1
|
Ajoolabady A, Pratico D, Dunn WB, Lip GYH, Ren J. Metabolomics: Implication in cardiovascular research and diseases. Obes Rev 2024; 25:e13825. [PMID: 39370721 DOI: 10.1111/obr.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 10/08/2024]
Abstract
Cellular metabolism influences all aspects of cellular function and is crucial for overall organismal health. Metabolic disorders related to cardiovascular health can lead to cardiovascular diseases (CVDs). Moreover, associated comorbidities may also damage cardiovascular metabolism, exacerbating CVD and perpetuating a vicious cycle. Given the prominent role of metabolic alterations in CVD, metabolomics has emerged as an imperative technique enabling a comprehensive assessment of metabolites and metabolic architecture within the body. Metabolite profile and metabolic pathways help to deepen and broaden our understanding of complex genomic landscape and pathophysiology of CVD. Here in this review, we aim to overview the experimental and clinical applications of metabolomics in pathogenesis, diagnosis, prognosis, and management of various CVD plus future perspectives and limitations.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Warwick B Dunn
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
2
|
Lin Z, Xie F, He X, Wang J, Luo J, Chen T, Jiang Q, Xi Q, Zhang Y, Sun J. A novel protein encoded by circKANSL1L regulates skeletal myogenesis via the Akt-FoxO3 signaling axis. Int J Biol Macromol 2024; 257:128609. [PMID: 38056741 DOI: 10.1016/j.ijbiomac.2023.128609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Skeletal muscle is one the largest organs of the body and is involved in animal production and human health. Circular RNAs (circRNAs) have been implicated in skeletal myogenesis through largely unknown mechanisms. Herein, we report the phenotypic and metabolomic analysis of porcine longissimus dorsi muscles in Lantang and Landrace piglets, revealing a high-content of slow-oxidative fibers responsible for high-quality meat product in Lantang piglets. Using single-cell transcriptomics, we identified four myogenesis-related cell types, and the Akt-FoxO3 signaling axis was the most significantly enriched pathway in each subpopulation in the different pig breeds, as well as in fast-twitch glycolytic fibers. Using the multi-dimensional bioinformatic tools of circRNAome-seq and Ribo-seq, we identified a novel circRNA, circKANSL1L, with a protein-coding ability in porcine muscles, whose expression level correlated with myoblast proliferation and differentiation in vitro, as well as the transformation between distinct mature myofibers in vivo. The protein product of circKANSL1L could interact with Akt to decrease the phosphorylation level of FoxO3, which subsequently promoted FoxO3 transcriptional activity to regulate skeletal myogenesis. Our results established the existence of a protein encoded by circKANSL1L and demonstrated its potential functions in myogenesis.
Collapse
Affiliation(s)
- Zekun Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Fang Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiao He
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
3
|
Zhao Y, Fan R, Wang C, Xu S, Xie L, Hou J, Lei W, Liu J. Quantification and isotope abundance determination of 13C labeled intracellular sugar metabolites with hydrophilic interaction liquid chromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5666-5673. [PMID: 37855701 DOI: 10.1039/d3ay01178j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Metabolic flux analysis (MFA) using stable isotope labeled tracers is a powerful tool to estimate fluxes through metabolic pathways. It finds applications in studying metabolic changes in diseases, regulation of cellular energetics, and novel strategies for metabolic engineering. Accurate and precise quantification of the concentration of metabolites and their labeling states is critical for correct MFA results. Utilizing an ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) system, an analytical method for simultaneously quantifying the concentration of sugar metabolites and their mass isotopologue distribution (MID) was developed. The method performs with good linearity and coefficient of determination (R2) > 0.99, while the detection limit ranged from 0.1 to 50 mg L-1. Seven sugar metabolites were detected in a labeled Brevibacterium flavum sample using the method. The detected quantities ranged from 6.15 to 3704.21 mg L-1, and 13C abundance was between 12.77% and 66.67% in the fermentation fluid and 16.28% and 91.93% in the bacterial body. Overall, the method is efficient, accurate, and suitable for analysis of labeled sugar metabolites in 13C MFA studies.
