1
|
Di Marco Pisciottano I, Gallo P. A cyanobacterial outbreak in Lake Avernus: Targeted and untargeted analyses and follow up actions for food safety. CHEMOSPHERE 2025; 370:144006. [PMID: 39708947 DOI: 10.1016/j.chemosphere.2024.144006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
A massive Planktothrix rubescens bloom was observed during 2022 in the Lake Avernus, a volcanic lake located in Campania Region (Southern Italy). The cyanobacterial mass migrated, through a channel, to the near Gulf of Pozzuoli, causing the contamination of two marine sites dedicated to mussel farming, thus posing a potential risk for consumers' health. Mussel and water samples, from both the sea and the lake were collected weekly and analyzed by liquid chromatography coupled to tandem mass spectrometry, for identification and quantification of 10 microcystins. Moreover, the samples were analyzed by high resolution mass spectrometry in untargeted mode to determine other cyanotoxins basing on the accurate mass of the precursor ions and their MS/MS spectra. The microcystins were not detected at all, whereas other bioactive peptides, such as anabaenopeptins and oscillamide Y, were detected according to the toxicological profiles described for Planktothrix rubescens in the scientific literature. The case reported represents a modern approach for rapid characterization of some environmental outbreaks, as well as an example regarding how the public Health Authority can manage the possible risk for food safety, due to unknown substances and to enforce legal follow up actions.
Collapse
Affiliation(s)
- Ilaria Di Marco Pisciottano
- Department of Chemistry, Istituto Zooprofilattico Sperimentale del Mezzogiorno, via Salute 2, Portici, Naples, 80055, Italy.
| | - Pasquale Gallo
- Department of Chemistry, Istituto Zooprofilattico Sperimentale del Mezzogiorno, via Salute 2, Portici, Naples, 80055, Italy
| |
Collapse
|
2
|
Zervou SK, Kaloudis T, Gkelis S, Hiskia A, Mazur-Marzec H. Anabaenopeptins from Cyanobacteria in Freshwater Bodies of Greece. Toxins (Basel) 2021; 14:4. [PMID: 35050981 PMCID: PMC8781842 DOI: 10.3390/toxins14010004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022] Open
Abstract
Cyanobacteria are photosynthetic microorganisms that are able to produce a large number of secondary metabolites. In freshwaters, under favorable conditions, they can rapidly multiply, forming blooms, and can release their toxic/bioactive metabolites in water. Among them, anabaenopeptins (APs) are a less studied class of cyclic bioactive cyanopeptides. The occurrence and structural variety of APs in cyanobacterial blooms and cultured strains from Greek freshwaters were investigated. Cyanobacterial extracts were analyzed with LC-qTRAP MS/MS using information-dependent acquisition in enhanced ion product mode in order to obtain the fragmentation mass spectra of APs. Thirteen APs were detected, and their possible structures were annotated based on the elucidation of fragmentation spectra, including three novel ones. APs were present in the majority of bloom samples (91%) collected from nine Greek lakes during different time periods. A large variety of APs was observed, with up to eight congeners co-occurring in the same sample. AP F (87%), Oscillamide Y (87%) and AP B (65%) were the most frequently detected congeners. Thirty cyanobacterial strain cultures were also analyzed. APs were only detected in one strain (Microcystis ichtyoblabe). The results contribute to a better understanding of APs produced by freshwater cyanobacteria and expand the range of structurally characterized APs.
Collapse
Affiliation(s)
- Sevasti-Kiriaki Zervou
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str., 15310 Athens, Greece; (T.K.); (A.H.)
| | - Triantafyllos Kaloudis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str., 15310 Athens, Greece; (T.K.); (A.H.)
| | - Spyros Gkelis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anastasia Hiskia
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Centre for Scientific Research “Demokritos”, Patriarchou Grigoriou E & 27 Neapoleos Str., 15310 Athens, Greece; (T.K.); (A.H.)
