1
|
Orr A, Stotesbury T, Wilson P, Stock NL. The use of high-resolution mass spectrometry (HRMS) for the analysis of DNA and other macromolecules: A how-to guide for forensic chemistry. Forensic Chem 2019. [DOI: 10.1016/j.forc.2019.100169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
2
|
On the use of different mass spectrometric techniques for characterization of sequence variability in genomic DNA. Anal Bioanal Chem 2008; 391:135-49. [DOI: 10.1007/s00216-008-1929-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/25/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
|
3
|
Van Ert MN, Easterday WR, Simonson TS, U'Ren JM, Pearson T, Kenefic LJ, Busch JD, Huynh LY, Dukerich M, Trim CB, Beaudry J, Welty-Bernard A, Read T, Fraser CM, Ravel J, Keim P. Strain-specific single-nucleotide polymorphism assays for the Bacillus anthracis Ames strain. J Clin Microbiol 2006; 45:47-53. [PMID: 17093023 PMCID: PMC1828967 DOI: 10.1128/jcm.01233-06] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Highly precise diagnostics and forensic assays can be developed through a combination of evolutionary analysis and the exhaustive examination of genomic sequences. In Bacillus anthracis, whole-genome sequencing efforts revealed ca. 3,500 single-nucleotide polymorphisms (SNPs) among eight different strains and evolutionary analysis provides the identification of canonical SNPs. We have previously shown that SNPs are highly evolutionarily stable, and the clonal nature of B. anthracis makes them ideal signatures for subtyping this pathogen. Here we identified SNPs that define the lineage of B. anthracis that contains the Ames strain, the strain used in the 2001 bioterrorist attacks in the United States. Sequencing and real-time PCR were used to validate these SNPs across B. anthracis strains, including (i) 88 globally and genetically diverse isolates; (ii) isolates that were shown to be genetic relatives of the Ames strain by multiple-locus variable number tandem repeat analysis (MLVA); and (iii) several different lab stocks of the Ames strain, including a clinical isolate from the 2001 letter attack. Six SNPs were found to be highly specific for the Ames strain; four on the chromosome, one on the pX01 plasmid, and one on the pX02 plasmid. All six SNPs differentiated the B. anthracis Ames strain from the 88 unique B. anthracis strains, while five of the six separated Ames from its close genetic relatives. The use of these SNPs coupled with real-time PCR allows specific and sensitive (<100 fg of template DNA) identification of the Ames strain. This evolutionary and genomics-based approach provides an effective means for the discovery of strain-specific SNPs in B. anthracis.
Collapse
Affiliation(s)
- Matthew N Van Ert
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5640, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Oberacher H, Niederstätter H, Parson W. Liquid chromatography-electrospray ionization mass spectrometry for simultaneous detection of mtDNA length and nucleotide polymorphisms. Int J Legal Med 2006; 121:57-67. [PMID: 16955300 DOI: 10.1007/s00414-006-0117-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 07/05/2006] [Indexed: 10/24/2022]
Abstract
We demonstrate the applicability of ion-pair reversed-phase high-performance liquid chromatography-electrospray ionization time-of-flight mass spectrometry (ICEMS) for the simultaneous characterization of length and nucleotide polymorphisms. Two sections within the first (HVS-I) and second (HVS-II) hypervariable segments of the mitochondrial (mt)DNA control region were selected as targets, both containing poly-cytosine (C) tracts, which display length heteroplasmy at a substantial frequency in the population. The two mtDNA sections were simultaneously amplified and analyzed by ICEMS in 90 maternally unrelated mother-offspring pairs from Austria. The findings were confirmed by direct sequencing of the polymerase chain reaction products. For the detailed characterization of present-length heteroplasmic variants, the results retrieved through ICEMS were more informative compared with those derived from direct sequencing. Hence, ICEMS represents an interesting option for successful application in forensic science.
