1
|
Llambrich M, Ramírez N, Cumeras R, Brezmes J. SPME arrow-based extraction for enhanced targeted and untargeted urinary volatilomics. Anal Chim Acta 2024; 1329:343261. [PMID: 39396318 DOI: 10.1016/j.aca.2024.343261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Volatile organic compounds (VOCs) present in human urine are promising biomarkers for various health conditions and environmental exposures. However, their reliable detection is challenging due to the complexity of urinary matrices and the low concentrations of VOCs. Moreover, untargeted approaches present considerable challenges in terms of data interpretation, increasing the complexity of method development. Here we address these challenges by developing a new method that combines solid-phase microextraction (SPME) Arrow with gas chromatography-high resolution mass spectrometry (GC-HRMS), using a design of experiments (DOE) approach for targeted and untargeted compounds. This methodology, specifically tailored for SPME Arrow, represents a significant advancement in untargeted urinary analysis. RESULTS The method was developed based on targeted and untargeted outcomes, were ranking results focus on the highest response area of 11 spiked target VOCs representative of urinary volatilomics, and on identifying the maximum untargeted number of VOCs. The method was developed focusing on the highest response area of 11 spiked target VOCs representative of urinary volatilomics and identifying the maximum number of VOCs. A univariate method determined the optimal coating type, urine volume, and salt addition. Subsequently, a central composite design (CCD) DOE was used to determine ideal temperature, extraction, and incubation times. The best method obtained has an extraction time of 60 min at a temperature of 53 °C, with an SPME Arrow CAR/PDMS using 2 mL of urine, with 0.25 % w/v of NaCl and a pH of 2. Compared to conventional SPME fibers, the SPME Arrow showed improved extraction efficiency, detecting more VOCs. Finally, the enhanced method was successfully applied to urine samples from children exposed and non-exposed to tobacco smoke, identifying specific VOCs, like p-cymene and p-isopropenyl toluene related to tobacco exposure. SIGNIFICANCE By integrating both targeted and untargeted approaches, the developed method comprehensively captures the complexity of urinary metabolomics. This dual strategy ensures the precise identification of known compounds and the discovery of novel biomarkers, thereby providing a more complete metabolic profile. Such an approach is crucial for advancing in non-invasive diagnostics and environmental health studies, as it offers deeper insights into the intricate relationships between metabolic processes and various health conditions.
Collapse
Affiliation(s)
- Maria Llambrich
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira I Virgili (URV), 43003, Tarragona, Spain; Department of Nutrition and Metabolism, Institut D'Investigació Sanitària Pere Virgili (IISPV), CERCA, 43204, Spain.
| | - Noelia Ramírez
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira I Virgili (URV), 43003, Tarragona, Spain; Department of Nutrition and Metabolism, Institut D'Investigació Sanitària Pere Virgili (IISPV), CERCA, 43204, Spain; Centre for Biomedical Research in Diabetes and Associated Metabolic Diseases (CIBERDEM), Av. Monforte de Lemos, 3-5, Pabellón 11, Planta 0, 28029, Madrid, Spain.
| | - Raquel Cumeras
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira I Virgili (URV), 43003, Tarragona, Spain; Department of Oncology, Institut D'Investigació Sanitària Pere Virgili (IISPV), CERCA, 43204, Reus, Spain.
| | - Jesús Brezmes
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira I Virgili (URV), 43003, Tarragona, Spain; Department of Nutrition and Metabolism, Institut D'Investigació Sanitària Pere Virgili (IISPV), CERCA, 43204, Spain.