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland;
| |
Collapse
|
3
|
Köcher S, Resch S, Kessenbrock T, Schrapp L, Ehrmann M, Kaiser M. From dolastatin 13 to cyanopeptolins, micropeptins, and lyngbyastatins: the chemical biology of Ahp-cyclodepsipeptides. Nat Prod Rep 2021; 37:163-174. [PMID: 31451830 DOI: 10.1039/c9np00033j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 1989 up to 2019 Ahp-cyclodepsipeptides (also known as Ahp-containing cyclodepsipeptides, cyanopeptolins, micropeptins, microginines, and lyngbyastatins, and by many other names) are a family of non-ribosomal peptide synthesis (NRPS)-derived natural products with potent serine protease inhibitory properties. Here, we review their isolation and structural elucidation from natural sources as well as studies of their biosynthesis, molecular mode of action, and use in drug discovery efforts. Accordingly, this summary aims to provide a comprehensive overview of the current state-of-the-art Ahp-cyclodepsipeptide research.
Collapse
Affiliation(s)
- Steffen Köcher
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Sarah Resch
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Till Kessenbrock
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Lukas Schrapp
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Michael Ehrmann
- Microbiology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Markus Kaiser
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| |
Collapse
|
4
|
Flores C, Caixach J. High Levels of Anabaenopeptins Detected in a Cyanobacteria Bloom from N.E. Spanish Sau-Susqueda-El Pasteral Reservoirs System by LC-HRMS. Toxins (Basel) 2020; 12:toxins12090541. [PMID: 32842578 PMCID: PMC7551688 DOI: 10.3390/toxins12090541] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
The appearance of a bloom of cyanobacteria in the Sau-Susqueda-El Pasteral system (River Ter, NE Spain) in the autumn of 2015 has been the most recent episode of extensive bloom detected in Catalonia. This system is devoted mainly to urban supply, regulation of the river, irrigation and production of hydroelectric energy. In fact, it is one of the main supply systems for the metropolitan area of cities such as Barcelona and Girona. An assessment and management plan was implemented in order to minimize the risk associated to cyanobacteria. The reservoir was confined and periodic sampling was carried out. Low and high toxicity was detected by cell bioassays with human cell lines. Additionally, analysis studies were performed by enzyme-linked immunosorbent assay (ELISA) and liquid chromatography–high resolution mass spectrometry (LC–HRMS). A microcystin target analysis and suspect screening of microcystins, nodularins, cylindrosperpmopsin and related cyanobacterial peptides by LC–HRMS were applied. The results for the analysis of microcystins were negative (<0.3 μg/L) in all the surface samples. Only traces of microcystin-LR, -RR and -dmRR were detected by LC–HRMS in a few ng/L from both fractions, aqueous and sestonic. In contrast, different anabaenopeptins and oscillamide Y at unusually high concentrations (µg-mg/L) were observed. To our knowledge, no previous studies have detected these bioactive peptides at such high levels. The reliable identification of these cyanobacterial peptides was achieved by HRMS. Although recently these peptides are detected frequently worldwide, these bioactive compounds have received little attention. Therefore, more studies on these substances are recommended, especially on their toxicity, health risk and presence in water resources.
Collapse
|
5
|
Filatova D, Núñez O, Farré M. Ultra-Trace Analysis of Cyanotoxins by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Toxins (Basel) 2020; 12:toxins12040247. [PMID: 32290413 PMCID: PMC7232229 DOI: 10.3390/toxins12040247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
The increasing frequency of episodes of harmful algal blooms of cyanobacterial origin is a risk to ecosystems and human health. The main human hazard may arise from drinking water supply and recreational water use. For this reason, efficient multiclass analytical methods are needed to assess the level of cyanotoxins in water reservoirs and tackle these problems. This work describes the development of a fast, sensitive, and robust analytical method for multiclass cyanotoxins determination based on dual solid-phase extraction (SPE) procedure using a polymeric cartridge, Oasis HLB (Waters Corporation, Milford, MA, USA), and a graphitized non-porous carbon cartridge, SupelcleanTM ENVI-CarbTM (Sigma-Aldrich, St. Louis, MO, USA), followed by ultra-high-performance liquid chromatography high-resolution mass spectrometry (SPE-UHPLC-HRMS). This method enabled the analysis of cylindrospermopsin, anatoxin-a, nodularin, and seven microcystins (MC-LR, MC-RR, MC-YR, MC-LA, MC-LY, MC-LW, MC-LF). The method limits of detection (MLOD) of the validated approach were between 4 and 150 pg/L. The analytical method was applied to assess the presence of the selected toxins in 21 samples collected in three natural water reservoirs in the Ter River in Catalonia (NE of Spain) used to produce drinking water for Barcelona city (Spain).