Collapse
Affiliation(s)
- Yameng Zhao
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Research Institute of Chemical Industry Co., Ltd, Shanghai, China
| | - Ruoning Fan
- Shanghai Research Institute of Chemical Industry Co., Ltd, Shanghai, China
| | - Chuyao Wang
- Shanghai Research Institute of Chemical Industry Co., Ltd, Shanghai, China
| | - Sen Xu
- Shanghai Research Institute of Chemical Industry Co., Ltd, Shanghai, China
| | - Long Xie
- Shanghai Research Institute of Chemical Industry Co., Ltd, Shanghai, China
| | - Jinghua Hou
- Shanghai Research Institute of Chemical Industry Co., Ltd, Shanghai, China
| | - Wen Lei
- Shanghai Research Institute of Chemical Industry Co., Ltd, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Narduzzi L, Hernández-Mesa M, Vincent P, Guitton Y, García-Campaña AM, Le Bizec B, Dervilly G. Deeper insights into the effects of low dietary levels of polychlorinated biphenyls on pig metabolism using gas chromatography-high resolution mass spectrometry metabolomics. CHEMOSPHERE 2023; 341:140048. [PMID: 37660801 DOI: 10.1016/j.chemosphere.2023.140048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a class of contaminants of great concern, linked to the development of many chronic diseases. Adverse effects of PCBs have been documented in humans after accidental and massive exposure. However, little is known about the effect of chronic exposure to low-dose PCB mixtures, and studies regarding scattered lifetime exposures to non-dioxin-like (NDL)-PCBs are especially missing. In this work, serum samples from pigs chronically exposed through their diet during 22 days to Aroclor 1260 (i.e. a commercially available mixture of NDL-PCBs) underwent a metabolomics analysis using gas chromatography-high resolution mass spectrometry (GC-HRMS), with the objective to investigate the effect of exposure to low doses of NDL-PCBs (few ng/kg body weight (b.w.) per day). The study showed that the serum profiles of 84 metabolites are significantly altered by the administration of Aroclor 1260, of which 40 could be identified at level 1. The aggregate interpretation of the results of this study, together with the outcome of a previous one involving LC-HRMS profiling, provided a substantial and concise overview of the effect of low dose exposure to NDL-PCBs, reflecting the hepatotoxic and neurotoxic effects already reported in literature at higher and longer exposures. These results are intended to contribute to the debate on the current toxicological reference values for these substances.
Collapse
Affiliation(s)
- Luca Narduzzi
- Oniris, INRAE, LABERCA, Nantes, 44300, France; Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada, E-18071, Spain
| | - Maykel Hernández-Mesa
- Oniris, INRAE, LABERCA, Nantes, 44300, France; Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada, E-18071, Spain.
| | | | | | - Ana M García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada, E-18071, Spain
| | | | | |
Collapse
|
5
|
Advances in Plant Metabolomics and Its Applications in Stress and Single-Cell Biology. Int J Mol Sci 2022; 23:ijms23136985. [PMID: 35805979 PMCID: PMC9266571 DOI: 10.3390/ijms23136985] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023] Open
Abstract
In the past two decades, the post-genomic era envisaged high-throughput technologies, resulting in more species with available genome sequences. In-depth multi-omics approaches have evolved to integrate cellular processes at various levels into a systems biology knowledge base. Metabolomics plays a crucial role in molecular networking to bridge the gaps between genotypes and phenotypes. However, the greater complexity of metabolites with diverse chemical and physical properties has limited the advances in plant metabolomics. For several years, applications of liquid/gas chromatography (LC/GC)-mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been constantly developed. Recently, ion mobility spectrometry (IMS)-MS has shown utility in resolving isomeric and isobaric metabolites. Both MS and NMR combined metabolomics significantly increased the identification and quantification of metabolites in an untargeted and targeted manner. Thus, hyphenated metabolomics tools will narrow the gap between the number of metabolite features and the identified metabolites. Metabolites change in response to environmental conditions, including biotic and abiotic stress factors. The spatial distribution of metabolites across different organs, tissues, cells and cellular compartments is a trending research area in metabolomics. Herein, we review recent technological advancements in metabolomics and their applications in understanding plant stress biology and different levels of spatial organization. In addition, we discuss the opportunities and challenges in multiple stress interactions, multi-omics, and single-cell metabolomics.
