1
|
Zhang Y, Chen T, Chen D, Liang W, Lu X, Zhao C, Xu G. Suspect and nontarget screening of mycotoxins and their modified forms in wheat products based on ultrahigh-performance liquid chromatography-high resolution mass spectrometry. J Chromatogr A 2023; 1708:464370. [PMID: 37717452 DOI: 10.1016/j.chroma.2023.464370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
Various forms of mycotoxins commonly exist in food and pose a significant risk to human health. Here a comprehensive suspect and nontarget screening strategy for both parent and modified mycotoxins was developed using ultrahigh-performance liquid chromatography-high resolution mass spectrometry (UHPLCHRMS). We constructed an in-house MS/MS database containing 82 mycotoxins in 8 categories. Then fragmentation characteristics of different classes of mycotoxins were rapidly extracted by a Python program "Fragmentation pattern screener (FPScreener)" and nontarget screening rules were determined by analyzing the frequencies and average intensities of fragmentation characteristics. Using the suspect and nontarget screening strategy, we successfully identified six parent mycotoxins and eight modified mycotoxins with different confidence levels in contaminated wheat and flour samples. This strategy enables screening of unknown parents and modified mycotoxins in food matrices with corresponding fragmentation characteristics.
Collapse
Affiliation(s)
- Yujie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dawei Chen
- Food Safety Research Unit of Chinese Academy of Medical Science (2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Wenying Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China.
| |
Collapse
|
2
|
Zhang K, Banerjee K. A Review: Sample Preparation and Chromatographic Technologies for Detection of Aflatoxins in Foods. Toxins (Basel) 2020; 12:E539. [PMID: 32825718 PMCID: PMC7551558 DOI: 10.3390/toxins12090539] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
As a class of mycotoxins with regulatory and public health significance, aflatoxins (e.g., aflatoxin B1, B2, G1 and G2) have attracted unparalleled attention from government, academia and industry due to their chronic and acute toxicity. Aflatoxins are secondary metabolites of various Aspergillus species, which are ubiquitous in the environment and can grow on a variety of crops whereby accumulation is impacted by climate influences. Consumption of foods and feeds contaminated by aflatoxins are hazardous to human and animal health, hence the detection and quantification of aflatoxins in foods and feeds is a priority from the viewpoint of food safety. Since the first purification and identification of aflatoxins from feeds in the 1960s, there have been continuous efforts to develop sensitive and rapid methods for the determination of aflatoxins. This review aims to provide a comprehensive overview on advances in aflatoxins analysis and highlights the importance of sample pretreatments, homogenization and various cleanup strategies used in the determination of aflatoxins. The use of liquid-liquid extraction (LLE), supercritical fluid extraction (SFE), solid phase extraction (SPE) and immunoaffinity column clean-up (IAC) and dilute and shoot for enhancing extraction efficiency and clean-up are discussed. Furthermore, the analytical techniques such as gas chromatography (GC), liquid chromatography (LC), mass spectrometry (MS), capillary electrophoresis (CE) and thin-layer chromatography (TLC) are compared in terms of identification, quantitation and throughput. Lastly, with the emergence of new techniques, the review culminates with prospects of promising technologies for aflatoxin analysis in the foreseeable future.
