analyte and opens up new fields of investigation by presenting MALDI performance data in a clear and concise way.
Collapse
|
14
|
Lin Z, Zheng J, Lin G, Tang Z, Yang X, Cai Z. Negative Ion Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis of Small Molecules Using Graphitic Carbon Nitride Nanosheet Matrix. Anal Chem 2015; 87:8005-12. [DOI: 10.1021/acs.analchem.5b02066] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zian Lin
- Ministry
of Education Key Laboratory of Analysis and Detection for Food Safety,
College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
- Partner
State Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR, China
| | - Jiangnan Zheng
- Ministry
of Education Key Laboratory of Analysis and Detection for Food Safety,
College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Guo Lin
- Ministry
of Education Key Laboratory of Analysis and Detection for Food Safety,
College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhi Tang
- Partner
State Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR, China
| | - Xueqing Yang
- Partner
State Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR, China
| | - Zongwei Cai
- Partner
State Key Laboratory of Environmental and Biological Analysis, Department
of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR, China
| |
Collapse
|
15
|
Lin Z, Zheng J, Bian W, Cai Z. CuFe2O4 magnetic nanocrystal clusters as a matrix for the analysis of small molecules by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analyst 2015; 140:5287-94. [DOI: 10.1039/c5an00625b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CuFe2O4 MNCs were proposed as a new matrix for negative ion MALDI-TOF MS, which exhibited interference-free background, high salt tolerance and good reproducibility for analysis of small molecules.
Collapse
Affiliation(s)
- Zian Lin
- Partner State Key Laboratory of Environmental and Biological Analysis
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- P. R. China
| | - Jiangnan Zheng
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
- China
| | - Wei Bian
- Partner State Key Laboratory of Environmental and Biological Analysis
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- P. R. China
| | - Zongwei Cai
- Partner State Key Laboratory of Environmental and Biological Analysis
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- P. R. China
| |
Collapse
|
16
|
Gabriel SJ, Schwarzinger C, Schwarzinger B, Panne U, Weidner SM. Matrix segregation as the major cause for sample inhomogeneity in MALDI dried droplet spots. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1356-1363. [PMID: 24781460 DOI: 10.1007/s13361-014-0913-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
The segregation in dried droplet MALDI sample spots was analyzed with regard to the matrix-to-sample ratio using optical microscopy, MALDI imaging mass spectrometry (MALDI MSI) and IR imaging spectroscopy. In this context, different polymer/matrix/solvent systems usually applied in the analysis of synthetic polymers were investigated. The use of typical matrix concentrations (10 mg mL⁻¹) in almost every case resulted in ring patterns, whereas higher concentrated matrix solutions always led to homogeneous sample spot layers. The data revealed that segregation is predominantly caused by matrix transport in the drying droplet, whereas polymer segregation seems to be only secondary.
Collapse
Affiliation(s)
- Stefan J Gabriel
- Federal Institute for Materials Research and Testing (BAM), D-12489, Berlin, Germany
| | | | | | | | | |
Collapse
|
17
|
Distribution study of atorvastatin and its metabolites in rat tissues using combined information from UHPLC/MS and MALDI-Orbitrap-MS imaging. Anal Bioanal Chem 2014; 406:4601-10. [DOI: 10.1007/s00216-014-7880-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 01/13/2023]
|
18
|
Gabriel SJ, Pfeifer D, Schwarzinger C, Panne U, Weidner SM. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric imaging of synthetic polymer sample spots prepared using ionic liquid matrices. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:489-498. [PMID: 24497287 DOI: 10.1002/rcm.6810] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/17/2013] [Accepted: 12/17/2013] [Indexed: 06/03/2023]
Abstract
RATIONALE Polymer sample spots for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) prepared by the dried-droplet method often reveal ring formation accompanied by possible segregation of matrix and sample molecules as well as of the polymer homologs itself. Since the majority of sample spots are prepared by this simple and fast method, a matrix or sample preparation method that excludes such segregation has to be found. METHODS Three different ionic liquid matrices based on conventionally used aromatic compounds for MALDI-TOF MS were prepared. The formation of ionic liquids was proven by (1) H NMR spectroscopy. MALDI-Imaging mass spectrometry was applied to monitor the homogeneity. RESULTS Our results show a superior sample spot homogeneity using ionic liquid matrices. Spots could be sampled several times without visible differences in the mass spectra. A frequently observed loss of matrix in the mass spectrometer vacuum was not observed. The necessary laser irradiance was reduced, which resulted in less polymer fragmentation. CONCLUSIONS Ionic liquid matrices can be used to overcome segregation, a typical drawback of conventional MALDI dried-droplet preparations. Homogeneous sample spots are easy to prepare, stable in the MS vacuum and, thereby, improve the reproducibility of MALDI.
