1
|
Wang D, Baudys J, Osman SH, Barr JR. Analysis of the N-glycosylation profiles of the spike proteins from the Alpha, Beta, Gamma, and Delta variants of SARS-CoV-2. Anal Bioanal Chem 2023:10.1007/s00216-023-04771-y. [PMID: 37354227 DOI: 10.1007/s00216-023-04771-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/26/2023]
Abstract
N-Glycosylation plays an important role in the structure and function of membrane and secreted proteins. Viral proteins used in cell entry are often extensively glycosylated to assist in protein folding, provide stability, and shield the virus from immune recognition by its host (described as a "glycan shield"). The SARS-CoV-2 spike protein (S) is a prime example, having 22 potential sites of N-glycosylation per protein protomer, as predicted from the primary sequence. In this report, we conducted mass spectrometric analysis of the N-glycosylation profiles of recombinant spike proteins derived from four common SARS-CoV-2 variants classified as Variant of Concern, including Alpha, Beta, Gamma, and Delta along with D614G variant spike as a control. Our data reveal that the amino acid substitutions and deletions between variants impact the abundance and type of glycans on glycosylation sites of the spike protein. Some of the N-glycosylation sequons in S show differences between SARS-CoV-2 variants in the distribution of glycan forms. In comparison with our previously reported site-specific glycan analysis on the S-D614G and its ancestral protein, glycan types on later variants showed high similarity on the site-specific glycan content to S-D614G. Additionally, we applied multiple digestion methods on each sample, and confirmed the results for individual glycosylation sites from different experiment conditions to improve the identification and quantification of glycopeptides. Detailed site-specific glycan analysis of a wide variety of SARS-CoV-2 variants provides useful information toward the understanding of the role of protein glycosylation on viral protein structure and function and development of effective vaccines and therapeutics.
Collapse
Affiliation(s)
- Dongxia Wang
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Jakub Baudys
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sarah H Osman
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John R Barr
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
2
|
|
3
|
Chen WQ, Obermayr P, Černigoj U, Vidič J, Panić-Janković T, Mitulović G. Immobilized monolithic enzymatic reactor and its application for analysis of in-vitro fertilization media samples. Electrophoresis 2017; 38:2957-2964. [DOI: 10.1002/elps.201700197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 05/29/2017] [Accepted: 06/04/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Wei-Qiang Chen
- Clinical Institute of Laboratory Medicine; Medical University of Vienna; Vienna Austria
| | | | | | - Jana Vidič
- BIA Separations d.o.o; Ajdovščina Slovenia
| | - Tanta Panić-Janković
- Clinical Institute of Laboratory Medicine; Medical University of Vienna; Vienna Austria
| | - Goran Mitulović
- Clinical Institute of Laboratory Medicine; Medical University of Vienna; Vienna Austria
- Proteomics Core Facility; Medical University of Vienna; Vienna Austria
| |
Collapse
|
4
|
Direct analysis of site-specific N-glycopeptides of serological proteins in dried blood spot samples. Anal Bioanal Chem 2017; 409:4971-4981. [DOI: 10.1007/s00216-017-0438-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 10/19/2022]
|
5
|
Abstract
Protein glycosylation is one of the most important posttranslational modifications. Numerous biological functions are related to protein glycosylation. However, analytical challenges remain in the glycoprotein analysis. To overcome the challenges associated with glycoprotein analysis, many analytical techniques were developed in recent years. Enrichment methods were used to improve the sensitivity of detection, while HPLC and mass spectrometry methods were developed to facilitate the separation of glycopeptides/proteins and enhance detection, respectively. Fragmentation techniques applied in modern mass spectrometers allow the structural interpretation of glycopeptides/proteins, while automated software tools started replacing manual processing to improve the reliability and throughput of the analysis. In this chapter, the current methodologies of glycoprotein analysis were discussed. Multiple analytical techniques are compared, and advantages and disadvantages of each technique are highlighted.
Collapse
|
6
|
Zhu R, Song E, Hussein A, Kobeissy FH, Mechref Y. Glycoproteins Enrichment and LC-MS/MS Glycoproteomics in Central Nervous System Applications. Methods Mol Biol 2017; 1598:213-227. [PMID: 28508363 DOI: 10.1007/978-1-4939-6952-4_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Proteins and glycoproteins play important biological roles in central nervous systems (CNS). Qualitative and quantitative evaluation of proteins and glycoproteins expression in CNS is critical to reveal the inherent biomolecular mechanism of CNS diseases. This chapter describes proteomic and glycoproteomic approaches based on liquid chromatography/tandem mass spectrometry (LC-MS or LC-MS/MS) for the qualitative and quantitative assessment of proteins and glycoproteins expressed in CNS. Proteins and glycoproteins, extracted by a mass spectrometry friendly surfactant from CNS samples, were subjected to enzymatic (tryptic) digestion and three down-stream analyses: (1) a nano LC system coupled with a high-resolution MS instrument to achieve qualitative proteomic profile, (2) a nano LC system combined with a triple quadrupole MS to quantify identified proteins, and (3) glycoprotein enrichment prior to LC-MS/MS analysis. Enrichment techniques can be applied to improve coverage of low abundant glycopeptides/glycoproteins. An example described in this chapter is hydrophilic interaction liquid chromatographic (HILIC) enrichment to capture glycopeptides, allowing efficient removal of peptides. The combination of three LC-MS/MS-based approaches is capable of the investigation of large-scale proteins and glycoproteins from CNS with an in-depth coverage, thus offering a full view of proteins and glycoproteins changes in CNS.