Collapse
Affiliation(s)
- Daria Filatova
- Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain;
| | - Oscar Núñez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain;
- Serra Húnter Professor, Generalitat de Catalunya, 08007 Barcelona, Spain
| | - Marinella Farré
- Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain;
- Correspondence:
| |
Collapse
|
6
|
Huang IS, Zimba PV. Cyanobacterial bioactive metabolites-A review of their chemistry and biology. HARMFUL ALGAE 2019; 86:139-209. [PMID: 31358273 DOI: 10.1016/j.hal.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/14/2018] [Accepted: 11/16/2018] [Indexed: 06/10/2023]
Abstract
Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süβwasserflora von Mitteleuropa volumes 19(1-3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds. Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.
Collapse
Affiliation(s)
- I-Shuo Huang
- Center for Coastal Studies, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Paul V Zimba
- Center for Coastal Studies, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
7
|
Huang IS, Zimba PV. Cyanobacterial bioactive metabolites-A review of their chemistry and biology. HARMFUL ALGAE 2019; 83:42-94. [PMID: 31097255 DOI: 10.1016/j.hal.2018.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/14/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süβwasserflora von Mitteleuropa volumes 19(1-3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds. Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.
Collapse
Affiliation(s)
- I-Shuo Huang
- Center for Coastal Studies, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Paul V Zimba
- Center for Coastal Studies, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
8
|
Bogialli S, Bortolini C, Di Gangi IM, Di Gregorio FN, Lucentini L, Favaro G, Pastore P. Liquid chromatography-high resolution mass spectrometric methods for the surveillance monitoring of cyanotoxins in freshwaters. Talanta 2017; 170:322-330. [DOI: 10.1016/j.talanta.2017.04.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
|
9
|
Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate. Sci Rep 2016; 6:21871. [PMID: 26911915 PMCID: PMC4766472 DOI: 10.1038/srep21871] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/02/2016] [Indexed: 11/29/2022] Open
Abstract
Traditional cheeses harbour complex microbial consortia that play an important role in shaping typical sensorial properties. However, the microbial metabolism is considered difficult to control. Microbial community succession and the related gene expression were analysed during ripening of a traditional Italian cheese, identifying parameters that could be modified to accelerate ripening. Afterwards, we modulated ripening conditions and observed consistent changes in microbial community structure and function. We provide concrete evidence of the essential contribution of non-starter lactic acid bacteria in ripening-related activities. An increase in the ripening temperature promoted the expression of genes related to proteolysis, lipolysis and amino acid/lipid catabolism and significantly increases the cheese maturation rate. Moreover, temperature-promoted microbial metabolisms were consistent with the metabolomic profiles of proteins and volatile organic compounds in the cheese. The results clearly indicate how processing-driven microbiome responses can be modulated in order to optimize production efficiency and product quality.
Collapse
|
10
|
The evolution of analytical chemistry methods in foodomics. J Chromatogr A 2016; 1428:3-15. [DOI: 10.1016/j.chroma.2015.09.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/26/2015] [Accepted: 09/02/2015] [Indexed: 12/18/2022]
|
11
|
Flores C, Caixach J. An integrated strategy for rapid and accurate determination of free and cell-bound microcystins and related peptides in natural blooms by liquid chromatography-electrospray-high resolution mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry using both positive and negative ionization modes. J Chromatogr A 2015; 1407:76-89. [PMID: 26141269 DOI: 10.1016/j.chroma.2015.06.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/13/2015] [Accepted: 06/11/2015] [Indexed: 12/20/2022]
Abstract
An integrated high resolution mass spectrometry (HRMS) strategy has been developed for rapid and accurate determination of free and cell-bound microcystins (MCs) and related peptides in water blooms. The natural samples (water and algae) were filtered for independent analysis of aqueous and sestonic fractions. These fractions were analyzed by MALDI-TOF/TOF-MS and ESI-Orbitrap-HCD-MS. MALDI, ESI and the study of fragmentation sequences have been provided crucial structural information. The potential of combined positive and negative ionization modes, full scan and fragmentation acquisition modes (TOF/TOF and HCD) by HRMS and high resolution and accurate mass was investigated in order to allow unequivocal determination of MCs. Besides, a reliable quantitation has been possible by HRMS. This composition helped to decrease the probability of false positives and negatives, as alternative to commonly used LC-ESI-MS/MS methods. The analysis was non-target, therefore covered the possibility to analyze all MC analogs concurrently without any pre-selection of target MC. Furthermore, archived data was subjected to retrospective "post-targeted" analysis and a screening of other potential toxins and related peptides as anabaenopeptins in the samples was done. Finally, the MS protocol and identification tools suggested were applied to the analysis of characteristic water blooms from Spanish reservoirs.