| |
Collapse
|
2
|
Zhang Z, Zhang Q, Xi Y, Zhou Y, Zhan M. Establishment of a headspace-thermal desorption and gas chromatography-mass spectrometry method (HS-TD-GC-MS) for simultaneous detection of 51 volatile organic compounds in human urine: Application in occupational exposure assessment. J Chromatogr A 2024; 1722:464863. [PMID: 38626538 DOI: 10.1016/j.chroma.2024.464863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 04/18/2024]
Abstract
Volatile organic compounds (VOCs) are a group of ubiquitous environment pollutants especially released into the workplace. Assessment of VOCs exposure in occupational populations is therefore a crucial issue for occupational health. However, simultaneous biomonitoring of a variety of VOCs is less studied. In this study, a simple and sensitive method was developed for the simultaneous determination of 51 prototype VOCs in urine by headspace-thermal desorption coupled to gas chromatography-mass spectrometry (HS-TD-GC-MS). The urinary sample was pretreated with only adding 0.50 g of sodium chloride to 2 mL of urine and 51 VOCs should be determined with limits of detection (LODs) between 13.6 ng/L and 24.5 ng/L. The method linearity ranged from 0.005 to 10 μg/L with correlation coefficients (r) of 0.991 to 0.999. The precision for intraday and inter-day, measured by the variation coefficient (CV) at three levels of concentration, was below 15 %, except for 4-isopropyl toluene, dichloromethane, and trichloromethane at low concentration. For medium and high levels, recoveries of all target VOCs were within the standard range, but 1,1-dichloropropene and styrene, which were slightly under 80 % at low levels. In addition, the proposed method has been used to determine urine samples collected in three times (before, during and after working) from 152 workers at four different factories. 41 types of prototype VOCs were detected in workers urine. Significant differences (Kruskal-Wallis chi-squared = 117.18, df = 1, P < 0.05) in the concentration levels of VOCs between the exposed and unexposed groups were observed, but not between the three sampling times (Kruskal-Wallis chi-squared = 3.39, df = 2, P = 0.183). The present study provides an alternative method for biomonitoring and assessing mixed exposures to VOCs in occupational populations.
Collapse
Affiliation(s)
- Zhongheng Zhang
- School of Public Health, Fudan University, 200032, Shanghai, China
| | - Qing Zhang
- Pudong New Area for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, 200136, Shanghai, China
| | - Ye Xi
- Pudong New Area for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, 200136, Shanghai, China
| | - Ying Zhou
- School of Public Health, Fudan University, 200032, Shanghai, China.
| | - Ming Zhan
- Pudong New Area for Disease Control and Prevention, Fudan University Pudong Institute of Preventive Medicine, 200136, Shanghai, China.
| |
Collapse
|
3
|
Salami M, Alizadeh R, Talebpour Z. Determination of breast cancer biomarkers with poly acrylic acid/ MIL-88(Fe)-NH 2 hydrogel as a coating for stir bar sorptive extraction. J Chromatogr A 2024; 1717:464708. [PMID: 38330846 DOI: 10.1016/j.chroma.2024.464708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
The Poly acrylic acid/MIL-88(Fe)-NH2 composite material, carefully prepared, is employed as a sorbent for the stir bar. The best formula of the composite was selected by investigation of two parameters including the cross-linker of PAA and MIL-88(Fe)-NH2 content. The prepared stir bar was used for extraction of 2-pentanone, 2-heptanone, ethyl propionate, para-xylene, 1,2,4-trimethylbenzene, o-cresol, m-cresol in urine samples as breast cancer biomarkers with gas chromatography-flame ionization detector. The prepared Poly acrylic acid / MIL-88(Fe)-NH2 as sorbent for the stir bar demonstrate good repeatability of one bar (relative standard deviation (RSD%) < 4.61 %) and satisfactory reproducibility between two bars (RSD% < 6.85 %). The central composite design method was applied for the optimization of extraction parameters. Under the optimum conditions, linear dynamic ranges for compounds were in the acceptable range with correlation coefficients higher than 0.99. Detection limits of them were less than 1.71 µg L-1.