Collapse
Affiliation(s)
- Stefan J Gabriel
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, D-12489, Berlin, Germany
| | | | | | | | | |
Collapse
|
19
|
Crecelius AC, Vitz J, Schubert US. Mass spectrometric imaging of synthetic polymers. Anal Chim Acta 2014; 808:10-7. [DOI: 10.1016/j.aca.2013.07.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/01/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023]
|
20
|
Škrášková K, Heeren RM. A review of complementary separation methods and matrix assisted laser desorption ionization-mass spectrometry imaging: Lowering sample complexity. J Chromatogr A 2013; 1319:1-13. [DOI: 10.1016/j.chroma.2013.10.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Improvements to the compressed-sample (CS) technique for MALDI-TOF mass spectrometry. Anal Bioanal Chem 2012; 405:1417-24. [DOI: 10.1007/s00216-012-6529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/22/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
|
22
|
Hyzak L, Moos R, von Rath F, Wulf V, Wirtz M, Melchior D, Kling HW, Köhler M, Gäb S, Schmitz OJ. Quantitative Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry Analysis of Synthetic Polymers and Peptides. Anal Chem 2011; 83:9467-71. [DOI: 10.1021/ac2021739] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lukas Hyzak
- Institute for Pure and Applied Mass Spectrometry, University of Wuppertal, Gauss-Strasse 20, 42119 Wuppertal, Germany
| | - Rebecca Moos
- Institute for Pure and Applied Mass Spectrometry, University of Wuppertal, Gauss-Strasse 20, 42119 Wuppertal, Germany
| | - Friederike von Rath
- Institute for Pure and Applied Mass Spectrometry, University of Wuppertal, Gauss-Strasse 20, 42119 Wuppertal, Germany
| | - Volker Wulf
- BASF Personal Care and Nutrition GmbH, D-40551 Düsseldorf, Germany
| | - Michaela Wirtz
- BASF Personal Care and Nutrition GmbH, D-40551 Düsseldorf, Germany
| | - David Melchior
- BASF Personal Care and Nutrition GmbH, D-40551 Düsseldorf, Germany
| | - Hans-Willi Kling
- Institute for Pure and Applied Mass Spectrometry, University of Wuppertal, Gauss-Strasse 20, 42119 Wuppertal, Germany
| | - Michael Köhler
- BASF Personal Care and Nutrition GmbH, D-40551 Düsseldorf, Germany
| | - Siegmar Gäb
- Institute for Pure and Applied Mass Spectrometry, University of Wuppertal, Gauss-Strasse 20, 42119 Wuppertal, Germany
| | - Oliver J. Schmitz
- Institute for Pure and Applied Mass Spectrometry, University of Wuppertal, Gauss-Strasse 20, 42119 Wuppertal, Germany
| |
Collapse
|
23
|
Weidner SM, Falkenhagen J. LC-MALDI-TOF Imaging MS: A New Approach in Combining Chromatography and Mass Spectrometry of Copolymers. Anal Chem 2011; 83:9153-8. [DOI: 10.1021/ac202380n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Steffen M. Weidner
- Federal Institute for Materials Research and Testing (BAM), D-12489 Berlin, Richard-Willstaetter-Strasse 11, Germany
| | - Jana Falkenhagen
- Federal Institute for Materials Research and Testing (BAM), D-12489 Berlin, Richard-Willstaetter-Strasse 11, Germany
| |
Collapse
|
24
|
Crecelius AC, Alexandrov T, Schubert US. Application of matrix-assisted laser desorption/ionization mass spectrometric imaging to monitor surface changes of UV-irradiated poly(styrene) films. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:2809-2814. [PMID: 21913259 DOI: 10.1002/rcm.5164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study presents the application of matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) to monitor changes occurring at polymer surfaces. As an example, a poly(styrene) (PS) film was irradiated with ultraviolet (UV) light at 254 nm for different time intervals, while areas of the film were protected from UV light by covering it with an aluminum mask. After the UV treatment, the polymer surface was analyzed by MALDI-MSI. Time-dependent photo-induced cross-linking of the polymer film was observed, and a correlation curve between UV radiation time and area of cross-linking was constructed. This represents the first step towards the surface analysis of polymer components of photoresists and top coatings of cars, and it will also enable a new characterization strategy for combinatorial material research.
