1
|
Agostini VO, Martinez ST, Muxagata E, Macedo AJ, Pinho GLL. Antifouling activity of isonitrosoacetanilides against microfouling and macrofouling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26435-26444. [PMID: 36367651 DOI: 10.1007/s11356-022-24016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Biofouling is responsible for structural and economic damage to man-made surfaces. Antifouling paints with biocides have been applied to structures to avoid organism adhesion; however, they have high toxicity and are not able to prevent all biofouling processes, necessitating the periodic mechanical removal of organisms and paint reapplication. Thus, there is an urgent demand for novel, effective, and environmentally friendly antifouling alternatives. As isonitrosoacetanilide is the precursor for many compounds with antibacterial activity, we believe that it could have antifouling activity against microfouling and, consequently, against macrofouling. The aim of this work was to investigate the antifouling potential of six isonitrosoacetanilide compounds and their toxicity. The compounds were employed at different concentrations (0.625-1.25-2.5-5-10 µg mL-1) in this study. The biofilm and planktonic bacteria inhibition and biofilm eradication potential were evaluated by crystal violet assay, while Amphibalus amphitrite barnacle settlement was evaluated by cyprid settlement assay. Toxicity evaluation (LC50 and EC50) was performed with A. amphitrite nauplii II and cyprid larvae. At least one of the tested concentrations of 4-Br-INA, 4-CH3-INA, and 2-Br-INA compounds showed nontoxic antifouling activity against microfouling (antibiofilm) and macrofouling (antisettlement). However, only 4-CH3-INA and 2-Br-INA also showed biofilm eradication potential. These compounds with antibiofilm activity and nontoxic effects could be combined with acrylic base paint resin or added directly into commercial paints in place of toxicant biocides to cover artificial structures as friendly antifouling agents.
Collapse
Affiliation(s)
- Vanessa Ochi Agostini
- Regenera Moléculas do Mar, Centro de Biotecnologia da Universidade Federal do Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, RS, 91501-970, Brazil.
| | - Sabrina Teixeira Martinez
- Centro Interdisciplinar em Energia e Ambiente-CIEnAm, Universidade Federal da Bahia, Salvador, BA, 40170-115, Brazil
- Centro Universitário SENAI-CIMATEC, Salvador, BA, 41650-010, Brazil
| | - Erik Muxagata
- Laboratório de Zooplâncton, Instituto de Oceanografia da Universidade Federal do Rio Grande (FURG), Av. Itália, Km 8, Caixa Postal, 474, Rio Grande, RS, 96203-900, Brazil
| | - Alexandre José Macedo
- Laboratório de Biofilmes e Diversidade Microbiana, Centro de Biotecnologia da, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, RS, 91501-900, Brazil
| | - Grasiela Lopes Leães Pinho
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática, Instituto de Oceanografia da Universidade Federal do Rio Grande (FURG), Caixa Postal, 474, CEP, Rio Grande, RS, 96203-900, Brazil
| |
Collapse
|
2
|
Szymaszek P, Tomal W, Świergosz T, Kamińska-Borek I, Popielarz R, Ortyl J. Review of quantitative and qualitative methods for monitoring photopolymerization reactions. Polym Chem 2023. [DOI: 10.1039/d2py01538b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Authomatic in-situ monitoring and characterization of photopolymerization.
Collapse
|
3
|
|
4
|
Akhtar R, Zahoor AF, Rasool N, Ahmad M, Ali KG. Recent trends in the chemistry of Sandmeyer reaction: a review. Mol Divers 2021; 26:1837-1873. [PMID: 34417715 PMCID: PMC8378299 DOI: 10.1007/s11030-021-10295-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022]
Abstract
Metal-catalyzed reactions play a vital part to construct a variety of pharmaceutically important scaffolds from past few decades. To carry out these reactions under mild conditions with low-cost easily available precursors, various new methodologies have been reported day by day. Sandmeyer reaction is one of these, first discovered by Sandmeyer in 1884. It is a well-known reaction mainly used for the conversion of an aryl amine to an aryl halide in the presence of Cu(I) halide via formation of diazonium salt intermediate. This reaction can be processed with or without copper catalysts for the formation of C-X (X = Cl, Br, I, etc.), C-CF3/CF2, C-CN, C-S, etc., linkages. As a result, corresponding aryl halides, trifluoromethylated compounds, aryl nitriles and aryl thioethers can be obtained which are effectively used for the construction of biologically active compounds. This review article discloses various literature reports about Sandmeyer-related transformations developed during 2000-2021 which give different ideas to synthetic chemists about further development of new and efficient protocols for Sandmeyer reaction. An updated compilation of new approaches for Sandmeyer reaction is described in this review to construct a variety of carbon-halogen, carbon-phosphorous, carbon-sulfur, carbon-boron etc. linkages.