Collapse
Affiliation(s)
- Maryam Salami
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Reza Alizadeh
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.
| | - Zahra Talebpour
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran; Analytical and Bioanalytical Research Centre, Alzahra University, Tehran 19938-93973, Iran.
| |
Collapse
|
4
|
Llambrich M, Brezmes J, Cumeras R. The untargeted urine volatilome for biomedical applications: methodology and volatilome database. Biol Proced Online 2022; 24:20. [PMID: 36456991 PMCID: PMC9714113 DOI: 10.1186/s12575-022-00184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Chemically diverse in compounds, urine can give us an insight into metabolic breakdown products from foods, drinks, drugs, environmental contaminants, endogenous waste metabolites, and bacterial by-products. Hundreds of them are volatile compounds; however, their composition has never been provided in detail, nor has the methodology used for urine volatilome untargeted analysis. Here, we summarize key elements for the untargeted analysis of urine volatilome from a comprehensive compilation of literature, including the latest reports published. Current achievements and limitations on each process step are discussed and compared. 34 studies were found retrieving all information from the urine treatment to the final results obtained. In this report, we provide the first specific urine volatilome database, consisting of 841 compounds from 80 different chemical classes.
Collapse
Affiliation(s)
- Maria Llambrich
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira I Virgili, 43007 Tarragona, Spain
- Department of Nutrition and Metabolism, Metabolomics Interdisciplinary Group, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
| | - Jesús Brezmes
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira I Virgili, 43007 Tarragona, Spain
- Department of Nutrition and Metabolism, Metabolomics Interdisciplinary Group, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
| | - Raquel Cumeras
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira I Virgili, 43007 Tarragona, Spain
- Department of Nutrition and Metabolism, Metabolomics Interdisciplinary Group, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
- Oncology Department, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
| |
Collapse
|
5
|
Toxicological Effects of Technical Xylene Mixtures on the Female Reproductive System: A Systematic Review. TOXICS 2022; 10:toxics10050235. [PMID: 35622648 PMCID: PMC9144477 DOI: 10.3390/toxics10050235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023]
Abstract
Technical xylene is a compound of massive production that is used in applications such as petrochemical and healthcare laboratories. Exposure to xylene can cause acute and chronic effects in humans and animals. Currently available studies regarding xylene’s adverse effects with credible designs were dated almost twenty years ago. This systematic review summarizes the findings regarding the detrimental effects of technical xylene from human, animal, and in vitro studies. It recapitulated available studies with respect to the effects of xylene on the female reproductive system to stress the need for updating the current data and guidelines. Based on pre-specified criteria, 22 studies from journal databases exploring the toxic effects of xylene on menstruation, endocrine endpoints, fetal development, and reproductive functions were included for the review. It was found that related studies with a specific focus on the effects of technical xylene on the female reproductive system were insufficient. Therefore, further studies are necessary to update the existing data, thus improving the quality and reliability of risk assessment of exposure to xylene in pregnant women
Collapse
|
6
|
Selvaprakash K, Chen YC. Using an insulating fiber as the sampling probe and ionization substrate for ambient ionization-mass spectrometric analysis of volatile, semi-volatile, and polar analytes. Anal Bioanal Chem 2022; 414:4633-4643. [PMID: 35445835 DOI: 10.1007/s00216-022-04080-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Abstract
A sharp metal needle used as the ionization emitter in conventional atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) is usually required for analyte ionization through corona discharge (i.e., gas discharge). Nevertheless, we herein demonstrate that an insulating fiber (tip diameter: 10-60 µm; length: ~ 1 cm) made of glass or bamboo can function as an APCI-like ionization emitter. Although no direct electric contact is made on the fiber, the ionization of volatiles and semi-volatiles occurs when the fiber is placed close (~ 1 mm) to the inlet of the mass spectrometer. No analyte ion signals can be observed without placing the insulating fiber in front of the mass spectrometer. The generation of ion species mainly relies on the electric field provided by the mass spectrometer. Presumably, owing to the high electric field provided by the mass spectrometer, the dielectric breakdown voltages of gas molecules in the air and the fiber are overcome, leading to the ionization of analytes in gas phase. In addition, the insulating fiber can function as a holder for sample solutions. Electrospray ionization-like processes derived from polar analytes such as amino acids, peptides, and proteins can readily occur when the insulating fiber deposited with a sample droplet is placed close to the inlet of the mass spectrometer. The feasibility of using the current approach for the detection of nonpolar and polar analytes from complex fetal bovine serum samples without tedious sample pretreatment is demonstrated in this work. The main advantage of using the suggested fiber is that the fiber can be used as the sampling probe to pick up samples and placed in front of a mass spectrometer for direct MS analysis. The application of using a robust, insulating, and disposable probe to pick up samples from real samples such as onion, honey, and pork samples followed by direct MS analysis is also demonstrated.