Collapse
Affiliation(s)
- Rui Zhu
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston Ave., Box 41061, Lubbock, TX, 79409-1061, USA
| | - Ehwang Song
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston Ave., Box 41061, Lubbock, TX, 79409-1061, USA
| | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, 21526, Egypt
| | - Firas H Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston Ave., Box 41061, Lubbock, TX, 79409-1061, USA.
| |
Collapse
|
7
|
Pini T, Leahy T, Soleilhavoup C, Tsikis G, Labas V, Combes-Soia L, Harichaux G, Rickard JP, Druart X, de Graaf SP. Proteomic Investigation of Ram Spermatozoa and the Proteins Conferred by Seminal Plasma. J Proteome Res 2016; 15:3700-3711. [PMID: 27636150 DOI: 10.1021/acs.jproteome.6b00530] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sperm proteomes have emerged for several species; however, the extent of species similarity is unknown. Sheep are an important agricultural species for which a comprehensive sperm proteome has not been produced. In addition, potential proteomic factors from seminal plasma that may contribute to improved fertility after cervical insemination are yet to be explored. Here we use liquid chromatography-tandem mass spectrometry to investigate the proteome of ejaculated ram spermatozoa, with quantitative comparison to epididymal spermatozoa. We also present a comparison to published proteomes of five other species. We identified 685 proteins in ejaculated ram spermatozoa, with the most abundant proteins involved in metabolic pathways. Only 5% of ram sperm proteins were not detected in other species, which suggest highly conserved structures and pathways. Of the proteins present in both epididymal and ejaculated ram spermatozoa, 7% were more abundant in ejaculated spermatozoa. Only two membrane-bound proteins were detected solely in ejaculated sperm lysates: liver enriched gene 1 (LEG1/C6orf58) and epidermal growth factor-like repeats and discoidin I-like domains 3 (EDIL3). This is the first evidence that despite its relatively complex proteomic composition, seminal plasma exposure leads to few novel proteins binding tightly to the ram sperm plasma membrane.
Collapse
Affiliation(s)
- Taylor Pini
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales 2006, Australia
| | - Tamara Leahy
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales 2006, Australia
| | | | - Guillaume Tsikis
- PRC, INRA, CNRS, IFCE, Université de Tours , 37380 Nouzilly, France
| | - Valerie Labas
- PRC, INRA, CNRS, IFCE, Université de Tours , 37380 Nouzilly, France
| | | | | | - Jessica P Rickard
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales 2006, Australia
| | - Xavier Druart
- PRC, INRA, CNRS, IFCE, Université de Tours , 37380 Nouzilly, France
| | - Simon P de Graaf
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales 2006, Australia
| |
Collapse
|
8
|
Barroso A, Giménez E, Benavente F, Barbosa J, Sanz-Nebot V. Improved tryptic digestion assisted with an acid-labile anionic surfactant for the separation and characterization of glycopeptide glycoforms of a proteolytic-resistant glycoprotein by capillary electrophoresis time-of-flight mass spectrometry. Electrophoresis 2015; 37:987-97. [DOI: 10.1002/elps.201500255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/21/2015] [Accepted: 08/07/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Albert Barroso
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - Estela Giménez
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - Fernando Benavente
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - José Barbosa
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - Victoria Sanz-Nebot
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| |
Collapse
|
9
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
10
|
Giménez E, Balmaña M, Figueras J, Fort E, Bolós CD, Sanz-Nebot V, Peracaula R, Rizzi A. Quantitative analysis of N-glycans from human alfa-acid-glycoprotein using stable isotope labeling and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry as tool for pancreatic disease diagnosis. Anal Chim Acta 2015; 866:59-68. [PMID: 25732693 DOI: 10.1016/j.aca.2015.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/30/2015] [Accepted: 02/05/2015] [Indexed: 12/12/2022]
Abstract
In this work we demonstrate the potential of glycan reductive isotope labeling (GRIL) using [(12)C]- and [(13)C]-coded aniline and zwitterionic hydrophilic interaction capillary liquid chromatography electrospray mass spectrometry (μZIC-HILIC-ESI-MS) for relative quantitation of glycosylation variants in selected glycoproteins present in samples from cancer patients. Human α1-acid-glycoprotein (hAGP) is an acute phase serum glycoprotein whose glycosylation has been described to be altered in cancer and chronic inflammation. However, it is not clear yet whether some particular glycans in hAGP can be used as biomarker for differentiating between these two pathologies. In this work, hAGP was isolated by immunoaffinity chromatography (IAC) from serum samples of healthy