Collapse
Affiliation(s)
- Rabia Akhtar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Nasir Rasool
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Kulsoom Ghulam Ali
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
5
|
Yan X, Bain RM, Cooks RG. Organic Reactions in Microdroplets: Reaction Acceleration Revealed by Mass Spectrometry. Angew Chem Int Ed Engl 2018; 55:12960-12972. [PMID: 27530279 DOI: 10.1002/anie.201602270] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 11/10/2022]
Abstract
The striking finding that reaction acceleration occurs in confined-volume solutions sets up an apparent conundrum: Microdroplets formed by spray ionization can be used to monitor the course of bulk-phase reactions and also to accelerate reactions between the reagents in such a reaction. This Minireview introduces droplet and thin-film acceleration phenomena and summarizes recent methods applied to study accelerated reactions in confined-volume, high-surface-area solutions. Conditions that dictate either simple monitoring or acceleration are reconciled in the occurrence of discontinuous and complete desolvation as the endpoint of droplet evolution. The contrasting features of microdroplet and bulk-solution reactions are described together with possible mechanisms that drive reaction acceleration in microdroplets. Current applications of droplet microreactors are noted as is reaction acceleration in confined volumes and possible future scale-up.
Collapse
Affiliation(s)
- Xin Yan
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - Ryan M Bain
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| | - R Graham Cooks
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
6
|
McBride EM, Verbeck GF. A Mass Spectrometer in Every Fume Hood. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1555-1566. [PMID: 29881996 DOI: 10.1007/s13361-018-1964-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/08/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
Since their inception, mass spectrometers have played a pivotal role in the direction and application of synthetic chemical research. The ability to develop new instrumentation to solve current analytical challenges in this area has always been at the heart of mass spectrometry, although progress has been slow at times. Herein, we briefly review the history of how mass spectrometry has been used to approach challenges in organic chemistry, how new developments in portable instrumentation and ambient ionization have been used to open novel areas of research, and how current techniques have the ability to expand on our knowledge of synthetic mechanisms and kinetics. Lastly, we discuss the relative paucity of work done in recent years to embrace the concept of improving benchtop synthetic chemistry with mass spectrometry, the disconnect between applications and fundamentals within these studies, and what hurdles still need to be overcome. Graphical Abstract.
Collapse
Affiliation(s)
- Ethan M McBride
- Department of Chemistry, University of North Texas, Denton, TX,, 76203, USA
| | - Guido F Verbeck
- Department of Chemistry, University of North Texas, Denton, TX,, 76203, USA.
- CHEM 195, 1508 West Mulberry Street, Denton, TX, 76201, USA.