Collapse
Affiliation(s)
- Karuppuchamy Selvaprakash
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yu-Chie Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan. .,Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 300, Taiwan. .,International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.
| |
Collapse
|
7
|
Rafiee A, Delgado-Saborit JM, Sly PD, Amiri H, Hoseini M. Exploring urinary biomarkers to assess oxidative DNA damage resulting from BTEX exposure in street children. ENVIRONMENTAL RESEARCH 2022; 203:111725. [PMID: 34302825 DOI: 10.1016/j.envres.2021.111725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 05/12/2023]
Abstract
Children are highly susceptible to environmental contaminants as their physiology and some metabolic pathways differ from adults. The present cross-sectional study aimed to assess whether exposure to benzene, toluene, ethylbenzene, o,p-xylene, and m-xylene (BTEX) affects oxidative DNA damage in street children using a biomonitoring approach. Thirty-five boys (7-13 years of age), exposed by working at a busy intersection, and 25 unexposed boys of similar age and living in the neighborhood near the busy intersection were recruited. Urinary un-metabolized BTEX levels were quantified by a headspace gas chromatography-mass spectrometry (GC-MS). Urinary malonaldehyde (MDA) was measured with spectrophotometry. Sociodemographic and lifestyle conditions information was collected by interviews using administered questionnaires. Exposed subjects provided urine before (BE) and after work exposure (AE), while unexposed boys gave a single morning sample. Urinary BTEX concentrations in BE samples were similar to unexposed. Concentrations in AE samples were 2.36-fold higher than observed in BE samples (p < 0.05) and higher than those in the unexposed group (p < 0.05). In addition, urinary MDA levels in AE samples were 3.2 and 3.07-times higher than in BE samples and in the unexposed group (p < 0.05). Environmental tobacco smoke (ETS) increased urinary BTEX and MDA levels in both groups. Our findings confirm that street children working at busy intersections are significantly exposed to BTEX, which is associated with oxidative stress. Implementing protective measures is crucial to reduce exposure and to improve health outcomes in this group.
Collapse
Affiliation(s)
- Ata Rafiee
- Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| | - Juana Maria Delgado-Saborit
- Universitat Jaume I, Perinatal Epidemiology, Environmental Health and Clinical Research, School of Medicine, Castellon, Spain; ISGlobal Barcelona Institute for Global Health, Barcelona Biomedical Research Park, Barcelona, Spain; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, United Kingdom; Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Center, The University of Queensland, South Brisbane, Australia
| | - Hoda Amiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Chambers DM, Edwards KC, Sanchez E, Reese CM, Fernandez AT, Blount BC, De Jesús VR. Method for Accurate Quantitation of Volatile Organic Compounds in Urine Using Point of Collection Internal Standard Addition. ACS OMEGA 2021; 6:12684-12690. [PMID: 34056420 PMCID: PMC8154218 DOI: 10.1021/acsomega.1c00854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
A method to achieve accurate measurement of unmetabolized volatile organic compounds (VOCs) in urine was developed and characterized. The method incorporates a novel preanalytical approach of adding isotopically labeled internal standard (ISTD) analogues directly to the collection container at the point of collection to compensate for analyte loss to the headspace and the collection container surfaces. Using this approach, 45 toxic VOCs ranging in water solubility and boiling point were evaluated and analyzed by headspace solid-phase microextraction/gas chromatography-mass spectrometry. Results show that urine VOCs could be equally lost to the container headspace as to the container surface suggesting similarity of these two regions as partition phases. Surface adsorption loss was found to trend with compound water solubility. In particular, with no headspace, more nonpolar VOCs experienced substantial losses (e.g., 48% for hexane) in a standard 120 mL urine cup at concentrations in the low- and sub-ppb range. The most polar VOCs evaluated (e.g., tetrahydrofuran) showed no significant loss. Other commonly practiced methods for urine sample collection and analysis such as aliquoting, specimen freezing, and use of surrogate ISTD were found to significantly bias results. With this method, we achieved errors ranging from -8.0 to 4.8% of spiked urine specimens. Paired urine and blood specimens from cigarette smokers were compared to assess this method.