individuals and from those suffering chronic pancreatitis and different stages of pancreatic cancer, respectively. After de-N-glycosylation, relative quantitation of the hAGP glycans was carried out using stable isotope labeling and μZIC-HILIC-ESI-MS analysis. First, protein denaturing conditions prior to PNGase F digestion were optimized to achieve quantitative digestion yields, and the reproducibility of the established methodology was evaluated with standard hAGP. Then, the proposed method was applied to the analysis of the clinical samples (control vs. pathological). Pancreatic cancer samples clearly showed an increase in the abundance of fucosylated glycans as the stage of the disease increases and this was unlike to samples from chronic pancreatitis. The results gained here indicate the mentioned glycan in hAGP as a candidate structure worth to be corroborated by an extended study including more clinical cases; especially those with chronic pancreatitis and initial stages of pancreatic cancer. Importantly, the results demonstrate that the presented methodology combining an enrichment of a target protein by IAC with isotope coded relative quantitation of N-glycans can be successfully used for targeted glycomics studies. The methodology is assumed being suitable as well for other such studies aimed at finding novel cancer associated glycoprotein biomarkers.
Collapse
Affiliation(s)
- Estela Giménez
- Department of Analytical Chemistry, University of Barcelona, Diagonal 647, E-08028 Barcelona, Spain.
| | - Meritxell Balmaña
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Campus Montilivi s/n, 17071 Girona, Spain
| | - Joan Figueras
- Department of Surgery, Dr. Josep Trueta University Hospital, IdlBGi, 17007 Girona, Spain
| | - Esther Fort
- Digestive Unit, Dr. Josep Trueta University Hospital, 17007 Girona, Spain
| | - Carme de Bolós
- Gastroesophagic Cancer Research Group, Research Programme in Cancer, Hospital del Mar Medical Research Institute (IMIM), Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Victòria Sanz-Nebot
- Department of Analytical Chemistry, University of Barcelona, Diagonal 647, E-08028 Barcelona, Spain
| | - Rosa Peracaula
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Campus Montilivi s/n, 17071 Girona, Spain
| | - Andreas Rizzi
- Institute of Analytical Chemistry, University of Vienna, Währinger Straße 38, A-1090 Vienna, Austria
| |
Collapse
|
11
|
Wang C, Gao M, Zhang P, Zhang X. Efficient Proteolysis of Glycoprotein Using a Hydrophilic Immobilized Enzyme Reactor Coupled with MALDI-QIT-TOF-MS Detection and μHPLC Analysis. Chromatographia 2014. [DOI: 10.1007/s10337-013-2622-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Gao M, Deng C, Zhang X. Magnetic nanoparticles-based digestion and enrichment methods in proteomics analysis. Expert Rev Proteomics 2014; 8:379-90. [DOI: 10.1586/epr.11.25] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Barroso A, Giménez E, Benavente F, Barbosa J, Sanz-Nebot V. Analysis of human transferrin glycopeptides by capillary electrophoresis and capillary liquid chromatography-mass spectrometry. Application to diagnosis of alcohol dependence. Anal Chim Acta 2013; 804:167-75. [DOI: 10.1016/j.aca.2013.09.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 11/17/2022]
|
14
|
Song E, Mechref Y. LC-MS/MS identification of the O-glycosylation and hydroxylation of amino acid residues of collagen α-1 (II) chain from bovine cartilage. J Proteome Res 2013; 12:3599-609. [PMID: 23879958 DOI: 10.1021/pr400101t] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
O-Glycosylation of collagen is a unique type of posttranslational modifications (PTMs) involving the attachment of galactose (Gal) or glucose-galactose (Glc-Gal) moieties to hydroxylysine (HyK). Also, hydroxyproline (HyP) result from the posttranslational hydroxylation of some proline residues in collagen. Here, LC-MS/MS was effectively employed to identify 23 O-glycosylation sites and a large number of HyP residues associated with bovine type II collagen α-1 chain (CO2A1). The modifications of the 23 O-glycosylation sites varied qualitatively and quantitatively. Both Gal and Glc-Gal moieties occupied 22 of the identified glycosylation sites, while K773 was observed as unmodified. A large number of HyP residues at Yaa positions of Gly-Xaa-Yaa motif were detected. HyP residues at Xaa positions of Gly-HyP-HyP, Gly-HyP-Ala, and Gly-HyP-Val motifs were also observed. Notably, HyP residue of Gly-HyP-Gln motif was detected, which has not been previously reported. Moreover, the deamidation of 8 Asn residues was identified, of which 2 Asp residues were observed at different retention times because of isomerization (Asp vs isoAsp). Partial macroheterogeneities of some CO2A1 glycosylation sites were revealed by LC-MS/MS analysis. ETD experiments revealed partial macroheterogeneities associated with K299-K308, K452-K464, K464-K470, and K857-K884 glycosylation sites. Semiquantitative data suggest that the glycosylation of hydroxylysine residues is site-specific.
