1
|
Wang MF, Ouyang Y, Segura T, Muddiman DC. Optimizing neurotransmitter pathway detection by IR-MALDESI-MSI in mouse brain. Anal Bioanal Chem 2024; 416:4207-4218. [PMID: 38822822 PMCID: PMC11609309 DOI: 10.1007/s00216-024-05354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Mass spectrometry imaging (MSI) platforms such as infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) are advantageous for a variety of applications, including elucidating the localization of neurotransmitters (NTs) and related molecules with respect to ion abundance across a sample without the need for derivatization or organic matrix application. While IR-MALDESI-MSI conventionally uses a thin exogenous ice matrix to improve signal abundance, it has been previously determined that sucrose embedding without the ice matrix improves detection of lipid species in striatal, coronal mouse brain sections. This work considers components of this workflow to determine the optimal sample preparation and matrix to enhance the detection of NTs and their related metabolites in coronal sections from the striatal region of the mouse brain. The discoveries herein will enable more comprehensive follow-on studies for the investigation of NTs to enrich biological pathways and interpretation related to neurodegenerative diseases and ischemic stroke.
Collapse
Affiliation(s)
- Mary F Wang
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Yunxin Ouyang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
2
|
Kibbe RR, Muddiman DC. Quantitative mass spectrometry imaging (qMSI): A tutorial. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5009. [PMID: 38488849 PMCID: PMC11608390 DOI: 10.1002/jms.5009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/29/2024] [Indexed: 03/19/2024]
Abstract
Mass spectrometry imaging (MSI) is an analytical technique that enables the simultaneous detection of hundreds to thousands of chemical species while retaining their spatial information; usually, MSI is applied to biological tissues. Combining these elements can create ion images, which allows for the identification and localization of multiple chemical species within the sample. Being able to produce molecular images of biological tissues has already impacted the study of health and disease; however, the next logical step is being able to combine MSI with quantitative mass spectrometry methods to both quantify and determine the localization of disease progression or drug action. In this tutorial, we will detail the main factors to consider when designing a qMSI experiment and highlight the methods that have been developed to overcome these added complexities, specifically for those newer to the field of MSI.
Collapse
Affiliation(s)
- Russell R Kibbe
- Department of Chemistry, FTMS Laboratory for Human Health Research, North Carolina State University, Raleigh, North Carolina, USA
| | - David C Muddiman
- Department of Chemistry, FTMS Laboratory for Human Health Research, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Goto C, Ikegami A, Goh T, Maruyama K, Kasahara H, Takebayashi Y, Kamiya Y, Toyokura K, Kondo Y, Ishizaki K, Mimura T, Fukaki H. Genetic Interaction between Arabidopsis SUR2/CYP83B1 and GNOM Indicates the Importance of Stabilizing Local Auxin Accumulation in Lateral Root Initiation. PLANT & CELL PHYSIOLOGY 2023; 64:1178-1188. [PMID: 37522618 DOI: 10.1093/pcp/pcad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
Lateral root (LR) formation is an important developmental event for the establishment of the root system in most vascular plants. In Arabidopsis thaliana, the fewer roots (fwr) mutation in the GNOM gene, encoding a guanine nucleotide exchange factor of ADP ribosylation factor that regulates vesicle trafficking, severely inhibits LR formation. Local accumulation of auxin response for LR initiation is severely affected in fwr. To better understand how local accumulation of auxin response for LR initiation is regulated, we identified a mutation, fewer roots suppressor1 (fsp1), that partially restores LR formation in fwr. The gene responsible for fsp1 was identified as SUPERROOT2 (SUR2), encoding CYP83B1 that positions at the metabolic branch point in the biosynthesis of auxin/indole-3-acetic acid (IAA) and indole glucosinolate. The fsp1 mutation increases both endogenous IAA levels and the number of the sites where auxin response locally accumulates prior to LR formation in fwr. SUR2 is expressed in the pericycle of the differentiation zone and in the apical meristem in roots. Time-lapse imaging of the auxin response revealed that local accumulation of auxin response is more stable in fsp1. These results suggest that SUR2/CYP83B1 affects LR founder cell formation at the xylem pole pericycle cells where auxin accumulates. Analysis of the genetic interaction between SUR2 and GNOM indicates the importance of stabilization of local auxin accumulation sites for LR initiation.