Collapse
|
9
|
Bahrami M, Pirmohammadi Z, Bahrami A. A review of new adsorbents for separation of BTEX biomarkers. Biomed Chromatogr 2021; 35:e5131. [PMID: 33788293 DOI: 10.1002/bmc.5131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 01/09/2023]
Abstract
The biomarker analysis of benzene, toluene, ethylbenzene and xylene (BTEXs) in biological samples is the primary technique for evaluating these compounds in occupational and environmental exposures. The BTEX biomarkers are widely used to study the BTEX distribution in the environment and workplaces. Liquid-liquid extraction and solid-phase liquid extraction are among the most commonly used conventional methods to analyze biological indices of BTEXs. New methods have been proposed to analyze BTEX biomarkers using novel adsorbents such as sol-gel composite nanotubes, molecularly imprinted polymers and metal-organic frameworks, which are based on the application of needle trap devices, microextraction by packed sorbent, and solid-phase microextraction techniques. This paper provides an overview of new methods since 2015 regarding applying microextraction methods based on new adsorbents and analyzing BTEX biomarker compounds for occupational and environmental exposures. The results were compared with the liquid-phase microextraction methods recommended for urinary BTEX biomarkers.
Collapse
Affiliation(s)
- Mohammadreza Bahrami
- Department of Health, Safety and Environment, School of Environment, College of Engineering, University of Tehran, Kish, Iran
| | - Zahra Pirmohammadi
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdulrahman Bahrami
- Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
10
|
Kim U, Karthikraj R. Solid‐phase microextraction for the human biomonitoring of environmental chemicals: Current applications and future perspectives. J Sep Sci 2020; 44:247-273. [DOI: 10.1002/jssc.202000830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/18/2020] [Accepted: 11/13/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Un‐Jung Kim
- Department of Earth & Environmental Sciences University of Texas at Arlington Arlington Texas USA
| | | |
Collapse
|
11
|
Rodinkov OV, Bugaichenko AS, Moskvin LN. Static Headspace Analysis and Its Current Status. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s106193482001013x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Son HH, Yun WS, Cho SH. Development and validation of an LC-MS/MS method for profiling 39 urinary steroids (estrogens, androgens, corticoids, and progestins). Biomed Chromatogr 2019; 34:e4723. [PMID: 31656044 DOI: 10.1002/bmc.4723] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 09/25/2019] [Accepted: 10/07/2019] [Indexed: 12/28/2022]
Abstract
Abnormal production or metabolism of steroid hormones is responsible for the development of endocrine diseases. Thus, accurate quantification of steroid hormones is needed for both research into clinical conditions and diagnostic and monitoring purposes. An improved analytical method for profiling 39 steroids in urine using LC-MS/MS was developed. As a pre-treatment procedure prior to LC-tandem mass spectrometry (LC-MS/MS) analysis, hydrolysis using β-glucuronidase and solid-phase extraction for purifying the samples were performed. Steroids were separated using Waters ACQUITY BEH C18 column (2.1 × 100 mm, 1.7 μm) and a mobile phase consisting of eluent A (0.01% formic acid and 1 mm ammonium formate in water) and eluent B (0.01% formic acid and 1 mm ammonium formate in methanol) with a gradient program at a flow rate of 0.4 mL/min. Under the optimized method, the linearity of calibration curves was higher than 0.992. The limits of detection at signal-to-noise ratio of 3 were 0.03-90 ng/mL. The developed novel LC-MS/MS method can quantitatively profile 39 steroids in a single analytical run. Steroid profiling based on quantitative results could improve the diagnosis and monitoring of hormone-dependent diseases.