Collapse
|
6
|
Berardi G, Frey-Law L, Sluka KA, Bayman EO, Coffey CS, Ecklund D, Vance CGT, Dailey DL, Burns J, Buvanendran A, McCarthy RJ, Jacobs J, Zhou XJ, Wixson R, Balach T, Brummett CM, Clauw D, Colquhoun D, Harte SE, Harris RE, Williams DA, Chang AC, Waljee J, Fisch KM, Jepsen K, Laurent LC, Olivier M, Langefeld CD, Howard TD, Fiehn O, Jacobs JM, Dakup P, Qian WJ, Swensen AC, Lokshin A, Lindquist M, Caffo BS, Crainiceanu C, Zeger S, Kahn A, Wager T, Taub M, Ford J, Sutherland SP, Wandner LD. Multi-Site Observational Study to Assess Biomarkers for Susceptibility or Resilience to Chronic Pain: The Acute to Chronic Pain Signatures (A2CPS) Study Protocol. Front Med (Lausanne) 2022; 9:849214. [PMID: 35547202 PMCID: PMC9082267 DOI: 10.3389/fmed.2022.849214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic pain has become a global health problem contributing to years lived with disability and reduced quality of life. Advances in the clinical management of chronic pain have been limited due to incomplete understanding of the multiple risk factors and molecular mechanisms that contribute to the development of chronic pain. The Acute to Chronic Pain Signatures (A2CPS) Program aims to characterize the predictive nature of biomarkers (brain imaging, high-throughput molecular screening techniques, or "omics," quantitative sensory testing, patient-reported outcome assessments and functional assessments) to identify individuals who will develop chronic pain following surgical intervention. The A2CPS is a multisite observational study investigating biomarkers and collective biosignatures (a combination of several individual biomarkers) that predict susceptibility or resilience to the development of chronic pain following knee arthroplasty and thoracic surgery. This manuscript provides an overview of data collection methods and procedures designed to standardize data collection across multiple clinical sites and institutions. Pain-related biomarkers are evaluated before surgery and up to 3 months after surgery for use as predictors of patient reported outcomes 6 months after surgery. The dataset from this prospective observational study will be available for researchers internal and external to the A2CPS Consortium to advance understanding of the transition from acute to chronic postsurgical pain.
Collapse
Affiliation(s)
- Giovanni Berardi
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Laura Frey-Law
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Kathleen A. Sluka
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Emine O. Bayman
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, United States
| | - Christopher S. Coffey
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, United States
| | - Dixie Ecklund
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, United States
| | - Carol G. T. Vance
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Dana L. Dailey
- Department of Physical Therapy, St. Ambrose University, Davenport, IA, United States
| | - John Burns
- Department of Psychiatry, Rush University Medical Center, Chicago, IL, United States
| | - Asokumar Buvanendran
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, United States
| | - Robert J. McCarthy
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, United States
| | - Joshua Jacobs
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, United States
| | - Xiaohong Joe Zhou
- Departments of Radiology, Neurosurgery, and Bioengineering, University of Illinois College of Medicine at Chicago, Chicago, IL, United States
| | - Richard Wixson
- NorthShore Orthopaedic and Spine Institute, NorthShore University HealthSystem, Skokie, IL, United States
| | - Tessa Balach
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago, Chicago, IL, United States
| | - Chad M. Brummett
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Daniel Clauw
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
- Department of Medicine (Rheumatology), University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Douglas Colquhoun
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Steven E. Harte
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
- Department of Medicine (Rheumatology), University of Michigan, Ann Arbor, MI, United States
| | - Richard E. Harris
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
- Department of Medicine (Rheumatology), University of Michigan, Ann Arbor, MI, United States
| | - David A. Williams
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
- Department of Medicine (Rheumatology), University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Andrew C. Chang
- Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Jennifer Waljee
- Section of Plastic and Reconstructive Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Kathleen M. Fisch
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Kristen Jepsen
- Institute of Genomic Medicine Genomics Center, University of California, San Diego, La Jolla, CA, United States
| | - Louise C. Laurent
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Michael Olivier
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Timothy D. Howard
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States
| | - Jon M. Jacobs
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Panshak Dakup
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Wei-Jun Qian
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Adam C. Swensen
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Anna Lokshin
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Martin Lindquist
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Brian S. Caffo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Ciprian Crainiceanu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Scott Zeger
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Ari Kahn
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, United States
| | - Tor Wager
- Presidential Cluster in Neuroscience, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Margaret Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - James Ford
- Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Stephani P. Sutherland
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Laura D. Wandner
- National Institute of Neurological Disorders and Stroke, The National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
pyAIR-A New Software Tool for Breathomics Applications-Searching for Markers in TD-GC-HRMS Analysis. Molecules 2022; 27:molecules27072063. [PMID: 35408461 PMCID: PMC9000534 DOI: 10.3390/molecules27072063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Volatile metabolites in exhaled air have promising potential as diagnostic biomarkers. However, the combination of low mass, similar chemical composition, and low concentrations introduces the challenge of sorting the data to identify markers of value. In this paper, we report the development of pyAIR, a software tool for searching for volatile organic compounds (VOCs) markers in multi-group datasets, tailored for Thermal-Desorption Gas-Chromatography High Resolution Mass-Spectrometry (TD-GC-HRMS) output. pyAIR aligns the compounds between samples by spectral similarity coupled with retention times (RT), and statistically compares the groups for compounds that differ by intensity. This workflow was successfully tested and evaluated on gaseous samples spiked with 27 model VOCs at six concentrations, divided into three groups, down to 0.3 nL/L. All analytes were correctly detected and aligned. More than 80% were found to be significant markers with a p-value < 0.05; several were classified as possibly significant markers (p-value < 0.1), while a few were removed due to background level. In all group comparisons, low rates of false markers were found. These results showed the potential of pyAIR in the field of trace-level breathomics, with the capability to differentially examine several groups, such as stages of illness.