Collapse
Affiliation(s)
| | - Akira Ikegami
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| | - Tatsuaki Goh
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Kaisei Maruyama
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, 183-8509 Japan
| | - Hiroyuki Kasahara
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai, Fuchu, 183-8509 Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Yuji Kamiya
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Koichi Toyokura
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- Graduate School of Integrated Science for Life, Hiroshima University, 1-4-3 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526 Japan
| | - Yuki Kondo
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657 Japan
- College of Bioscience and Biotechnology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501 Japan
| |
Collapse
|
4
|
Nguyen KU, Zhang Y, Liu Q, Zhang R, Jin X, Taniguchi M, Miller ES, Lindsey JS. Tolyporphins-Exotic Tetrapyrrole Pigments in a Cyanobacterium-A Review. Molecules 2023; 28:6132. [PMID: 37630384 PMCID: PMC10459692 DOI: 10.3390/molecules28166132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Tolyporphins were discovered some 30 years ago as part of a global search for antineoplastic compounds from cyanobacteria. To date, the culture HT-58-2, comprised of a cyanobacterium-microbial consortium, is the sole known producer of tolyporphins. Eighteen tolyporphins are now known-each is a free base tetrapyrrole macrocycle with a dioxobacteriochlorin (14), oxochlorin (3), or porphyrin (1) chromophore. Each compound displays two, three, or four open β-pyrrole positions and two, one, or zero appended C-glycoside (or -OH or -OAc) groups, respectively; the appended groups form part of a geminal disubstitution motif flanking the oxo moiety in the pyrroline ring. The distinct structures and repertoire of tolyporphins stand alone in the large pigments-of-life family. Efforts to understand the cyanobacterial origin, biosynthetic pathways, structural diversity, physiological roles, and potential pharmacological properties of tolyporphins have attracted a broad spectrum of researchers from diverse scientific areas. The identification of putative biosynthetic gene clusters in the HT-58-2 cyanobacterial genome and accompanying studies suggest a new biosynthetic paradigm in the tetrapyrrole arena. The present review provides a comprehensive treatment of the rich science concerning tolyporphins.
Collapse
Affiliation(s)
- Kathy-Uyen Nguyen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Yunlong Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Qihui Liu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Ran Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Xiaohe Jin
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| | - Eric S. Miller
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612, USA;
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; (K.-U.N.); (Y.Z.); (Q.L.); (R.Z.); (X.J.); (M.T.)
| |
Collapse
|
5
|
Wang MF, Sohn AL, Samal J, Erning K, Segura T, Muddiman DC. Lipidomic Analysis of Mouse Brain to Evaluate the Efficacy and Preservation of Different Tissue Preparatory Techniques by IR-MALDESI-MSI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:869-877. [PMID: 36988291 DOI: 10.1021/jasms.2c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Numerous preparatory methods have been developed to preserve the cellular and structural integrity of various biological tissues for different -omics studies. Herein, two preparatory methods for mass spectrometry imaging (MSI) were evaluated, fresh-frozen and sucrose-embedded, paraformaldehyde (PFA) fixed, in terms of ion abundance, putative lipid identifications, and preservation of analyte spatial distributions. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI)-MSI was utilized to compare the preparatory methods of interest with and without the use of the conventional ice matrix. There were 2.5-fold and 1.6-fold more lipid species putatively identified in positive- and negative-ion modes, respectively, for sucrose-embedded, PFA-fixed tissues without an ice matrix relative to the current IR-MALDESI-MSI gold-standard, fresh-frozen tissue preparation with an exogenous ice matrix. Furthermore, sucrose-embedded tissues demonstrated improved spatial distribution of ions resulting from the cryo-protective property of sucrose and paraformaldehyde fixation. Evidence from these investigations supports sucrose-embedding without ice matrix as an alternative preparatory technique for IR-MALDESI-MSI.
Collapse
Affiliation(s)
- Mary F Wang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Alexandria L Sohn
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Juhi Samal
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Kevin Erning
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - David C Muddiman
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
6
|
Caleb Bagley M, Garrard KP, Muddiman DC. The development and application of matrix assisted laser desorption electrospray ionization: The teenage years. MASS SPECTROMETRY REVIEWS 2023; 42:35-66. [PMID: 34028071 PMCID: PMC11609267 DOI: 10.1002/mas.21696] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 05/24/2023]
Abstract
In the past 15 years, ambient ionization techniques have witnessed a significant incursion into the field of mass spectrometry imaging, demonstrating their ability to provide complementary information to matrix-assisted laser desorption ionization. Matrix-assisted laser desorption electrospray ionization is one such technique that has evolved since its first demonstrations with ultraviolet lasers coupled to Fourier transform-ion cyclotron resonance mass spectrometers to extensive use with infrared lasers coupled to orbitrap-based mass spectrometers. Concurrently, there have been transformative developments of this imaging platform due to the high level of control the principal group has retained over the laser technology, data acquisition software (RastirX), instrument communication, and image processing software (MSiReader). This review will discuss the developments of MALDESI since its first laboratory demonstration in 2005 to the most recent advances in 2021.