| |
Collapse
|
7
|
Affiliation(s)
- Joris J. Haven
- Polymer Reaction Design Group; Institute for Materials Research (imo-imomec); Hasselt University; Campus Diepenbeek Building D 3590 Diepenbeek Belgium
| | - Tanja Junkers
- Polymer Reaction Design Group; Institute for Materials Research (imo-imomec); Hasselt University; Campus Diepenbeek Building D 3590 Diepenbeek Belgium
- IMEC division IMOMEC; Wetenschapspark 1 3590 Diepenbeek Belgium
| |
Collapse
|
8
|
Pulliam CJ, Bain RM, Osswald HL, Snyder DT, Fedick PW, Ayrton ST, Flick TG, Cooks RG. Simultaneous Online Monitoring of Multiple Reactions Using a Miniature Mass Spectrometer. Anal Chem 2017; 89:6969-6975. [PMID: 28520396 DOI: 10.1021/acs.analchem.7b00119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Christopher J. Pulliam
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Ryan M. Bain
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Heather L. Osswald
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Dalton T. Snyder
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Patrick W. Fedick
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Stephen T. Ayrton
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Tawnya G. Flick
- Department
of Attribute Sciences, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - R. Graham Cooks
- Department
of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
- Center for Analytical Instrumentation Development, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Loren BP, Wleklinski M, Koswara A, Yammine K, Hu Y, Nagy ZK, Thompson DH, Cooks RG. Mass spectrometric directed system for the continuous-flow synthesis and purification of diphenhydramine. Chem Sci 2017; 8:4363-4370. [PMID: 28979759 PMCID: PMC5580336 DOI: 10.1039/c7sc00905d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/10/2017] [Indexed: 12/30/2022] Open
Abstract
A highly integrated approach to the development of a process for the continuous synthesis and purification of diphenhydramine is reported. Mass spectrometry (MS) is utilized throughout the system for on-line reaction monitoring, off-line yield quantitation, and as a reaction screening module that exploits reaction acceleration in charged microdroplets for high throughput route screening. This effort has enabled the discovery and optimization of multiple routes to diphenhydramine in glass microreactors using MS as a process analytical tool (PAT). The ability to rapidly screen conditions in charged microdroplets was used to guide optimization of the process in a microfluidic reactor. A quantitative MS method was developed and used to measure the reaction kinetics. Integration of the continuous-flow reactor/on-line MS methodology with a miniaturized crystallization platform for continuous reaction monitoring and controlled crystallization of diphenhydramine was also achieved. Our findings suggest a robust approach for the continuous manufacture of pharmaceutical drug products, exemplified in the particular case of diphenhydramine, and optimized for efficiency and crystal size, and guided by real-time analytics to produce the agent in a form that is readily adapted to continuous synthesis.
Collapse
Affiliation(s)
- Bradley P Loren
- Department of Chemistry , Purdue University , West Lafayette , IN 47907 , USA . ;
| | - Michael Wleklinski
- Department of Chemistry , Purdue University , West Lafayette , IN 47907 , USA . ;
| | - Andy Koswara
- Department of Chemical Engineering , Purdue University , West Lafayette , IN 47907 , USA .
| | - Kathryn Yammine
- Department of Chemistry , Purdue University , West Lafayette , IN 47907 , USA . ;
| | - Yanyang Hu
- Department of Chemistry , Purdue University , West Lafayette , IN 47907 , USA . ;
| | - Zoltan K Nagy
- Department of Chemical Engineering , Purdue University , West Lafayette , IN 47907 , USA .
| | - David H Thompson
- Department of Chemistry , Purdue University , West Lafayette , IN 47907 , USA . ;
| | - R Graham Cooks
- Department of Chemistry , Purdue University , West Lafayette , IN 47907 , USA . ;
| |
Collapse
|
10
|
Kämpfer A, La Spina R, Gilliland D, Valzacchi S, Asturiol D, Stone V, Kinsner-Ovaskainen A. Silver Nanoparticles and Metallic Silver Interfere with the Griess Reaction: Reduction of Azo Dye Formation via a Competing Sandmeyer-Like Reaction. Chem Res Toxicol 2017; 30:1030-1037. [PMID: 28282135 DOI: 10.1021/acs.chemrestox.6b00280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Silver (Ag) is the most common nanomaterial (NM) in consumer products. Much research has been focused on elucidating the potential impact of Ag-containing NMs on human health, e.g., cytotoxicity, genotoxicity, or proinflammatory responses. In the case of proinflammatory responses, a frequently used end point is the induction of nitric oxide (NO), which is indirectly quantified as nitrite (NO2-) with the Griess reaction. After preliminary studies in a macrophage-like cell culture system showed anomalous false negative results in the presence of silver nanoparticles (Ag NPs), we studied the influence of Ag on the detection of NO2- in a cell-free environment. Solutions containing a known concentration of NaNO2 were prepared in H2O, PBS, or complete cell culture medium (CCM) and analyzed using the Griess reaction in the presence of Ag in its metallic or ionic state. In Milli-Q H2O, the impact of salts on the detection was investigated using NaCl and KBr. After completion of the Griess reaction, the samples were analyzed spectrophotometrically or chromatographically. It was found that the presence of metallic but not ionic Ag interfered with the quantification of NO2-. The effect was more pronounced in PBS and H2O containing NaCl or KBr. The chromatographical analysis provided evidence of a competing reaction consuming the intermediate diazonium salt, which is critical to the Griess reaction. These findings demonstrate yet another substantial interference of NMs with a frequently used in vitro assay. If gone unnoticed, this interference might cause false negative results and an impaired hazard assessment of Ag NMs.