Collapse
|
8
|
Zaid A, Khan MS, Yan D, Marriott PJ, Wong YF. Comprehensive two-dimensional gas chromatography with mass spectrometry: an advanced bioanalytical technique for clinical metabolomics studies. Analyst 2022; 147:3974-3992. [DOI: 10.1039/d2an00584k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights the current state of knowledge in the development of GC × GC-MS for the analysis of clinical metabolites. Selected applications are described as well as our perspectives on current challenges and potential future directions.
Collapse
Affiliation(s)
- Atiqah Zaid
- Centre for Research on Multidimensional Separation Science, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Mohammad Sharif Khan
- Cargill Research and Development Center, Cargill, 14800 28th Ave N, Plymouth, MN 55447, USA
| | - Dandan Yan
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Philip J. Marriott
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Yong Foo Wong
- Centre for Research on Multidimensional Separation Science, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
9
|
Defining Blood Plasma and Serum Metabolome by GC-MS. Metabolites 2021; 12:metabo12010015. [PMID: 35050137 PMCID: PMC8779220 DOI: 10.3390/metabo12010015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 01/04/2023] Open
Abstract
Metabolomics uses advanced analytical chemistry methods to analyze metabolites in biological samples. The most intensively studied samples are blood and its liquid components: plasma and serum. Armed with advanced equipment and progressive software solutions, the scientific community has shown that small molecules’ roles in living systems are not limited to traditional “building blocks” or “just fuel” for cellular energy. As a result, the conclusions based on studying the metabolome are finding practical reflection in molecular medicine and a better understanding of fundamental biochemical processes in living systems. This review is not a detailed protocol of metabolomic analysis. However, it should support the reader with information about the achievements in the whole process of metabolic exploration of human plasma and serum using mass spectrometry combined with gas chromatography.
Collapse
|
10
|
Multi-Omics Analysis to Generate Hypotheses for Mild Health Problems in Monkeys. Metabolites 2021; 11:metabo11100701. [PMID: 34677416 PMCID: PMC8538200 DOI: 10.3390/metabo11100701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/28/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
Certain symptoms associated with mild sickness and lethargy have not been categorized as definitive diseases. Confirming such symptoms in captive monkeys (Macaca fascicularis, known as cynomolgus monkeys) can be difficult; however, it is possible to observe and analyze their feces. In this study, we investigated the relationship between stool state and various omics data by considering objective and quantitative values of stool water content as a phenotype for analysis. By examining the food intake of the monkeys and assessing their stool, urine, and plasma, we attempted to obtain a comprehensive understanding of the health status of individual monkeys and correlate it with the stool condition. Our metabolomics data strongly suggested that many lipid-related metabolites were correlated with the stool water content. The lipidomic analysis revealed the involvement of saturated and oxidized fatty acids, metallomics revealed the contribution of selenium (a bio-essential trace element), and intestinal microbiota analysis revealed the association of several bacterial species with the stool water content. Based on our results, we hypothesize that the redox imbalance causes minor health problems. However, it is not possible to make a definite conclusion using multi-omics alone, and other hypotheses could be proposed.
Collapse
|
11
|
Misra BB. Advances in high resolution GC-MS technology: a focus on the application of GC-Orbitrap-MS in metabolomics and exposomics for FAIR practices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2265-2282. [PMID: 33987631 DOI: 10.1039/d1ay00173f] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gas chromatography-mass spectrometry (GC-MS) provides a complementary analytical platform for capturing volatiles, non-polar and (derivatized) polar metabolites and exposures from a diverse array of matrixes. High resolution (HR) GC-MS as a data generation platform can capture data on analytes that are usually not detectable/quantifiable in liquid chromatography mass-spectrometry-based solutions. With the rise of high-resolution accurate mass (HRAM) GC-MS systems such as GC-Orbitrap-MS in the last decade after the time-of-flight (ToF) renaissance, numerous applications have been found in the fields of metabolomics and exposomics. In a short span of time, a multitude of studies have used GC-Orbitrap-MS to generate exciting new high throughput data spanning from diverse basic to applied research areas. The GC-Orbitrap-MS has found application in both targeted and untargeted efforts for capturing metabolomes and exposomes across diverse studies. In this review, I capture and summarize all the reported studies to date, and provide a snapshot of the milieu of commercial and open-source software solutions, spectral libraries, and informatics solutions available to a GC-Orbitrap-MS system instrument user or a data analyst dealing with these datasets. Lastly, but importantly, I provide an account on data sharing and meta-data capturing solutions that are available to make HRAM GC-MS based metabolomics and exposomics studies findable, accessible, interoperable, and reproducible (FAIR). These FAIR practices would allow data generators and users of GC-HRMS instruments to help the community of GC-MS researchers to collaborate and co-develop exciting tools and algorithms in the future.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Independent Researcher, Pine-211, Raintree Park Dwaraka Krishna, Namburu, AP-522508, India.