Collapse
Affiliation(s)
- Cintia Flores
- Mass Spectrometry Laboratory/Organic Pollutants, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain.
| | - Josep Caixach
- Mass Spectrometry Laboratory/Organic Pollutants, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| |
Collapse
|
12
|
Sanz M, Andreote APD, Fiore MF, Dörr FA, Pinto E. Structural Characterization of New Peptide Variants Produced by Cyanobacteria from the Brazilian Atlantic Coastal Forest Using Liquid Chromatography Coupled to Quadrupole Time-of-Flight Tandem Mass Spectrometry. Mar Drugs 2015; 13:3892-919. [PMID: 26096276 PMCID: PMC4483662 DOI: 10.3390/md13063892] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/14/2015] [Accepted: 05/21/2015] [Indexed: 12/25/2022] Open
Abstract
Cyanobacteria from underexplored and extreme habitats are attracting increasing attention in the search for new bioactive substances. However, cyanobacterial communities from tropical and subtropical regions are still largely unknown, especially with respect to metabolite production. Among the structurally diverse secondary metabolites produced by these organisms, peptides are by far the most frequently described structures. In this work, liquid chromatography/electrospray ionization coupled to high resolution quadrupole time-of-flight tandem mass spectrometry with positive ion detection was applied to study the peptide profile of a group of cyanobacteria isolated from the Southeastern Brazilian coastal forest. A total of 38 peptides belonging to three different families (anabaenopeptins, aeruginosins, and cyanopeptolins) were detected in the extracts. Of the 38 peptides, 37 were detected here for the first time. New structural features were proposed based on mass accuracy data and isotopic patterns derived from full scan and MS/MS spectra. Interestingly, of the 40 surveyed strains only nine were confirmed to be peptide producers; all of these strains belonged to the order Nostocales (three Nostoc sp., two Desmonostoc sp. and four Brasilonema sp.).
Collapse
Affiliation(s)
- Miriam Sanz
- Faculty of Pharmaceutical Science, University of São Paulo, Avenida Lineu Prestes 580, Bl-17-05508-900 São Paulo, SP, Brazil.
| | - Ana Paula Dini Andreote
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, 13400-970 Piracicaba, SP, Brazil.
| | - Marli Fatima Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, 13400-970 Piracicaba, SP, Brazil.
| | - Felipe Augusto Dörr
- Faculty of Pharmaceutical Science, University of São Paulo, Avenida Lineu Prestes 580, Bl-17-05508-900 São Paulo, SP, Brazil.
| | - Ernani Pinto
- Faculty of Pharmaceutical Science, University of São Paulo, Avenida Lineu Prestes 580, Bl-17-05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
13
|
Bortoli S, Volmer DA. Account: characterization and identification of microcystins by mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2014; 20:1-19. [PMID: 24881451 DOI: 10.1255/ejms.1250] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this brief overview, the authors describe mass spectral techniques for the detection and identification of microcystin toxins. Microcystins are secondary metabolites produced by cyanobacteria. Determination of these toxic compounds and discovery of new variants is very important as they pose a great danger to the human food chain. Cyanobacterial blooms frequently occur in many areas worldwide and have the potential to contaminate the water via cyanotoxin release, especially microcystins. Among the various analytical techniques used for analysis, mass spectrometry has become the most important method as it allows simultaneous quantification and structural characterization of multiple microcystin variants. This brief overview article focuses on mass spectrometry techniques for identification of microcystins, including ionization methods, mass spectral fragmentation routes, profiling techniques, tandem and high-resolution mass spectrometry as well as typing of cyanobacterial strains.