Collapse
Affiliation(s)
- Angela Kämpfer
- European Commission Joint Research Centre , Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 125, 21027 Ispra, Varese, Italy
| | - Rita La Spina
- European Commission Joint Research Centre , Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 125, 21027 Ispra, Varese, Italy
| | - Douglas Gilliland
- European Commission Joint Research Centre , Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 125, 21027 Ispra, Varese, Italy
| | - Sandro Valzacchi
- European Commission Joint Research Centre , Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 125, 21027 Ispra, Varese, Italy
| | - David Asturiol
- European Commission Joint Research Centre , Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 125, 21027 Ispra, Varese, Italy
| | - Vicki Stone
- Nanosafety Research Group, School of Life Sciences, Heriot-Watt University , Edinburgh EH14 4AS, United Kingdom
| | - Agnieszka Kinsner-Ovaskainen
- European Commission Joint Research Centre , Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 125, 21027 Ispra, Varese, Italy
| |
Collapse
|
11
|
Yan X, Bain RM, Cooks RG. Organische Reaktionen in Mikrotröpfchen: Analyse von Reaktionsbeschleunigungen durch Massenspektrometrie. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602270] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xin Yan
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - Ryan M. Bain
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| | - R. Graham Cooks
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette IN 47907 USA
| |
Collapse
|
12
|
Sans V, Cronin L. Towards dial-a-molecule by integrating continuous flow, analytics and self-optimisation. Chem Soc Rev 2016; 45:2032-43. [PMID: 26815081 PMCID: PMC6057606 DOI: 10.1039/c5cs00793c] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The employment of continuous-flow platforms for synthetic chemistry is becoming increasingly popular in research and industrial environments. Integrating analytics in-line enables obtaining a large amount of information in real-time about the reaction progress, catalytic activity and stability, etc. Furthermore, it is possible to influence the reaction progress and selectivity via manual or automated feedback optimisation, thus constituting a dial-a-molecule approach employing digital synthesis. This contribution gives an overview of the most significant contributions in the field to date.
Collapse
Affiliation(s)
- Victor Sans
- Department of Chemical and Environmental Engineering, University of Nottingham, NG7 2RD, UK.
| | | |
Collapse
|
13
|
|
14
|
Sans V, Porwol L, Dragone V, Cronin L. A self optimizing synthetic organic reactor system using real-time in-line NMR spectroscopy. Chem Sci 2015; 6:1258-1264. [PMID: 29560211 PMCID: PMC5811122 DOI: 10.1039/c4sc03075c] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/14/2014] [Indexed: 12/21/2022] Open
Abstract
A configurable platform for synthetic chemistry incorporating an in-line benchtop NMR that is capable of monitoring and controlling organic reactions in real-time is presented. The platform is controlled via a modular LabView software control system for the hardware, NMR, data analysis and feedback optimization. Using this platform we report the real-time advanced structural characterization of reaction mixtures, including 19F, 13C, DEPT, 2D NMR spectroscopy (COSY, HSQC and 19F-COSY) for the first time. Finally, the potential of this technique is demonstrated through the optimization of a catalytic organic reaction in real-time, showing its applicability to self-optimizing systems using criteria such as stereoselectivity, multi-nuclear measurements or 2D correlations.
Collapse
Affiliation(s)
- Victor Sans
- WestCHEM , School of Chemistry , The University of Glasgow , Glasgow G12 8QQ , UK . ; http://www.croninlab.com
| | - Luzian Porwol
- WestCHEM , School of Chemistry , The University of Glasgow , Glasgow G12 8QQ , UK . ; http://www.croninlab.com
| | - Vincenza Dragone
- WestCHEM , School of Chemistry , The University of Glasgow , Glasgow G12 8QQ , UK . ; http://www.croninlab.com
| | - Leroy Cronin
- WestCHEM , School of Chemistry , The University of Glasgow , Glasgow G12 8QQ , UK . ; http://www.croninlab.com
| |
Collapse
|
15
|
Haven JJ, Vandenbergh J, Junkers T. Watching polymers grow: real time monitoring of polymerizations via an on-line ESI-MS/microreactor coupling. Chem Commun (Camb) 2015; 51:4611-4614. [DOI: 10.1039/c4cc10426a] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A microreactor/electrospray ionization MS coupling is introduced that allows us to observe and optimize polymerization reactions with respect to chain length and endgroup patterns in real time under synthesis conditions, which was not possible before.