| |
Collapse
|
12
|
Travis SC, Kordas K, Aga DS. Optimized workflow for unknown screening using gas chromatography high-resolution mass spectrometry expands identification of contaminants in silicone personal passive samplers. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9048. [PMID: 33444483 DOI: 10.1002/rcm.9048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Silicone wristbands have emerged as valuable passive samplers for monitoring of personal exposure to environmental contaminants in the rapidly developing field of exposomics. Once deployed, silicone wristbands collect and hold a wealth of chemical information that can be interrogated using high-resolution mass spectrometry (HRMS) to provide a broad coverage of chemical mixtures. METHODS Gas chromatography coupled to Orbitrap™ mass spectrometry (GC/Orbitrap™ MS) was used to simultaneously perform suspect screening (using in-house database) and unknown screening (using vendor databases) of extracts from wristbands worn by volunteers. The goal of this study was to optimize a workflow that allows detection of low levels of priority pollutants, with high reliability. In this regard, a data processing workflow for GC/Orbitrap™ MS was developed using a mixture of 123 environmentally relevant standards consisting of pesticides, flame retardants, organophosphate esters, and polycyclic aromatic hydrocarbons as test compounds. RESULTS The optimized unknown screening workflow using a search index threshold of 750 resulted in positive identification of 70 analytes in validation samples, and a reduction in the number of false positives by over 50%. An average of 26 compounds with high confidence identification, 7 level 1 compounds and 19 level 2 compounds, were observed in worn wristbands. The data were further analyzed via suspect screening and retrospective suspect screening to identify an additional 36 compounds. CONCLUSIONS This study provides three important findings: (1) a clear evidence of the importance of sample cleanup in addressing complex sample matrices for unknown analysis, (2) a valuable workflow for the identification of unknown contaminants in silicone wristband samplers using electron ionization HRMS data, and (3) a novel application of GC/Orbitrap™ MS for the unknown analysis of organic contaminants that can be used in exposomics studies.
Collapse
Affiliation(s)
- Steven C Travis
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, 14260, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, 14214, USA
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, 14260, USA
| |
Collapse
|
13
|
Müller J, Bertsch T, Volke J, Schmid A, Klingbeil R, Metodiev Y, Karaca B, Kim SH, Lindner S, Schupp T, Kittel M, Poschet G, Akin I, Behnes M. Narrative review of metabolomics in cardiovascular disease. J Thorac Dis 2021; 13:2532-2550. [PMID: 34012599 PMCID: PMC8107570 DOI: 10.21037/jtd-21-22] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases are accompanied by disorders in the cardiac metabolism. Furthermore, comorbidities often associated with cardiovascular disease can alter systemic and myocardial metabolism contributing to worsening of cardiac performance and health status. Biomarkers such as natriuretic peptides or troponins already support diagnosis, prognosis and treatment of patients with cardiovascular diseases and are represented in international guidelines. However, as cardiovascular diseases affect various pathophysiological pathways, a single biomarker approach cannot be regarded as ideal to reveal optimal clinical application. Emerging metabolomics technology allows the measurement of hundreds of metabolites in biological fluids or biopsies and thus to characterize each patient by its own metabolic fingerprint, improving our understanding of complex diseases, significantly altering the management of cardiovascular diseases and possibly personalizing medicine. This review outlines current knowledge, perspectives as well as limitations of metabolomics for diagnosis, prognosis and treatment of cardiovascular diseases such as heart failure, atherosclerosis, ischemic and non-ischemic cardiomyopathy. Furthermore, an ongoing research project tackling current inconsistencies as well as clinical applications of metabolomics will be discussed. Taken together, the application of metabolomics will enable us to gain more insights into pathophysiological interactions of metabolites and disease states as well as improving therapies of patients with cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Julian Müller
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Bertsch
- Institute of Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremburg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | - Justus Volke
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alexander Schmid
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rebecca Klingbeil
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Yulian Metodiev
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Bican Karaca
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Seung-Hyun Kim
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Simon Lindner
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Tobias Schupp
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Maximilian Kittel
- Institute for Clinical Chemistry, Faculty of Medicine Mannheim, Heidelberg University, Mannheim, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Ibrahim Akin
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Behnes
- First Department of Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
14
|
Amer B, Baidoo EEK. Omics-Driven Biotechnology for Industrial Applications. Front Bioeng Biotechnol 2021; 9:613307. [PMID: 33708762 PMCID: PMC7940536 DOI: 10.3389/fbioe.2021.613307] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Biomanufacturing is a key component of biotechnology that uses biological systems to produce bioproducts of commercial relevance, which are of great interest to the energy, material, pharmaceutical, food, and agriculture industries. Biotechnology-based approaches, such as synthetic biology and metabolic engineering are heavily reliant on "omics" driven systems biology to characterize and understand metabolic networks. Knowledge gained from systems biology experiments aid the development of synthetic biology tools and the advancement of metabolic engineering studies toward establishing robust industrial biomanufacturing platforms. In this review, we discuss recent advances in "omics" technologies, compare the pros and cons of the different "omics" technologies, and discuss the necessary requirements for carrying out multi-omics experiments. We highlight the influence of "omics" technologies on the production of biofuels and bioproducts by metabolic engineering. Finally, we discuss the application of "omics" technologies to agricultural and food biotechnology, and review the impact of "omics" on current COVID-19 research.