Collapse
Affiliation(s)
- Michael Caleb Bagley
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Kenneth P Garrard
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
- The Precision Engineering Consortium, North Carolina State University, Raleigh, North Carolina, USA
- Molecular Education, Technology, and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina, USA
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
- Molecular Education, Technology, and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
7
|
Jiang Z, Zhang H, Jiao P, Wei X, Liu S, Guan S, Ma Y. The Integration of Metabolomics and Transcriptomics Provides New Insights for the Identification of Genes Key to Auxin Synthesis at Different Growth Stages of Maize. Int J Mol Sci 2022; 23:13195. [PMID: 36361983 PMCID: PMC9659120 DOI: 10.3390/ijms232113195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 10/29/2023] Open
Abstract
As a staple food crop, maize is widely cultivated worldwide. Sex differentiation and kernel development are regulated by auxin, but the mechanism regulating its synthesis remains unclear. This study explored the influence of the growth stage of maize on the secondary metabolite accumulation and gene expression associated with auxin synthesis. Transcriptomics and metabonomics were used to investigate the changes in secondary metabolite accumulation and gene expression in maize leaves at the jointing, tasseling, and pollen-release stages of plant growth. In total, 1221 differentially accumulated metabolites (DAMs) and 4843 differentially expressed genes (DEGs) were screened. KEGG pathway enrichment analyses of the DEGs and DAMs revealed that plant hormone signal transduction, tryptophan metabolism, and phenylpropanoid biosynthesis were highly enriched. We summarized the key genes and regulatory effects of the tryptophan-dependent auxin biosynthesis pathways, giving new insights into this type of biosynthesis. Potential MSTRG.11063 and MSTRG.35270 and MSTRG.21978 genes in auxin synthesis pathways were obtained. A weighted gene co-expression network analysis identified five candidate genes, namely TSB (Zm00001d046676 and Zm00001d049610), IGS (Zm00001d020008), AUX2 (Zm00001d006283), TAR (Zm00001d039691), and YUC (Zm00001d025005 and Zm00001d008255), which were important in the biosynthesis of both tryptophan and auxin. This study provides new insights for understanding the regulatory mechanism of auxin synthesis in maize.
Collapse
Affiliation(s)
- Zhenzhong Jiang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
| | - Honglin Zhang
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Peng Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
| | - Xiaotong Wei
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Siyan Liu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Shuyan Guan
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Yiyong Ma
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
8
|
Walton CL, Khalid M, Bible AN, Kertesz V, Retterer ST, Morrell-Falvey J, Cahill JF. In Situ Detection of Amino Acids from Bacterial Biofilms and Plant Root Exudates by Liquid Microjunction Surface-Sampling Probe Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1615-1625. [PMID: 35904879 DOI: 10.1021/jasms.2c00081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The plant rhizosphere is a complex and dynamic chemical environment where the exchange of molecular signals between plants, microbes, and fungi drives the development of the entire biological system. Exogenous compounds in the rhizosphere are known to affect plant-microbe organization, interactions between organisms, and ultimately, growth and survivability. The function of exogenous compounds in the rhizosphere is still under much investigation, specifically with respect to their roles in plant growth and development, the assembly of the associated microbial community, and the spatiotemporal distribution of molecular components. A major challenge for spatiotemporal measurements is developing a nondisruptive and nondestructive technique capable of analyzing the exogenous compounds contained within the environment. A methodology using liquid microjunction-surface sampling probe-mass spectrometry (LMJ-SSP-MS) and microfluidic devices with attached microporous membranes was developed for in situ, spatiotemporal measurement of amino acids (AAs) from bacterial biofilms and plant roots. Exuded arginine was measured from a living Pantoea YR343 biofilm, which resulted in a chemical image indicative of biofilm growth within the device. Spot sampling along the roots of Populus trichocarpa with the LMJ-SSP-MS resulted in the detection of 15 AAs. Variation in AA concentrations across the root system was observed, indicating that exudation is not homogeneous and may be linked to local rhizosphere architecture and different biological processes along the root.