Collapse
Affiliation(s)
- Herbert Oberacher
- Institute of Legal Medicine, Innsbruck Medical University, Müllerstrasse 44, 6020, Innsbruck, Austria
| | | | | |
Collapse
|
5
|
Song R, Zhang W, Chen H, Ma H, Dong Y, Shen G, Zhou Z. Analysis of single nucleotide polymorphism sites in exon 4 of the p53 gene using high-performance liquid chromatography electrospray ionization mass spectrometry tandem mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2006; 12:205-11. [PMID: 16819112 DOI: 10.1255/ejms.800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Three groups of four oligonucleotides with special single nucleotide polymorphisms (SNP) sites in exon 4 of the p53 gene were analyzed with ion-pair reversed-phase high-performance liquid chromatography electrospray ionization mass spectrometry tandem mass spectrometry. The retention order of four oligonucleotides with SNPs was C < G < A < T, regardless of whether the polymorphisms were at the 3' end, the 5' end, or the middle of the oligonucleotides. The charge state of the molecular ion affects the MS/MS spectra of the oligonucleotides. SNPs at the 3' end can be easily identified from the fragmentation pattern of the 2- charge state, but not from the 3- charge state, especially from the w1 fragment. The single base may be taken as the symbol of the 5' end SNP site derived from [M3H]2, but not from the [M3H]2 charge state. The oligonucleotides with SNPs in the middle were also determined from the [M2H]2 precursor ion.
Collapse
Affiliation(s)
- Renfang Song
- State Key Laboratory of Organic Geochemistry, Guangzhou Research Center of Mass Spectrometry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Zhang L, Dang F, Kaji N, Baba Y. Fast extraction, amplification and analysis of genes from human blood. J Chromatogr A 2005; 1106:175-80. [PMID: 16337635 DOI: 10.1016/j.chroma.2005.10.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 10/21/2005] [Accepted: 10/27/2005] [Indexed: 11/30/2022]
Abstract
In order to shorten the time spent on the sample preparation for gene analysis, a novel method was proposed through the combination of fast DNA extraction and purification by Generation capture disk, amplification by capillary polymerase chain reaction, and confirmation of amplification products by microchip electrophoresis. With this method, 3 microL blood was enough to obtain adequate target fragments in human genes. Under the optimal conditions in each step, the sample preparation for eight fragments in beta-globin gene and four fragments in ras gene could be finished within 20 min. Since all the experiments were performed on commercial instruments, this method showed a wide range of applicability. In addition, other advantages such as fast speed and low consumption of samples were demonstrated. All these merits proved that such a combination method was of great potential for the clinical diagnostics.
Collapse
Affiliation(s)
- Lihua Zhang
- Department of Molecular and Pharmaceutical Biotechnology, Graduate School of Pharmaceutical Sciences, The University of Tokushima, CREST, Japan Science and Technology Corporation (JST), Tokushima 770-8505, Japan
| | | | | | | |
Collapse
|
7
|
Willems AV, Deforce DL, Van Peteghem CH, Van Bocxlaer JF. Development of a quality control method for the characterization of oligonucleotides by capillary zone electrophoresis-electrospray ionization-quadrupole time of flight-mass spectrometry. Electrophoresis 2005; 26:1412-23. [PMID: 15765471 DOI: 10.1002/elps.200406201] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A capillary zone electrophoresis-negative electrospray ionization-quadrupole time of flight-mass spectrometric method was developed for the characterization of oligonucleotides after synthesis, using model compounds. The major difficulty is the adduction of metal cations to the polyanionic backbone of the oligonucleotide sample, resulting in complex spectra and decreased sensitivity. Several approaches were investigated to circumvent this problem. Separation was performed in an ammonium carbonate buffer. During separation, the interfering metal ions were exchanged for ammonium ions, which are less tightly bound to the oligonucleotide when ionized. The influence of the addition of piperidine and imidazole or trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) to the running buffer for further reduction of cation adduction was investigated. Addition of CDTA to the buffer system resulted in a deconvoluted spectrum with very little adducts. On-line sample stacking proved vital to preconcentrate the samples. The pH and the concentration of the ammonium carbonate buffer as well as the electrophoresis voltage were optimized to achieve the best signal response for the oligonucleotides and a maximum reduction of the cation adducts as well as a short analysis time. Finally, the sheath liquid composition was examined for further improvement of the signal. The developed method was used to analyze different oligonucleotides (5000-9200 Da) in light of its use as a final quality control method for oligonucleotides in terms of purity and sequence homogeneity of the synthesized products. In all cases, very little adducts were observed in the deconvoluted spectra, and the relative errors of the measured molecular masses ranged from 3 to 35 ppm.