Collapse
Affiliation(s)
- Hyuck Ho Son
- Center for Chemical Analysis, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea.,Department of Chemistry, Sungkyunkwan University, Suwon, Gyeonggi-Do, Republic of Korea
| | - Wan Soo Yun
- Department of Chemistry, Sungkyunkwan University, Suwon, Gyeonggi-Do, Republic of Korea
| | - Sung-Hee Cho
- Center for Chemical Analysis, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| |
Collapse
|
13
|
Recent Applications and Newly Developed Strategies of Solid-Phase Microextraction in Contaminant Analysis: Through the Environment to Humans. SEPARATIONS 2019. [DOI: 10.3390/separations6040054] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The present review aims to describe the recent and most impactful applications in pollutant analysis using solid-phase microextraction (SPME) technology in environmental, food, and bio-clinical analysis. The covered papers were published in the last 5 years (2014–2019) thus providing the reader with information about the current state-of-the-art and the future potential directions of the research in pollutant monitoring using SPME. To this end, we revised the studies focused on the investigation of persistent organic pollutants (POPs), pesticides, and emerging pollutants (EPs) including personal care products (PPCPs), in different environmental, food, and bio-clinical matrices. We especially emphasized the role that SPME is having in contaminant surveys following the path that goes from the environment to humans passing through the food web. Besides, this review covers the last technological developments encompassing the use of novel extraction coatings (e.g., metal-organic frameworks, covalent organic frameworks, PDMS-overcoated fiber), geometries (e.g., Arrow-SPME, multiple monolithic fiber-SPME), approaches (e.g., vacuum and cold fiber SPME), and on-site devices. The applications of SPME hyphenated with ambient mass spectrometry have also been described.
Collapse
|
14
|
Huang S, Chen G, Ye N, Kou X, Zhu F, Shen J, Ouyang G. Solid-phase microextraction: An appealing alternative for the determination of endogenous substances - A review. Anal Chim Acta 2019; 1077:67-86. [PMID: 31307724 DOI: 10.1016/j.aca.2019.05.054] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
The determination of endogenous substances is of great significance for obtaining important biotic information such as biological components, metabolic pathways and disease biomarkers in different living organisms (e.g. plants, insects, animals and humans). However, due to the complex matrix and the trace concentrations of target analytes, the sample preparation procedure is an essential step before the analytes of interest are introduced into a detection instrument. Solid-phase microextraction (SPME), an emerging sample preparation technique that integrates sampling, extraction, concentration, and sample introduction into one step, has gained wide acceptance in various research fields, including in the determination of endogenous compounds. In this review, recent developments and applications of SPME for the determination of endogenous substances over the past five years are summarized. Several aspects, including the design of SPME devices (sampling configuration and coating), applications (in vitro and in vivo sampling), and coupling with emerging instruments (comprehensive two-dimensional gas chromatography (GC × GC), ambient mass spectrometry (AMS) and surface enhanced Raman scattering (SERS)) are involved. Finally, the challenges and opportunities of SPME methods in endogenous substances analysis are also discussed.
Collapse
Affiliation(s)
- Siming Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Niru Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jun Shen
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China; College of Chemistry & Molecular Engineering, Center of Advanced Analysis and Computational Science, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, PR China.