Collapse
Affiliation(s)
- Anna C Crecelius
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany.
| | | | | |
Collapse
|
25
|
Kulkarni SU, Räder HJ, Thies MC. The effects of molecular weight distribution and sample preparation on matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of petroleum macromolecules. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:2799-2808. [PMID: 21913258 DOI: 10.1002/rcm.5166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To date there have been no systematic, quantitative investigations of the effect of sample preparation on the matrix-assisted laser desorption/ionization time-of-flight (MALDI) mass spectrometry response for polydisperse systems. To this end, the interrelationships between sample preparation, analyte molecular weight distribution (MWD) and solubility, and signal response were investigated for mixtures of alkylated polycyclic aromatic hydrocarbon (PAH) oligomers, the constituents of petroleum pitch that serve as precursors for advanced carbon materials. These PAH oligomers served as a useful analyte system for study, as their solvent solubilities decrease significantly with each increasing oligomeric unit. Molecular weight standards consisting of relatively pure dimer and trimer cuts of the starting M-50 petroleum pitch were produced using a dense-gas/supercritical extraction (DGE/SCE) technique and were then used to produce oligomeric mixtures of well-defined composition for study. Both traditional, solvent-based and newer, solvent-free sample preparation methods were evaluated, and their effects on both homogeneity and signal response were determined. While solvent-free sample preparation methods produced homogeneous samples and reproducible results regardless of the MWD of the analyte, solvent-based samples that contained more than one oligomeric cut produced non-homogeneous samples and poor reproducibilities. The differing solubilities of dimer, trimer, and tetramer oligomers in a given solvent (e.g., CS(2) or toluene) were found to be the cause of the inhomogeneities observed in solvent-based sample preparation. A quantitative analysis study performed with dimer/trimer mixtures over a wide range of compositions via solvent-free sample preparation indicates that linear, reproducible calibration curves can be generated and used to calculate the molecular composition of unknown dimer/trimer mixtures with confidence.
Collapse
Affiliation(s)
- Sourabh U Kulkarni
- Department of Chemical and Biomolecular Engineering, Center for Advanced Engineering Fibers and Films, Clemson University, Clemson, SC 29634-0909, USA
| | | | | |
Collapse
|
26
|
Weidner S, Knappe P, Panne U. MALDI-TOF imaging mass spectrometry of artifacts in “dried droplet” polymer samples. Anal Bioanal Chem 2011; 401:127-34. [DOI: 10.1007/s00216-011-4773-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 01/26/2011] [Accepted: 02/03/2011] [Indexed: 11/30/2022]
|
27
|
Affiliation(s)
- Steffen M. Weidner
- Federal Institute for Materials Research and Testing (BAM), D-12489 Berlin, Richard-Willstaetter-Strasse 11, Germany, and Department of Chemistry, Wayne State University, 5101 Cass Avenue, 33 Chemistry, Detroit, Michigan 48202
| | - Sarah Trimpin
- Federal Institute for Materials Research and Testing (BAM), D-12489 Berlin, Richard-Willstaetter-Strasse 11, Germany, and Department of Chemistry, Wayne State University, 5101 Cass Avenue, 33 Chemistry, Detroit, Michigan 48202
| |
Collapse
|
28
|
Trimpin S. A perspective on MALDI alternatives-total solvent-free analysis and electron transfer dissociation of highly charged ions by laserspray ionization. JOURNAL OF MASS SPECTROMETRY : JMS 2010; 45:471-485. [PMID: 20446310 DOI: 10.1002/jms.1737] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Progress in research is hindered by analytical limitations, especially in biological areas in which sensitivity and dynamic range are critical to success. Inherent difficulties of characterization associated with complexity arising from heterogeneity of various materials including topologies (isomeric composition) and insolubility also limit progress. For this reason, we are developing methods for total solvent-free analysis by mass spectrometry consisting of solvent-free ionization followed by solvent-free gas-phase separation. We also recently constructed a novel matrix-assisted laser desorption ionization (MALDI) source that provides a simple, practical and sensitive way of producing highly charged ions by laserspray ionization (LSI) or singly charged ions commonly observed with MALDI by choice of matrix or matrix preparation. This is the first ionization source with such freedom-an extremely powerful analytical 'switch'. Multiply charged LSI ions allow molecules exceeding the mass-to-charge range of the instrument to be observed and permit for the first time electron transfer dissociation fragment ion analysis.