Collapse
Affiliation(s)
- An V Willems
- Laboratory of Medical Biochemistry & Clinical Analysis, Ghent University, Belgium
| | | | | | | |
Collapse
|
8
|
Edwards JR, Ruparel H, Ju J. Mass-spectrometry DNA sequencing. Mutat Res 2005; 573:3-12. [PMID: 15829234 DOI: 10.1016/j.mrfmmm.2004.07.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 07/15/2004] [Indexed: 11/15/2022]
Abstract
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been explored widely for DNA sequencing. Compared to gel electrophoresis based sequencing systems, mass spectrometry produces very high resolution of sequencing fragments, rapid separation on microsecond time scales, and completely eliminates compressions associated with gel-based systems. While most of the research efforts have focused on using mass spectrometers to analyze the DNA products from Sanger sequencing or enzymatic digestion reactions, the read lengths attainable are currently insufficient for large-scale de novo sequencing. The advantage of mass-spectrometry sequencing is that one can unambiguously identify frameshift mutations and heterozygous mutations making it an ideal choice for resequencing projects. In these applications, DNA sequencing fragments that are the same length but with different base compositions are generated, which are challenging to consistently distinguish in gel-based sequencing systems. In contrast, MALDI-TOF MS produces mass spectra of these DNA sequencing fragments with nearly digital resolution, allowing accurate determination of the mixed bases. For these reasons mass spectrometry based sequencing has mainly been focused on the detection of frameshift mutations and single nucleotide polymorphisms (SNPs). More recently, assays have been developed to indirectly sequence DNA by first converting it into RNA. These assays take advantage of the increased resolution and detection ability of MALDI-TOF MS for RNA.
Collapse
Affiliation(s)
- John R Edwards
- Columbia Genome Center, Columbia University College of Physicians and Surgeons, Room 405A, Russ Berrie Medical Science Pavilion, New York, NY 10032, USA
| | | | | |
Collapse
|
9
|
Van Ert MN, Hofstadler SA, Jiang Y, Busch JD, Wagner DM, Drader JJ, Ecker DJ, Hannis JC, Huynh LY, Schupp JM, Simonson TS, Keim P. Mass spectrometry provides accurate characterization of two genetic marker types in Bacillus anthracis. Biotechniques 2005; 37:642-4, 646, 648 passim. [PMID: 15517976 DOI: 10.2144/04374rr01] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Epidemiological and forensic analyses of bioterrorism events involving Bacillus anthracis could be improved if both variable number tandem repeats (VNTRs) and single nucleotide polymorphisms (SNPs) could be combined on a single analysis platform. Here we present the use of electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) to characterize 24 alleles from 6 VNTR loci and 11 alleles from 7 SNP loci in B. anthracis. The results obtained with ESI-FTICR-MS were consistent with independent results obtained from traditional approaches using electrophoretic detection of fluorescent products. However, ESI-FTICR-MS improves on the traditional approaches because it does not require fluorescent labeling of PCR products, minimizes post-PCR processing, obviates electrophoresis, and provides unambiguous base composition of both SNP and VNTR PCR products. In addition, ESI-FTICR-MS allows both marker types to be examined simultaneously and at a rate of approximately 1 sample per min. This technology represents a significant advance in our ability to rapidly characterize B. anthracis isolates using VNTR and SNP loci.