Collapse
Affiliation(s)
- Joris J. Haven
- Polymer Reaction Design Group
- Institute for Materials Research (IMO) Universiteit Hasselt
- Agoralaan D
- B-3590 Diepenbeek
- Belgium
| | - Joke Vandenbergh
- Polymer Reaction Design Group
- Institute for Materials Research (IMO) Universiteit Hasselt
- Agoralaan D
- B-3590 Diepenbeek
- Belgium
| | - Tanja Junkers
- Polymer Reaction Design Group
- Institute for Materials Research (IMO) Universiteit Hasselt
- Agoralaan D
- B-3590 Diepenbeek
- Belgium
| |
Collapse
|
16
|
Abstract
Isatins are valuable intermediates for heterocyclic chemistry. Most of the common methods for their production are less than adequate when the number and lipophilicity of substituents on the targeted isatin are increased. Our group desired such molecules and identified an alternative method for their production.
Collapse
Affiliation(s)
- Larry L Klein
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois-60612
| | | |
Collapse
|
17
|
Zhu W, Yuan Y, Zhou P, Zeng L, Wang H, Tang L, Guo B, Chen B. The expanding role of electrospray ionization mass spectrometry for probing reactive intermediates in solution. Molecules 2012; 17:11507-37. [PMID: 23018925 PMCID: PMC6268401 DOI: 10.3390/molecules171011507] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/29/2012] [Accepted: 09/05/2012] [Indexed: 12/31/2022] Open
Abstract
Within the past decade, electrospray ionization mass spectrometry (ESI-MS) has rapidly occupied a prominent position for liquid-phase mechanistic studies due to its intrinsic advantages allowing for efficient "fishing" (rapid, sensitive, specific and simultaneous detection/identification) of multiple intermediates and products directly from a "real-world" solution. In this review we attempt to offer a comprehensive overview of the ESI-MS-based methodologies and strategies developed up to date to study reactive species in reaction solutions. A full description of general issues involved with probing reacting species from complex (bio)chemical reaction systems is briefly covered, including the potential sources of reactive intermediate (metabolite) generation, analytical aspects and challenges, basic rudiments of ESI-MS and the state-of-the-art technology. The main purpose of the present review is to highlight the utility of ESI-MS and its expanding role in probing reactive intermediates from various reactions in solution, with special focus on current progress in ESI-MS-based approaches for improving throughput, testing reality and real-time detection by using newly developed MS instruments and emerging ionization sources (such as ambient ESI techniques). In addition, the limitations of modern ESI-MS in detecting intermediates in organic reactions is also discussed.
Collapse
Affiliation(s)
- Weitao Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Yu Yuan
- School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha 410013, China;
| | - Peng Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Le Zeng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Hua Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Ling Tang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Bin Guo
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, 36 Lushan Road, Changsha 410081, China; (W.Z.); (P.Z.); (L.Z.); (H.W.); (L.T.); (B.C.)
| |
Collapse
|
18
|
Shankaraiah N, Markandeya N, Srinivasulu V, Sreekanth K, Reddy CS, Santos LS, Kamal A. A One-Pot Azido Reductive Tandem Mono-N-Alkylation Employing Dialkylboron Triflates: Online ESI-MS Mechanistic Investigation. J Org Chem 2011; 76:7017-26. [DOI: 10.1021/jo200931m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nagula Shankaraiah
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500 037, India
| | - Nagula Markandeya
- Department of Chemistry, Kakatiya University, Warangal 506 009, A.P, India
| | - Vunnam Srinivasulu
- Division of Organic Chemistry, Indian Institute of Chemical Technology, Hyderabad 500 607, India
| | - Kokkonda Sreekanth
- Division of Organic Chemistry, Indian Institute of Chemical Technology, Hyderabad 500 607, India
| | - Ch. Sanjeeva Reddy
- Department of Chemistry, Kakatiya University, Warangal 506 009, A.P, India
| | - Leonardo S. Santos
- Laboratory of Asymmetric Synthesis, Chemistry Institute of Natural Resources, University of Talca, Talca, P.O. Box 747, Chile
| | - Ahmed Kamal
- Division of Organic Chemistry, Indian Institute of Chemical Technology, Hyderabad 500 607, India
- Catalytic Chemistry Chair, Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|