Collapse
Affiliation(s)
- Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
29
|
Trimpin S, Herath TN, Inutan ED, Wager-Miller J, Kowalski P, Claude E, Walker JM, Mackie K. Automated solvent-free matrix deposition for tissue imaging by mass spectrometry. Anal Chem 2010; 82:359-67. [PMID: 19968249 DOI: 10.1021/ac902065u] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ability to analyze complex (macro) molecules is of fundamental importance for understanding chemical, physical, and biological processes. Complexity may arise from small differences in structure, large dynamic range, as well as a vast range in solubility or ionization, imposing daunting tasks in areas as different as lipidomics and proteomics. Here, we describe a rapid matrix application that permits the deposition of matrix-assisted laser desorption/ionization (MALDI) matrix solvent-free. This solvent-free one-step automatic matrix deposition is achieved through vigorous movements of beads pressing the matrix material through a metal mesh. The mesh (20 mum) produces homogeneous coverage of <12 microm crystals (DHB, CHCA matrixes) in 1 min, as determined by optical microscopy, permitting fast uniform coverage of analyte and possible high-spatial resolution surface analysis. Homogenous tissue coverage of <5 microm sized crystals is achieved using a 3 microm mesh. Solvent-free MALDI analysis on a time-of-flight (TOF) mass analyzer of mouse brain tissue homogenously covered with CHCA matrix subsequently provides a homogeneous response in ion signal intensity. Total solvent-free analysis (TSA) by mass spectrometry (MS) of tissue sections is carried out by applying the MALDI matrix solvent-free for subsequent ionization and gas phase separation for decongestion of complexity in the absence of any solvent using ion mobility spectrometry (IMS) followed by MS detection. Isobaric compositions were well-delineated using TSA by MS.
Collapse
Affiliation(s)
- Sarah Trimpin
- Wayne State University, Department of Chemistry, Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Essential tactics of tissue preparation and matrix nano-spotting for successful compound imaging mass spectrometry. J Proteomics 2010; 73:1270-8. [PMID: 20193786 DOI: 10.1016/j.jprot.2010.02.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 01/27/2010] [Accepted: 02/23/2010] [Indexed: 11/22/2022]
Abstract
The ultimate goal of MALDI-Imaging Mass Spectrometry (MALDI-IMS) is to achieve spatial localization of analytes in tissue sections down to individual tissue compartments or even at the level of a few cells. With compound tissue imaging, it is possible to track the transportation of an unlabelled, inhaled reference compound within lung tissue, through the application of MALDI-IMS. The procedure for isolation and preparation of lung tissues is found to be crucial in order to preserve the anatomy and structure of the pulmonary compartments. To avoid delocalization of analytes within lung tissue compartments we have applied an in-house designed nano-spotter, based on a microdispenser mounted on an XY table, of which movement and spotting functionality were fully computer controlled. We demonstrate the usefulness of this platform in lung tissue sections isolated from rodent in vivo model, applied to compound tissue imaging as exemplified with the determination of the spatial distribution of (1alpha,2beta,4beta,7beta)-7-[(hydroxidi-2-thienylacetyl)oxy]-9,9-dimethyl-3-oxa-9-azoniatricyclo[3.3.1.0(2,4)]nonane, also known as tiotropium. We provide details on tissue preparation protocols and sample spotting technology for successful identification of drug in mouse lung tissue by using MALDI-Orbitrap instrumentation.
Collapse
|
31
|
Gruendling T, Weidner S, Falkenhagen J, Barner-Kowollik C. Mass spectrometry in polymer chemistry: a state-of-the-art up-date. Polym Chem 2010. [DOI: 10.1039/b9py00347a] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Sroka-Bartnicka A, Ciesielski W, Libiszowski J, Duda A, Sochacki M, Potrzebowski MJ. Complementarity of Solvent-Free MALDI TOF and Solid-State NMR Spectroscopy in Spectral Analysis of Polylactides. Anal Chem 2009; 82:323-8. [DOI: 10.1021/ac9020006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anna Sroka-Bartnicka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Włodzimierz Ciesielski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Jan Libiszowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Andrzej Duda
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Marek Sochacki
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Marek J. Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|