Collapse
|
10
|
Hofstadler SA, Sannes-Lowery KA, Hannis JC. Analysis of nucleic acids by FTICR MS. MASS SPECTROMETRY REVIEWS 2005; 24:265-285. [PMID: 15389854 DOI: 10.1002/mas.20016] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fourier transform ion cyclotron resonance (FTICR) mass spectrometry represents a unique platform with which to study nucleic acids and non-covalent complexes containing nucleic acids moieties. In particular, systems in which very high mass measurement accuracy is required, very complex mixtures are to be analyzed, or very limited amounts of sample are available may be uniquely suited to interrogation by FTICR mass spectrometry. Although the FTICR platform is now broadly deployed as an integral component of many high-end proteomics-based research efforts, momentum is still building for the application of the platform towards nucleic acid-based analyses. In this work, we review fundamental aspects of nucleic acid analysis by FTICR, focusing primarily on the analysis of DNA oligonucleotides but also describing applications related to the characterization of RNA constructs. The goal of this review article is to give the reader a sense of the breadth and scope of the status quo of FTICR analysis of nucleic acids and to summarize a few recently published reports in which researchers have exploited the performance attributes of FTICR to characterize nucleic acids in support of basic and applied research disciplines including genotyping, drug discovery, and forensic analyses.
Collapse
Affiliation(s)
- Steven A Hofstadler
- Ibis Therapeutics, A Division of Isis Pharmaceuticals, 2292 Faraday Avenue, Carlsbad, California 92008, USA.
| | | | | |
Collapse
|
11
|
Ma H, Zhang W, Song R, Chen H, Sheng G, Zhou Z, Fu J. Characterization of methylated and unmethlyated CpG-ODNs by electrospray ionization tandem mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2005; 11:581-9. [PMID: 16322665 DOI: 10.1255/ejms.774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Methylated and unmethylated CpG-ODNs at A-rich, C-rich, G-rich and T-rich conditions were characterized by electrospray ionization tandem mass spectrometry (ESI-MS/MS). The methylted site could be confirmed by comparison of the MS/MS spectra of methylated and unmethylated CpG-ODNs. The fragmentation patterns of the CpG-ODNs were not influenced by the presence of the methyl group but significant effects were observed for nucleobase identities and parent ion charges. The cleavage at guanine was the most facile while that at thymine was the least facile. With the increase of the parent ions charge states, the major dissociation behaviors changed from the middle to the 3' and 5' termini of the sequence.
Collapse
Affiliation(s)
- Huimin Ma
- State Key Laboratory of Organic Geochemistry, Guangzhou Research Center of Mass Spectrometry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Oberacher H, Parson W, Hölzl G, Oefner PJ, Huber CG. Optimized suppression of adducts in polymerase chain reaction products for semi-quantitative SNP genotyping by liquid chromatography-mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:1897-1906. [PMID: 15589766 DOI: 10.1016/j.jasms.2004.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 09/03/2004] [Accepted: 09/04/2004] [Indexed: 05/24/2023]
Abstract
While electrospray ionization mass spectrometry has shown great potential for the identification of genotypes in DNA sequences amplified by polymerase chain reaction (PCR), the quantitative determination of allele frequencies remains challenging because of the presence of cationic adducts in the mass spectra which severely impairs accuracy of quantitation. We report here on the elaboration of an optimized desalting protocol for ion-pair reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry (ICEMS) of PCR amplicons which facilitates the genotyping of single nucleotide polymorphisms (SNPs). Chromatographic purification at temperatures between 50 and 70 degrees C using monolithic reversed-phase columns and acetonitrile gradients in aqueous, 20-30 mmol/l butyldimethylammonium bicarbonate enabled the mass spectrometric analysis of nucleic acid solutions containing up to 1.7 mol/l sodium chloride. A further improvement in removal of metal cations was achieved upon the addition of 5-10 mmol/l ethylenediaminetetraacetic acid (EDTA) to the sample solution prior to liquid chromatography. ICEMS was used for the semi-quantitative genotyping of SNPs amplified from the tetraploid genome of potato cultivars. Using a quadrupole ion trap mass spectrometer, allele frequencies were determined with an accuracy of 2-9% by measuring the relative intensities of the signals corresponding to the molecular mass of each of the alleles in the deconvoluted mass spectra. ICEMS results correlated well with those obtained by pyrosequencing, single nucleotide primer extension, and conventional dideoxy sequencing.