Collapse
Affiliation(s)
- Bashar Amer
- Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Edward E. K. Baidoo
- Lawrence Berkeley National Laboratory, Joint BioEnergy Institute, Emeryville, CA, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- U.S. Department of Energy, Agile BioFoundry, Emeryville, CA, United States
| |
Collapse
|
15
|
Pollo BJ, Teixeira CA, Belinato JR, Furlan MF, Cunha ICDM, Vaz CR, Volpato GV, Augusto F. Chemometrics, Comprehensive Two-Dimensional gas chromatography and “omics” sciences: Basic tools and recent applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Franchina FA, Zanella D, Dubois LM, Focant J. The role of sample preparation in multidimensional gas chromatographic separations for non‐targeted analysis with the focus on recent biomedical, food, and plant applications. J Sep Sci 2020; 44:188-210. [DOI: 10.1002/jssc.202000855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Flavio A. Franchina
- Molecular System Organic & Biological Analytical Chemistry Group University of Liège Liège Belgium
| | - Delphine Zanella
- Molecular System Organic & Biological Analytical Chemistry Group University of Liège Liège Belgium
| | - Lena M. Dubois
- Molecular System Organic & Biological Analytical Chemistry Group University of Liège Liège Belgium
| | - Jean‐François Focant
- Molecular System Organic & Biological Analytical Chemistry Group University of Liège Liège Belgium
| |
Collapse
|
17
|
Bertolone L, Shin HK, Stefanoni D, Baek JH, Gao Y, Morrison EJ, Nemkov T, Thomas T, Francis RO, Hod EA, Zimring JC, Yoshida T, Karafin M, Schwartz J, Hudson KE, Spitalnik SL, Buehler PW, D'Alessandro A. ZOOMICS: Comparative Metabolomics of Red Blood Cells From Old World Monkeys and Humans. Front Physiol 2020; 11:593841. [PMID: 33192610 PMCID: PMC7645159 DOI: 10.3389/fphys.2020.593841] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
As part of the ZOOMICS project, we set out to investigate common and diverging metabolic traits in the blood metabolome across various species by taking advantage of recent developments in high-throughput metabolomics. Here we provide the first comparative metabolomics analysis of fresh and stored human (n = 21, 10 males, 11 females), olive baboon (n = 20), and rhesus macaque (n = 20) red blood cells at baseline and upon 42 days of storage under blood bank conditions. The results indicated similarities and differences across species, which ultimately resulted in a differential propensity to undergo morphological alterations and lyse as a function of the duration of refrigerated storage. Focusing on purine oxidation, carboxylic acid, fatty acid, and arginine metabolism further highlighted species-specific metabolic wiring. For example, through a combination of steady state measurements and 13C615N4-arginine tracing experiments, we report an increase in arginine catabolism into ornithine in humans, suggestive of species-specific arginase 1 activity and nitric oxide synthesis—an observation that may impact the translatability of cardiovascular disease studies carried out in non-human primates (NHPs). Finally, we correlated metabolic measurements to storage-induced morphological alterations via scanning electron microscopy and hemolysis, which were significantly lower in human red cells compared to both NHPs.