Collapse
Affiliation(s)
- Ehwang Song
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409, USA
| | | |
Collapse
|
15
|
Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev 2013; 113:2343-94. [PMID: 23438204 PMCID: PMC3751594 DOI: 10.1021/cr3003533] [Citation(s) in RCA: 1007] [Impact Index Per Article: 83.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yaoyang Zhang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bryan R. Fonslow
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bing Shan
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Moon-Chang Baek
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
16
|
Switzar L, Giera M, Niessen WMA. Protein Digestion: An Overview of the Available Techniques and Recent Developments. J Proteome Res 2013; 12:1067-77. [DOI: 10.1021/pr301201x] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Linda Switzar
- AIMMS Division of BioMolecular
Analysis, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Martin Giera
- Division of Molecular Cell Physiology,
Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- Biomolecular Mass Spectrometry
Unit, Department of Parasitology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Wilfried M. A. Niessen
- AIMMS Division of BioMolecular
Analysis, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
- hyphen MassSpec, de Wetstraat 8, 2332 XT Leiden, The Netherlands
| |
Collapse
|
17
|
Song E, Pyreddy S, Mechref Y. Quantification of glycopeptides by multiple reaction monitoring liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:1941-54. [PMID: 22847692 PMCID: PMC3673029 DOI: 10.1002/rcm.6290] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Protein glycosylation has a major influence on functions of proteins. Studies have shown that aberrations in glycosylation are indicative of disease conditions. This has prompted major research activities for comparative studies of glycoproteins in biological samples. Multiple reaction monitoring (MRM) is a highly sensitive technique which has been recently explored for quantitative proteomics. In this work, MRM was adopted for quantification of glycopeptides derived from both model glycoproteins and depleted human blood serum using glycan oxonium ions as transitions. The utilization of oxonium ions aids in identifying the different types of glycans bound to peptide backbones. MRM experiments were optimized by evaluating different parameters that have a major influence on quantification of glycopeptides, which include MRM time segments, number of transitions, and normalized collision energies. The results indicate that oxonium ions could be adopted for the characterization and quantification of glycopeptides in general, eliminating the need to select specific transitions for individual precursor ions. Also, the specificity increased with the number of transitions and a more sensitive analysis can be obtained by providing specific time segments. This approach can be applied to comparative and quantitative studies of glycopeptides in biological samples as illustrated for the case of depleted blood serum sample.
Collapse
Affiliation(s)
| | | | - Yehia Mechref
- Corresponding author Department of Chemistry and Biochemistry Texas Tech University Lubbock, TX 79409-1061 Tel: 806-742-3059 Fax: 806-742-1289
| |
Collapse
|
18
|
Lee WH, Wang CW, Her GR. Staggered multistep elution solid-phase extraction capillary electrophoresis/tandem mass spectrometry: a high-throughput approach in protein analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:2124-2130. [PMID: 21710592 DOI: 10.1002/rcm.5091] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An approach based on staggered multistep elution solid-phase extraction (SPE) capillary electrophoresis/tandem mass spectrometry (CE/MS/MS) was developed in the analysis of digested protein mixtures. On-line coupling of SPE with CE/MS was achieved using a two-leveled two-cross polydimethylsiloxane (PDMS)-based interface. Multistep elution SPE was used prior to CE to provide an additional dimension of separation, thus extending the separation capacity for the peptide mixture analysis. By decreasing in the number of co-eluting peptides, problems stemming from ionization suppression and finite MS/MS duty cycle were reduced. As a result, sequence coverage increased significantly using multistep elution SPE-CE/MS/MS compared to one-step elution SPE-CE/MS/MS in the analysis of a single protein tryptic digest (49% vs. 18%) and a six protein tryptic digest (22-71% vs. 10-44%). A staggered CE method was incorporated to increase the throughput. The electropherograms of consecutive CE runs were partially overlapped by injecting the sample plug at a fixed time interval. With the use of a 5 min injection interval, slightly poor results were obtained in comparison with the sequential CE method while the total analysis time was reduced to 28%.
Collapse
Affiliation(s)
- Wei-Han Lee
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|