Collapse
Affiliation(s)
- Courtney L Walton
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Muneeba Khalid
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Amber N Bible
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Scott T Retterer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Jennifer Morrell-Falvey
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - John F Cahill
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| |
Collapse
|
9
|
Smythers AL, Hicks LM. Mapping the plant proteome: tools for surveying coordinating pathways. Emerg Top Life Sci 2021; 5:203-220. [PMID: 33620075 PMCID: PMC8166341 DOI: 10.1042/etls20200270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
Plants rapidly respond to environmental fluctuations through coordinated, multi-scalar regulation, enabling complex reactions despite their inherently sessile nature. In particular, protein post-translational signaling and protein-protein interactions combine to manipulate cellular responses and regulate plant homeostasis with precise temporal and spatial control. Understanding these proteomic networks are essential to addressing ongoing global crises, including those of food security, rising global temperatures, and the need for renewable materials and fuels. Technological advances in mass spectrometry-based proteomics are enabling investigations of unprecedented depth, and are increasingly being optimized for and applied to plant systems. This review highlights recent advances in plant proteomics, with an emphasis on spatially and temporally resolved analysis of post-translational modifications and protein interactions. It also details the necessity for generation of a comprehensive plant cell atlas while highlighting recent accomplishments within the field.
Collapse
Affiliation(s)
- Amanda L Smythers
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A
| | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A
| |
Collapse
|
10
|
Garrard KP, Ekelöf M, Khodjaniyazova S, Bagley MC, Muddiman DC. A Versatile Platform for Mass Spectrometry Imaging of Arbitrary Spatial Patterns. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2547-2552. [PMID: 32539373 PMCID: PMC8761386 DOI: 10.1021/jasms.0c00128] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A vision-system driven platform, RastirX, has been constructed for mass spectrometry imaging (MSI) of arbitrary two-dimensional patterns. The user identifies a region of interest (ROI) by drawing on a live video image of the sample with the computer mouse. Motion commands are automatically generated to move the sample to acquire scan data for the pixels in the ROI. Synchronization of sample stage motion with laser firing and mass spectrometer (MS) scan acquisition is fully automated. RastirX saves a co-registered optical image and the scan location information needed to convert raw MS data into imzML format. Imaging an arbitrarily shaped ROI instead of the minimal enclosing rectangle reduces contamination from off-sample material and significantly reduces acquisition time.
Collapse
Affiliation(s)
- Kenneth P. Garrard
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Precision Engineering Consortium, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Måns Ekelöf
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sitora Khodjaniyazova
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - M. Caleb Bagley
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - David C. Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
11
|
Bagley MC, Pace CL, Ekelöf M, Muddiman DC. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry imaging analysis of endogenous metabolites in cherry tomatoes. Analyst 2020; 145:5516-5523. [PMID: 32602477 PMCID: PMC7423647 DOI: 10.1039/d0an00818d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the spatially resolved metabolic profiling of cherry tomatoes using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI), a mass spectrometry imaging (MSI) technique that operates at ambient conditions and requires no sample derivatization. Tomatoes were flash frozen, cryosectioned and imaged with adequate spatial resolution to distinguish between the major tissue structures of a tomato including the skin, mesocarp, endocarp, locular tissue, septum, placenta, seed and seed coating. Metabolites were imaged from 100-1200 m/z, enabling significant coverage of a diverse array of metabolites including amino acids and lipids along with the major secondary metabolite classes: terpenes, phenolics, glycosides, and alkaloids. During the metabolic profiling, we found endogenous carotenoid hydrocarbons, namely lycopene or its structural isomer β-carotene, ionized as radical cations. To our knowledge, this is the first demonstration of ionizing hydrocarbons in the MSI field.
Collapse
Affiliation(s)
- M Caleb Bagley
- FTMS Laboratory for Human Health Research, Department of Chemistry, USA.
| | - Crystal L Pace
- FTMS Laboratory for Human Health Research, Department of Chemistry, USA.
| | - Måns Ekelöf
- FTMS Laboratory for Human Health Research, Department of Chemistry, USA.
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, USA. and Department of Plant and Microbial Biology, USA and Molecular Education, Technology, and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
12
|
Application of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging for Food Analysis. Foods 2019; 8:foods8120633. [PMID: 31810360 PMCID: PMC6963588 DOI: 10.3390/foods8120633] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023] Open
Abstract
Food contains various compounds, and there are many methods available to analyze each of these components. However, the large amounts of low-molecular-weight metabolites in food, such as amino acids, organic acids, vitamins, lipids, and toxins, make it difficult to analyze the spatial distribution of these molecules. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging is a two-dimensional ionization technology that allows the detection of small metabolites in tissue sections without requiring purification, extraction, separation, or labeling. The application of MALDI-MS imaging in food analysis improves the visualization of these compounds to identify not only the nutritional content but also the geographical origin of the food. In this review, we provide an overview of some recent applications of MALDI-MS imaging, demonstrating the advantages and prospects of this technology compared to conventional approaches. Further development and enhancement of MALDI-MS imaging is expected to offer great benefits to consumers, researchers, and food producers with respect to breeding improvement, traceability, the development of value-added foods, and improved safety assessments.
Collapse
|