Collapse
Affiliation(s)
- Lorenzo Bertolone
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Hye K Shin
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Jin Hyen Baek
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Yamei Gao
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Evan J Morrison
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Tiffany Thomas
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Richard O Francis
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Eldad A Hod
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - James C Zimring
- Department of Pathology, University of Virginia, Charloteseville, VA, United States
| | | | - Matthew Karafin
- Blood Center of Wisconsin, Milwaukee, WI, United States.,Department of Pathology and Laboratory Medicine, Milwaukee, WI, United States
| | - Joseph Schwartz
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Paul W Buehler
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States.,Division of Hematology, Department of Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
18
|
Stettin D, Poulin RX, Pohnert G. Metabolomics Benefits from Orbitrap GC-MS-Comparison of Low- and High-Resolution GC-MS. Metabolites 2020; 10:metabo10040143. [PMID: 32260407 PMCID: PMC7254393 DOI: 10.3390/metabo10040143] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
The development of improved mass spectrometers and supporting computational tools is expected to enable the rapid annotation of whole metabolomes. Essential for the progress is the identification of strengths and weaknesses of novel instrumentation in direct comparison to previous instruments. Orbitrap liquid chromatography (LC)–mass spectrometry (MS) technology is now widely in use, while Orbitrap gas chromatography (GC)–MS introduced in 2015 has remained fairly unexplored in its potential for metabolomics research. This study aims to evaluate the additional knowledge gained in a metabolomics experiment when using the high-resolution Orbitrap GC–MS in comparison to a commonly used unit-mass resolution single-quadrupole GC–MS. Samples from an osmotic stress treatment of a non-model organism, the microalga Skeletonema costatum, were investigated using comparative metabolomics with low- and high-resolution methods. Resulting datasets were compared on a statistical level and on the level of individual compound annotation. Both MS approaches resulted in successful classification of stressed vs. non-stressed microalgae but did so using different sets of significantly dysregulated metabolites. High-resolution data only slightly improved conventional library matching but enabled the correct annotation of an unknown. While computational support that utilizes high-resolution GC–MS data is still underdeveloped, clear benefits in terms of sensitivity, metabolic coverage, and support in structure elucidation of the Orbitrap GC–MS technology for metabolomics studies are shown here.
Collapse
|
19
|
Misra BB, Olivier M. High Resolution GC-Orbitrap-MS Metabolomics Using Both Electron Ionization and Chemical Ionization for Analysis of Human Plasma. J Proteome Res 2020; 19:2717-2731. [DOI: 10.1021/acs.jproteome.9b00774] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Biswapriya B. Misra
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, United States
| | - Michael Olivier
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
20
|
Amaral MSS, Nolvachai Y, Marriott PJ. Comprehensive Two-Dimensional Gas Chromatography Advances in Technology and Applications: Biennial Update. Anal Chem 2019; 92:85-104. [DOI: 10.1021/acs.analchem.9b05412] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michelle S. S. Amaral
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Yada Nolvachai
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Philip J. Marriott
- Australian Centre for Research on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
21
|
Misra BB, Puppala SR, Comuzzie AG, Mahaney MC, VandeBerg JL, Olivier M, Cox LA. Analysis of serum changes in response to a high fat high cholesterol diet challenge reveals metabolic biomarkers of atherosclerosis. PLoS One 2019; 14:e0214487. [PMID: 30951537 PMCID: PMC6450610 DOI: 10.1371/journal.pone.0214487] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/13/2019] [Indexed: 01/19/2023] Open
Abstract
Atherosclerotic plaques are characterized by an accumulation of macrophages, lipids, smooth muscle cells, and fibroblasts, and, in advanced stages, necrotic debris within the arterial walls. Dietary habits such as high fat and high cholesterol (HFHC) consumption are known risk factors for atherosclerosis. However, the key metabolic contributors to diet-induced atherosclerosis are far from established. Herein, we investigate the role of a 2-year HFHC diet challenge in the metabolic changes of development and progression of atherosclerosis. We used a non-human primate (NHP) model (baboons, n = 60) fed a HFHC diet for two years and compared metabolomic profiles in serum from animals on baseline chow with serum collected after the challenge diet using two-dimensional gas chromatography time-of-flight mass-spectrometry (2D GC-ToF-MS) for untargeted metabolomic analysis, to quantify metabolites that contribute to atherosclerotic lesion formation. Further, clinical biomarkers associated with atherosclerosis, lipoprotein measures, fat indices, and arterial plaque formation (lesions) were quantified. Using two chemical derivatization (i.e., silylation) approaches, we quantified 321 metabolites belonging to 66 different metabolic pathways, which revealed significantly different metabolic profiles of HFHC diet and chow diet fed baboon sera. We found heritability of two important metabolites, lactic acid and asparagine, in the context of diet-induced metabolic changes. In addition, abundance of cholesterol, lactic acid, and asparagine were sex-dependent. Finally, 35 metabolites correlated (R2, 0.068-0.271, P < 0.05) with total lesion burden assessed in three arteries (aortic arch, common iliac artery, and descending aorta) which could serve as potential biomarkers pending further validation. This study demonstrates the feasibility of detecting sex-specific and heritable metabolites in NHPs with diet-induced atherosclerosis using untargeted metabolomics allowing understanding of atherosclerotic disease progression in humans.