Collapse
Affiliation(s)
- Kai Zhang
- US Food and Drug Administration/Center for Food Safety and Applied Nutrition, 5001 Campus Drive, College Park, MD 20740, USA
| | - Kaushik Banerjee
- National Reference Laboratory, ICAR-National Research Centre for Grapes, Pune 412307, India;
| |
Collapse
|
3
|
Méndez-Albores A, Escobedo-González R, Aceves-Hernández JM, García-Casillas P, Nicolás-Vázquez MI, Miranda-Ruvalcaba R. A Theoretical Study of the Adsorption Process of B-aflatoxins Using Pyracanthakoidzumii (Hayata) Rehder Biomasses. Toxins (Basel) 2020; 12:E283. [PMID: 32354011 PMCID: PMC7290487 DOI: 10.3390/toxins12050283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/11/2020] [Accepted: 04/24/2020] [Indexed: 12/03/2022] Open
Abstract
Employing theoretical calculations with density functional theory (DFT) using the B3LYP/6-311++G(d,p) functional and basis set, the interaction of the aflatoxin B1 (AFB1) molecule and the functional groups present in the Pyracantha koidzumii biosorbent was investigated. Dissociation free energy and acidity equilibrium constant values were obtained theoretically both in solution (water) and gas phases. Additionally, the molecular electrostatic potential for the protonated molecules was calculated to verify the reactivity. Thus, methanol (hydroxyl group), methylammonium ion (amino group), acetate ion (carboxyl group), and acetone (carbonyl group), were used as representatives of the substrates present in the biomass; these references were considered using the corresponding protonated or unprotonated forms at a pH value of 5. The experimental infrared spectrophotometric data suggested the participation of these functional groups in the AFB1 biosorption process, indicating that the mechanism was dominated by electrostatic interactions between the charged functional groups and the positively charged AFB1 molecule. The theoretical determination indicated that the carboxylate ion provided the highest interaction energy with the AFB1 molecule. Consequently, an enriched biosorbent with compounds containing carboxyl groups could improve the yield of the AFB1 adsorption when using in vitro and in vivo trials.
Collapse
Affiliation(s)
- Abraham Méndez-Albores
- UNAM–FESC, Campus 4, Multidisciplinary Research Unit L14 (Food, Mycotoxins and Mycotoxicosis), Cuautitlan Izcalli 54714, Mexico;
| | - René Escobedo-González
- Department of industrial maintenance and nanotechnology, Technological University of Juarez City, Ciudad Juarez, Chihuahua 32695, Mexico;
| | - Juan Manuel Aceves-Hernández
- UNAM–FESC, Campus 1, Chemical Sciences Department, Cuautitlan Izcalli C. P. 54740, Mexico; (J.M.A.-H.); (R.M.-R.)
| | - Perla García-Casillas
- Institute of Engineering and Technology, Autonomous University of the City of Juarez, UACJ, City Juarez, Chihuahua 32584, Mexico;
| | - María Inés Nicolás-Vázquez
- UNAM–FESC, Campus 1, Chemical Sciences Department, Cuautitlan Izcalli C. P. 54740, Mexico; (J.M.A.-H.); (R.M.-R.)
| | - René Miranda-Ruvalcaba
- UNAM–FESC, Campus 1, Chemical Sciences Department, Cuautitlan Izcalli C. P. 54740, Mexico; (J.M.A.-H.); (R.M.-R.)
| |
Collapse
|
4
|
Silva-Junior EAD, Paludo CR, Valadares L, Lopes NP, Nascimento FSD, Pupo MT. Aflatoxins produced by Aspergillus nomius ASR3, a pathogen isolated from the leaf-cutter ant Atta sexdens rubropilosa. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2017.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Geng CA, Chen JJ. A Fragmentation Study on Four Unusual Secoiridoid Trimers, Swerilactones H-K, by Electrospray Tandem Mass Spectrometry. NATURAL PRODUCTS AND BIOPROSPECTING 2016; 6:297-303. [PMID: 27844233 PMCID: PMC5136375 DOI: 10.1007/s13659-016-0114-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/06/2016] [Indexed: 05/04/2023]
Abstract
Swerilactones H-K (1-4) as four unprecedented secoiridoid trimers represent a new type of natural product, which has attracted much interest of natural chemists due to their novel skeletons and promising bioactivity. In order to well understand their MS fragmentation behaviors, they were investigated by electrospray ionization ion-trap time-of-flight multistage product ion mass spectrometry (ESI-IT-TOF-MS n ) for the first time. The protonated molecules ([M+H]+) of swerilactones J and K, and deprotonated molecules ([M-H]-) of swerilactones H, J and K were readily observed in the conventional single-stage mass spectra (MS); however only the [M+Cl]- ion for swerilactone I was obtained in negative mode. Based on the MS n study, the fragmentation pathways of swerilactones H and I in negative mode, and swerilactones J and K in both positive and negative modes were proposed. The neutral losses of H2O, CO, CO2 and C2H4O moieties are the particular elimination from the precursor ions due to the presence of hydroxyl, δ-lactone and 1-O-ethyl moieties in their structures, of which the retro-Diels-Alder cleavage was the most particular dissociation. The fragment ions at m/z 341 and 291 in negative mode can be considered as the diagnostic ions for secoiridoid trimers. This investigation will provide valuable information for their fast characterization from complicated natural mixtures and extensive understanding their structural architectures.