Collapse
Affiliation(s)
- Herbert Oberacher
- Institute of Legal Medicine, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
13
|
Hall MP, Ashrafi S, Obegi I, Petesch R, Peterson JN, Schneider LV. "Mass defect" tags for biomolecular mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:809-816. [PMID: 12938101 DOI: 10.1002/jms.493] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present a new class of "mass defect" tags with utility in biomolecular mass spectrometry. These tags, incorporating element(s) with atomic numbers between 17 (Cl) and 77 (Ir), have a substantially different nuclear binding energy (mass defect) from the elements common to biomolecules. This mass defect yields a readily resolvable mass difference between tagged and untagged species in high-resolution mass spectrometers. We present the use of a subset of these tags in a new protein sequencing application. This sequencing technique has advantages over existing mass spectral protein identification methodologies: intact proteins are quickly sequenced and unambiguously identified using only an inexpensive, robust mass spectrometer. We discuss the potential broader utility of these tags for the sequencing of other biomolecules, differential display applications and combinatorial methods.
Collapse
Affiliation(s)
- Michael P Hall
- Target Discovery, Inc., 4015 Fabian Way, Palo Alto, CA 94303, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Jiang Y, Hofstadler SA. A highly efficient and automated method of purifying and desalting PCR products for analysis by electrospray ionization mass spectrometry. Anal Biochem 2003; 316:50-7. [PMID: 12694726 DOI: 10.1016/s0003-2697(03)00024-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this work we present a rapid and fully automated method to purify and desalt PCR products prior to analysis by electrospray ionization mass spectrometry. The protocol employs a commercial pipette tip packed with an anion-exchange resin and comprises four primary steps: tip pretreatment, sample loading, rinsing, and sample elution. This tip-based purification/desalting protocol has two distinct advantages over previously published methods. First, the protocol can be performed either manually (1-12 samples at a time), using a standard p10 manual pipette, or in a fully automated microtiter plate format (96 samples at a time) employing standard laboratory robotics. Additionally, the entire protocol from crude PCR product to an "electrosprayable" analyte solution requires only 10 microl of crude product and takes less than 20 min. Using capillary gel electrophoresis, we demonstrate an overall recovery efficiency of approximately 80% and demonstrate the exquisite desalting efficiency with high-performance electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Using an internal mass standard we demonstrate sub-ppm mass measurement error which provides an unambiguous base composition for a 120-mer PCR product.
Collapse
Affiliation(s)
- Yun Jiang
- Ibis Therapeutics, A Division of Isis Pharmaceuticals, 2292 Faraday Avenue, Carlsbad, CA 92008, USA
| | | |
Collapse
|
15
|
Null AP, Nepomuceno AI, Muddiman DC. Implications of hydrophobicity and free energy of solvation for characterization of nucleic acids by electrospray ionization mass spectrometry. Anal Chem 2003; 75:1331-9. [PMID: 12659193 DOI: 10.1021/ac026217o] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrospray ionization (ESI) is a dynamic process that, when coupled with mass spectrometry (MS), serves as an invaluable tool for analysis of biomolecules. Our group, as well as others, has observed that there is a bias in signal intensity for one strand of a PCR amplicon over the complementary strand in an ESI mass spectrum. In this report, we have investigated the contributions of hydrophobicity and free energy of solvation to relative signal intensities in ESI-MS spectra of nucleic acids. We developed approaches for predicting which strand of the PCR amplicon will be the most intense: one based on a rate equation for calculating ion flux using values from the literature for hydrophobicity and free energy of solvation and the other based on the percentage of the relatively hydrophilic guanines present in the strand. A trend in signal intensity for deoxyribonucleotide triphosphates, oligonucleotides, and PCR amplicons was observed that was consistent with our model. On the basis of the observation that increased hydrophobicity correlates with greater signal intensity, we selectively enhanced the signal intensity of a 20-mer with the addition of an alkyl chain to the 5' terminus, which subsequently improved the limit of detection to 1 nM, an improvement by 1 order of magnitude. This was extended to a 53-bp PCR amplicon by modifying one primer with the hydrophobic moiety, which resulted in a 16% increase in signal intensity. We capitalized on this result to determine allele frequencies from pooled DNA for single-nucleotide polymorphisms down to 1%.