Collapse
|
14
|
Roegner AF, Schirmer MP, Puschner B, Brena B, Gonzalez-Sapienza G. Rapid quantitative analysis of microcystins in raw surface waters with MALDI MS utilizing easily synthesized internal standards. Toxicon 2013; 78:94-102. [PMID: 24388801 DOI: 10.1016/j.toxicon.2013.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/13/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
Abstract
The freshwater cyanotoxins, microcystins (MCs), pose a global public health threat as potent hepatotoxins in cyanobacterial blooms; their persistence in drinking and recreational water has been associated with potential chronic effects in addition to acute intoxications. Rapid and accurate detection of the over 80 structural congeners is challenged by the rigorous and time consuming clean up required to overcome interference found in raw water samples. MALDI-MS has shown promise for rapid quantification of individual congeners in raw water samples, with very low operative cost, but so far limited sensitivity and lack of available and versatile internal standards (ISs) has limited its use. Two easily synthesized S-hydroxyethyl-Cys(7)-MC-LR and -RR ISs were used to generate linear standard curves in a reflectron MALDI instrument, reproducible across several orders of magnitude for MC-LR, -RR and -YR. Minimum quantification limits in direct water samples with no clean up or concentration step involved were consistently below 7 μg/L, with recoveries from spiked samples between 80 and 119%. This method improves sensitivity by 30 fold over previous reports of quantitative MALDI-TOF applications to MCs and provides a salient option for rapid throughput analysis for multiple MC congeners in untreated raw surface water blooms as a means to identify source public health threats and target intervention strategies within a watershed. As demonstrated by analysis of a set of samples from Uruguay, utilizing the reaction of different MC congeners with alternate sulfhydryl compounds, the m/z of the IS can be customized to avoid overlap with interfering compounds in local surface water samples.
Collapse
Affiliation(s)
- Amber F Roegner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Macarena Pírez Schirmer
- Cátedra de Bioquímica, Facultad de Química, Universidad de la República, Montevideo, Uruguay; Cátedra Inmunología, Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay
| | - Birgit Puschner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Beatriz Brena
- Cátedra de Bioquímica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Gualberto Gonzalez-Sapienza
- Cátedra Inmunología, Facultad de Química, Universidad de la República, Instituto de Higiene, Montevideo, Uruguay.
| |
Collapse
|
15
|
|
16
|
Pailleux F, Beaudry F. Internal standard strategies for relative and absolute quantitation of peptides in biological matrices by liquid chromatography tandem mass spectrometry. Biomed Chromatogr 2012; 26:881-91. [PMID: 22714939 DOI: 10.1002/bmc.2757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/23/2012] [Indexed: 01/08/2023]
Affiliation(s)
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animal du Québec (GREPAQ), Département de biomédecine vétérinaire, Faculté de médecine vétérinaire; Université de Montréal, Saint-Hyacinthe; Québec; Canada
| |
Collapse
|
17
|
Emami K, Askari V, Ullrich M, Mohinudeen K, Anil AC, Khandeparker L, Burgess JG, Mesbahi E. Characterization of bacteria in ballast water using MALDI-TOF mass spectrometry. PLoS One 2012; 7:e38515. [PMID: 22685576 PMCID: PMC3369924 DOI: 10.1371/journal.pone.0038515] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/07/2012] [Indexed: 11/29/2022] Open
Abstract
To evaluate a rapid and cost-effective method for monitoring bacteria in ballast water, several marine bacterial isolates were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Since International Maritime Organization (IMO) regulations are concerned with the unintended transportation of pathogenic bacteria through ballast water, emphasis was placed on detecting species of Vibrio, enterococci and coliforms. Seawater samples collected from the North Sea were incubated in steel ballast tanks and the presence of potentially harmful species of Pseudomonas was also investigated. At the genus-level, the identification of thirty six isolates using MALDI-TOF MS produced similar results to those obtained by 16S rRNA gene sequencing. No pathogenic species were detected either by 16S rRNA gene analysis or by MALDI-TOF MS except for the opportunistically pathogenic bacterium Pseudomonas aeruginosa. In addition, in house software that calculated the correlation coefficient values (CCV) of the mass spectral raw data and their variation was developed and used to allow the rapid and efficient identification of marine bacteria in ballast water for the first time.
Collapse
Affiliation(s)
- Kaveh Emami
- School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|