| |
Collapse
|
15
|
Moradi M, Hopke P, Hadei M, Eslami A, Rastkari N, Naghdali Z, Kermani M, Emam B, Farhadi M, Shahsavani A. Exposure to BTEX in beauty salons: biomonitoring, urinary excretion, clinical symptoms, and health risk assessments. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:286. [PMID: 30997562 DOI: 10.1007/s10661-019-7455-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/04/2019] [Indexed: 05/12/2023]
Abstract
Benzene, toluene, ethylbenzene, and xylene (BTEX) concentrations were measured in beauty salons (BS) and in the urine of the beauty practitioners and a control group. Indoor and outdoor concentrations of BTEX were measured in 36 randomly selected salons. Before- and after-shift urinary BTEX were measured from one female non-smoker employee in each salon, and repeated three times. Clinical symptoms in that beautician were assessed by a physician. Thirty-six unexposed women were included as the control group. Cancer and non-cancer risks of exposure were assessed using deterministic and stochastic methods. Average indoor concentrations of BTEX were higher than those in the ambient air. Urinary BTEX concentrations in the beauty practitioners were significantly higher than in the control group. Linear regression showed that 77% of urinary benzene and toluene variations can be explained by their airborne concentrations. A positive significant relationship was found between age and urinary BTEX concentrations. Although the BTEX cancer and non-cancer risks were not significant, BTEX led to irritation of the eyes, throat, lung, and nose. In addition, toluene caused menstrual disorders among beauty practitioners. These results suggest that it is essential to decrease the exposure of beauty practitioners to BTEX compounds.
Collapse
Affiliation(s)
- Mahbobeh Moradi
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Philip Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Mostafa Hadei
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Akbar Eslami
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Noushin Rastkari
- Center for Air Pollution Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Naghdali
- Department of Environmental Health Engineering, School of Public Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Baharan Emam
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Abbas Shahsavani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Rafiee A, Delgado-Saborit JM, Sly PD, Amiri H, Hoseini M. Lifestyle and occupational factors affecting exposure to BTEX in municipal solid waste composting facility workers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:540-546. [PMID: 30529957 DOI: 10.1016/j.scitotenv.2018.11.398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 05/12/2023]
Abstract
Composting facilities workers are potentially exposed to different volatile organic compounds (VOCs). This study aims to investigate the potential exposure to benzene, toluene, ethylbenzene and xylenes (BTEX) compounds among workers of composting facilities by measuring un-metabolized BTEX in urine and to investigate the effect that several lifestyle factors (i.e. smoking and residential traffic), using personal protective equipment, and religious practices such as Ramadan fasting can have on the urinary BTEX concentrations. We assessed concentrations of BTEX in the urine of a composting facility workers. Samples were collected in May 2018. Overall, 25 workers chosen as the exposed group and 20 inhabitants living close to the composting facility as a control group. The urine samples were collected from studied subjects. Identification and quantification of un-metabolized BTEX was performed using a headspace gas chromatography-mass spectrometry (GC-MS). Detailed information of participants was gathered by a comprehensive questionnaire. The geometric mean levels of urinary benzene, toluene, ethylbenzene, m‑p xylene, and o‑xylene in the exposed subjects were 1.27, 2.12, 0.54, 1.22 and 1.51 μg/L, respectively; 1.4 to 3.7-time higher than values in control group (p < 0.05). Post-shift levels were significantly higher than pre-shift for all chemicals (p < 0.05). Smoking habits, exposure to environmental tobacco smoke, and Ramadan fasting predicted urinary BTEX levels. Personal protective equipment which included a simple N95 mask did not protected workers from BTEX emissions. Composting facilities represent a significant source BTEX emissions and exposure for staff. More effective protective strategies are required to minimize exposure and related occupational hazards.