Collapse
Affiliation(s)
- Allison P Null
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| | | | | |
Collapse
|
16
|
Muhammad WT, Tabb DL, Fox KF, Fox A. Automated discrimination of polymerase chain reaction products with closely related sequences by software-based detection of characteristic peaks in product ion spectra. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:2755-2762. [PMID: 14673823 DOI: 10.1002/rcm.1262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A computer-based method is described for automated detection of peaks in product ion spectra that allows discrimination of structurally related polymerase chain reaction (PCR) products. PCR products of K-ras mutants having single nucleotide substitutions and isomeric sequence changes in positions 1 and 2 of codon 12 (e.g. TGT and GTT) were used as a model system. SpecDiff, a tool for differentiating pairs of mass spectra by identifying peaks that either differ in relative intensity between spectra or only appear in one of a pair of spectra, was created to help automate detection. This program was demonstrated to have great utility in detection of mutations and could also be useful as a general tool for differentiating other molecules of closely related structure.
Collapse
Affiliation(s)
- Warees T Muhammad
- Department of Pathology and Microbiology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | | | | | | |
Collapse
|
17
|
Null AP, Benson LM, Muddiman DC. Enzymatic strategies for the characterization of nucleic acids by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:2699-2706. [PMID: 14673816 DOI: 10.1002/rcm.1255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) is a powerful technique used for the identification and characterization of DNA polymorphisms. Continual improvement in instrument design assures high mass measurement accuracy, sensitivity, and resolving power. This work describes an eclectic array of enzymatic strategies we have invoked in order to detect single-nucleotide polymorphisms by ESI-MS, although other applications may be envisioned. One strategy combines the use of two enzymes, exonuclease III and lambda exonuclease, to provide a ladder of single-stranded DNA fragments for straightforward sequence identification by mass spectrometry. A second strategy combines restriction enzymes to screen for polymorphisms present within specific amplicons. Finally, we describe the use of stable-isotope-labeled nucleotides for the determination of length and base composition of a PCR product.
Collapse
Affiliation(s)
- Allison P Null
- W. M. Keck FT-ICR Mass Spectrometry Laboratory, Mayo Proteomics Research Center, and Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|
18
|
Berger B, Hölzl G, Oberacher H, Niederstätter H, Huber CG, Parson W. Single nucleotide polymorphism genotyping by on-line liquid chromatography-mass spectrometry in forensic science of the Y-chromosomal locus M9. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 782:89-97. [PMID: 12457998 DOI: 10.1016/s1570-0232(02)00694-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A method is described for genotyping alleles of the Y-chromosomal locus M9, incorporating DNA extraction, amplification by polymerase chain reaction (PCR), sample purification by ion-pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC), and allele identification by on-line hyphenation to electrospray ionization mass spectrometry (ESI-MS). The alleles G and C were differentiated in 114 base pair amplicons on the basis of intact molecular mass measurements with a mass accuracy between 0.007 and 0.017%. The accuracy of mass determination was significantly reduced to less than 0.0036% upon amplification of a short, 61 bp fragment. The application of steep gradients of acetonitrile in 25 mM butyldimethylammonium bicarbonate not only enabled the efficient separation of non-target components from the PCR product in a monolithic, poly-(styrene-divinylbenzene)-based capillary column, but also allowed the high-throughput analysis of the PCR products with cycle times of 2 min. The new method was compared to a conventional restriction fragment length polymorphism assay with capillary gel electrophoretic analysis. In a blind study, 90 samples of unrelated individuals were genotyped. The high accuracy (<0.004%) and small relative standard deviation (<0.007%, n=20) of mass measurements, which enables even the differentiation of A and T alleles with a mass difference of 9 mass units, make IP-RP-HPLC-ESI-MS a potent tool for the routine characterization of SNPs in forensic science.
Collapse
Affiliation(s)
- Burkhard Berger
- Institute of Legal Medicine, Leopold-Franzens University, Müllerstrasse 44, A-6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
19
|
Walters JJ, Fox KF, Fox A. Mass spectrometry and tandem mass spectrometry, alone or after liquid chromatography, for analysis of polymerase chain reaction products in the detection of genomic variation. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 782:57-66. [PMID: 12457995 DOI: 10.1016/s1570-0232(02)00563-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The availability of the sequences of entire bacterial and human genomes has opened up tremendous opportunities in biomedical research. The next stage in genomics will include utilizing this information to obtain a clearer understanding of molecular diversity among pathogens (helping improved identification and detection) and among normal and diseased people (e.g. aiding cancer diagnosis). To delineate such differences it may sometimes be necessary to sequence multiple representative genomes. However, often it may be adequate to delineate structural differences between genes among individuals. This may be readily achieved by high-throughput mass spectrometry analysis of polymerase chain reaction products.