Collapse
Affiliation(s)
- Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, No. 132 Lanhei Road, Kunming, 650201, China
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, No. 132 Lanhei Road, Kunming, 650201, China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, China.
| |
Collapse
|
6
|
Liao CD, Wong JW, Zhang K, Yang P, Wittenberg JB, Trucksess MW, Hayward DG, Lee NS, Chang JS. Multi-mycotoxin Analysis of Finished Grain and Nut Products Using Ultrahigh-Performance Liquid Chromatography and Positive Electrospray Ionization-Quadrupole Orbital Ion Trap High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8314-8332. [PMID: 25531669 DOI: 10.1021/jf505049a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ultrahigh-performance liquid chromatography using positive electrospray ionization and quadrupole orbital ion trap high-resolution mass spectrometry was evaluated for analyzing mycotoxins in finished cereal and nut products. Optimizing the orbital ion trap mass analyzer in full-scan mode using mycotoxin-fortified matrix extracts gave mass accuracies, δM, of < ± 2.0 ppm at 70,000 full width at half maximum (FWHM) mass resolution (RFWHM). The limits of quantitation were matrix- and mycotoxin-dependent, ranging from 0.02 to 11.6 μg/kg. Mean recoveries and standard deviations for mycotoxins from acetonitrile/water extraction at their relevant fortification levels were 91 ± 10, 94 ± 10, 98 ± 12, 91 ± 13, 99 ± 15, and 93 ± 17% for corn, rice, wheat, almond, peanut, and pistachio, respectively. Nineteen mycotoxins with concentrations ranging from 0.3 (aflatoxin B1 in peanut and almond) to 1175 μg/kg (fumonisin B1 in corn flour) were found in 35 of the 70 commercial grain and nut samples surveyed. Mycotoxins could be identified at δM < ± 5 ppm by identifying the precursor and product ions in full-scan MS and data-dependent MS/MS modes. This method demonstrates a new analytical approach for monitoring mycotoxins in finished grain and nut products.
Collapse
Affiliation(s)
- Chia-Ding Liao
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , 5100 Paint Branch Parkway, College Park, Maryland 20740-3835, United States
- Food and Drug Administration, Ministry of Health and Welfare, Taiwan , No. 161-2, Kunyang Street, Nangang District, Taipei City 115, Taiwan
| | - Jon W Wong
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , 5100 Paint Branch Parkway, College Park, Maryland 20740-3835, United States
| | - Kai Zhang
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , 5100 Paint Branch Parkway, College Park, Maryland 20740-3835, United States
| | - Paul Yang
- Laboratory Services Branch, Ontario Ministry of the Environment , 125 Resources Road, Etobicoke, Ontario M9P 3V6, Canada
| | - James B Wittenberg
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , 5100 Paint Branch Parkway, College Park, Maryland 20740-3835, United States
| | - Mary W Trucksess
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , 5100 Paint Branch Parkway, College Park, Maryland 20740-3835, United States
| | - Douglas G Hayward
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration , 5100 Paint Branch Parkway, College Park, Maryland 20740-3835, United States
| | - Nathaniel S Lee
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland , 2134 Patapsco Building, College Park, Maryland 20742-6730, United States
| | - James S Chang
- ThermoFisher Scientific , 355 River Oaks Parkway, San Jose, California 95134-1908, United States
| |
Collapse
|
7
|
Degradation pathways study of the natriuretic and β-adrenoceptor antagonist tienoxolol using liquid chromatography–electrospray ionization multistage mass spectrometry. J Pharm Biomed Anal 2014; 96:58-67. [DOI: 10.1016/j.jpba.2014.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/05/2014] [Accepted: 03/11/2014] [Indexed: 11/17/2022]
|