Collapse
Affiliation(s)
- Ata Rafiee
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Juana Maria Delgado-Saborit
- ISGlobal Barcelona Institute for Global Health, Barcelona Biomedical Research Park, Barcelona, Spain; Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Hoda Amiri
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
17
|
Rafiee A, Delgado-Saborit JM, Gordi E, Quémerais B, Kazemi Moghadam V, Lu W, Hashemi F, Hoseini M. Use of urinary biomarkers to characterize occupational exposure to BTEX in healthcare waste autoclave operators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:857-865. [PMID: 29727996 DOI: 10.1016/j.scitotenv.2018.03.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 05/12/2023]
Abstract
Urinary benzene, toluene, ethylbenzene, and xylenes (BTEX) can be used as a reliable biomarker of exposure to these pollutants. This study was aimed to investigate the urinary BTEX concentration in operators of healthcare waste (HCW) autoclaves. This cross-sectional study was conducted in selected hospitals in Tehran, Iran between April and June 2017. Twenty operators (as the case group) and twenty control subjects were enrolled in the study. Personal urine samples were collected at the beginning and end of the work shift. Urinary BTEX were measured by a headspace gas chromatography-mass spectrometry (GC/MS). A detailed questionnaire was used to gather information from subjects. Results showed that the median of urinary benzene, toluene, ethylbenzene, m-p xylene, and o-xylene levels in the exposed group were 3.26, 3.36, 0.84, 3.94 and 4.48 μg/L, respectively. With the exception of ethylbenzene, subjects in the exposed group had significantly higher urinary BTEX levels than control group (p < 0.05). Urinary BTEX concentrations in the exposed case group were 2.5-fold higher than in the control group. There was a significant relationship between the amount of generated waste per day and the urinary BTEX in the exposed group. Smoking status and type of autoclave used were also identified as predictors of urinary BTEX concentrations. The healthcare waste treatment autoclaves can be considered as a significant BTEX exposure source for operators working with these treatment facilities. The appropriate personal protection equipment and control measures capable in reducing BTEX exposure should be provided to HCW workers to reduce their exposures to BTEX.
Collapse
Affiliation(s)
- Ata Rafiee
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Juana Maria Delgado-Saborit
- ISGlobal Barcelona Institute for Global Health, Barcelona Biomedical Research Park, Barcelona, Spain; Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Elham Gordi
- Young Researchers and Elite Club, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | | | | | - Wenjing Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Fallah Hashemi
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
18
|
Comparison of the Conventional and Electroenhanced Direct-Immersion Solid-Phase Microextraction for Sampling of Nicotine in Biological Fluids of the Human Body. Molecules 2018; 23:molecules23051171. [PMID: 29757971 PMCID: PMC6099498 DOI: 10.3390/molecules23051171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 12/19/2022] Open
Abstract
A stainless steel fiber was made porous and adhesive by platinization and then coated by nanostructured polypyrrole (PPy), using an appropriate electrophoretic deposition (EPD) method. The morphological surface structure and functional groups of the PPy-coated fiber were studied using SEM (Scanning electron microscope) instrument. The prepared fiber was used for comparison of direct immersion (DI) and electroenhanced direct immersion solid-phase microextraction (EE-DI-SPME) of nicotine in human plasma and urine samples followed by gas chromatography flame ionization detector (GC-FID) determination. The effects of the influential experimental parameters on the efficiency of the DI-SPME and EE-DI-SPME methods, including the pH and ionic strength of the sample solution, applied Direct current (DC) voltage, extraction temperature and time and stirring rate, were optimized. Under the optimal conditions, the calibration curves for the DI-SPME-GC-FID and EE-DI-SPME-GC-FID methods were linear over the ranges of 0.1⁻10.0 μg mL-1 and 0.001⁻10.0 μg mL-1, respectively. The relative standard deviations (RSDs, n = 6) were found to be 6.1% and 4.6% for the DI and EE strategies, respectively. The LODs (limit of detection) of the DI-SPME-GC-FID and EE-DI-SPME-GC-FID methods were found to be 10 and 0.3 ng mL-1, respectively. The relative recovery values (for the analysis of 1 µg mL-1 nicotine) were found to be 91⁻110% for EE-DI-SPME and 75⁻105% for DI-SPME. The enrichment factors for DI-SPME and EE-DI-SPME sampling were obtained as 38,734 and 50,597, respectively. The results indicated that EE-SPME was more efficient for quantitation of nicotine in biological fluids. The developed procedure was successfully carried out for the extraction and measurement of nicotine in real plasma and urine samples.
Collapse
|
19
|
Reyes-Garcés N, Gionfriddo E, Gómez-Ríos GA, Alam MN, Boyacı E, Bojko B, Singh V, Grandy J, Pawliszyn J. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal Chem 2017; 90:302-360. [DOI: 10.1021/acs.analchem.7b04502] [Citation(s) in RCA: 402] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - Md. Nazmul Alam
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Ezel Boyacı
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Varoon Singh
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Jonathan Grandy
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|