Collapse
Affiliation(s)
- James J Walters
- Department of Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia 29208, USA
| | | | | |
Collapse
|
20
|
Tost J, Gut IG. Genotyping single nucleotide polymorphisms by mass spectrometry. MASS SPECTROMETRY REVIEWS 2002; 21:388-418. [PMID: 12666148 DOI: 10.1002/mas.1009] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the last decade, the demand for high-throughput DNA analysis methods has dramatically increased, mainly due to the advent of the human genome sequencing project that is now nearing completion. Even though mass spectrometry did not contribute to that project, it is clear that it will have an important role in the post-genome sequencing era, in genomics and proteomics. In genomics, mainly matrix-assisted laser desorption/ionization (MALDI) mass spectrometry will contribute to large-scale single nucleotide polymorphism (SNP) genotyping projects. Here, the development and history of DNA analysis by mass spectrometry is reviewed and put into the context with the requirements of genomics. All major contributions to the field and their status and limitations are described in detail.
Collapse
Affiliation(s)
- Jörg Tost
- Centre National de Génotypage, Bâtiment G2, 2 Rue Gaston Crémieux, 91057 Evry Cedex, France
| | | |
Collapse
|
21
|
Pusch W, Wurmbach JH, Thiele H, Kostrzewa M. MALDI-TOF mass spectrometry-based SNP genotyping. Pharmacogenomics 2002; 3:537-48. [PMID: 12164776 DOI: 10.1517/14622416.3.4.537] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In recent years a growing demand for simple and robust SNP genotyping platforms has arisen from the widespread use of SNPs in industrial and public research. The resulting knowledge about genotype/phenotype correlations is of special interest for the identification of potential new drug targets and in the field of pharmacogenomics. However, full exploitation of the available genomic information requires vast numbers of SNP analyses, as large cohorts of patients have to be screened for a large number of markers. Only very few of the current SNP genotyping techniques can cope with the resulting demands concerning sample throughput, automation, accuracy and cost-effectiveness. MALDI-TOF mass spectrometry has the potential to develop into a 'Gold Standard' for high-throughput SNP genotyping - if it has not already done so. This review will focus on the latest developments of this technology.
Collapse
Affiliation(s)
- Wolfgang Pusch
- Bruker Daltonik GmbH, Fahrenheitstrasse 4, 28359 Bremen, Germany.
| | | | | | | |
Collapse
|
22
|
Muhammad WT, Fox KF, Fox A, Cotham W, Walla M. Electrospray ionization quadrupole time-of-flight mass spectrometry and quadrupole mass spectrometry for genotyping single nucleotide substitutions in intact polymerase chain reaction products in K-ras and p53. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2002; 16:2278-2285. [PMID: 12478572 DOI: 10.1002/rcm.859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Single nucleotide polymorphisms (SNPs) and mutations were genotyped for both homozygous and heterozygous PCR products of p53, a tumor suppressor gene, and K-ras, an oncogene, using electrospray ionization (ESI) quadrupole time-of-flight (Q-TOF) mass spectrometry (MS) and ESI-quadrupole MS analysis. Mass accuracy was adequate for both instruments to detect genetic changes in homozygous PCR products, including the most difficult to distinguish (adenine [A] --> thymine [T] transversion). However, for the detection of A --> T shifts (9.0 Da difference) in heterozygous PCR products, the increased resolution of ESI-Q-TOFMS proved essential. Although, greater mass differences in heterozygotes (e.g. cytosine [C] <--> T or guanine [G] <--> A) can be discriminated using ESI-quadrupole MS analysis.
Collapse
Affiliation(s)
- Warees T Muhammad
- Department of Pathology and Microbiology, University of South Carolina, School of Medicine, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|
23
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2001; 36:1324-1333. [PMID: 11754125 DOI: 10.1002/jms.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|