Collapse
Affiliation(s)
- Biswapriya B. Misra
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina United States of America
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Sobha R. Puppala
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina United States of America
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | | | - Michael C. Mahaney
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, The University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
| | - John L. VandeBerg
- South Texas Diabetes and Obesity Institute and Department of Human Genetics, The University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
| | - Michael Olivier
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina United States of America
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Laura A. Cox
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina United States of America
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| |
Collapse
|
22
|
Drying Enhances Signal Intensities for Global GC⁻MS Metabolomics. Metabolites 2019; 9:metabo9040068. [PMID: 30959834 PMCID: PMC6523563 DOI: 10.3390/metabo9040068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/23/2022] Open
Abstract
We report here that a straightforward change of the standard derivatization procedure for GC–MS metabolomics is leading to a strong increase in metabolite signal intensity. Drying samples between methoxymation and trimethylsilylation significantly increased signals by two- to tenfold in extracts of yeast cells, plant and animal tissue, and human urine. This easy step reduces the cost of sample material and the need for expensive new hardware.
Collapse
|
23
|
Misra BB, Ruiz-Hernández IM, Hernández-Bolio GI, Hernández-Núñez E, Díaz-Gamboa R, Colli-Dula RC. 1H NMR metabolomic analysis of skin and blubber of bottlenose dolphins reveals a functional metabolic dichotomy. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:25-32. [PMID: 30771562 DOI: 10.1016/j.cbd.2019.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 11/27/2022]
Abstract
The common bottlenose dolphin (Tursiops truncatus) is a carnivorous cetacean that thrives in marine environments, one of the apex predators of the marine food web. They are found in coastal and estuarine ecosystems, which are known to be sensitive to environmental impacts. Dolphins are considered sentinel organisms for monitoring the health of coastal marine ecosystems due to their role as predators that can bioaccumulate contaminants. Although recent studies have focused on capturing the circulating metabolomes of these mammals, and in the context of pollutants and exposures in the marine environment, skin and blubber are important surface and protective tissues that have not been adequately probed for metabolism. Using a proton nuclear magnetic resonance spectroscopy (1H NMR) based metabolomics approach, we quantified 51 metabolites belonging to 74 different metabolic pathways in the skin and blubber of stranded bottlenose dolphin (n = 4) samples collected at different localities in the Southern Zone coast of Yucatan Peninsula of Mexico. Results indicate that metabolism of skin and blubber are quantitatively very different. These metabolite abundances could help discriminate the tissue-types using supervised partial least square regression discriminant analysis (PLSDA). Further, using hierarchical clustering analysis and random forest analysis of the metabolite abundances, the results pointed to unique metabolites that are important classifiers of the tissue-type. On one hand, the differential metabolic patterns, mainly linking fatty acid metabolism and ketogenic amino acids, seem to constitute a characteristic of blubber, thus pointing to fat synthesis and deposition. On the other hand, the skin showed several metabolites involved in gluconeogenic pathways, pointing towards an active anabolic energy-generating metabolism. The most notable pathways found in both tissues included: urea cycle, nucleotide metabolism, amino acid metabolism, glutathione metabolism among others. Our 1H NMR metabolomics analysis allowed the quantification of metabolites associated with these two organs, i.e., pyruvic acid, arginine, ornithine, 2-hydroxybutyric acid, 3-hydroxyisobutyric acid, and acetic acid, as discriminatory and classifying metabolites. These results would lead to further understanding of the functional and physiological roles of dolphin skin and blubber metabolism for better efforts in their conservation, as well as useful target biopsy tissues for monitoring of dolphin health conditions in marine pollution and ecotoxicology studies.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem 27157, NC, USA
| | | | | | - Emanuel Hernández-Núñez
- Departamento de Recursos del Mar, Cinvestav Unidad Mérida, Mérida, Yucatán 97310, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico
| | - Raúl Díaz-Gamboa
- Universidad Autónoma de Yucatán, Campus de Ciencias Biológicas y Agropecuarias, 97100 Mérida, Yucatán, Mexico
| | - Reyna Cristina Colli-Dula
- Departamento de Recursos del Mar, Cinvestav Unidad Mérida, Mérida, Yucatán 97310, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico.
| |
Collapse
|