1
|
Bonney JR, Prentice BM. Structural Elucidation and Relative Quantification of Fatty Acid Double Bond Positional Isomers in Biological Tissues Enabled by Gas-Phase Charge Inversion Ion/Ion Reactions. ANALYSIS & SENSING 2024; 4:e202300063. [PMID: 38827423 PMCID: PMC11139046 DOI: 10.1002/anse.202300063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 06/04/2024]
Abstract
Fatty acids (FAs) contain a vast amount of structural diversity, and differences in fatty acid structure have been associated with various disease states. Accurate identification and characterization of fatty acids is critical to fully understand the biochemical roles these compounds play in disease progression. Conventional tandem mass spectrometry (MS/MS) workflows do not provide sufficient structural information, necessitating alternative dissociation methods. Gas-phase charge inversion ion/ion reactions can be used to alter the ion type subjected to activation to provide improved or complementary structural information. Herein, we have used an ion/ion reaction between fatty acid (FA) anions and magnesium tris-phenanthroline [Mg(Phen)3] dications to promote charge remote fragmentation of carbon-carbon bonds along the fatty acid chain, allowing for localization of carbon-carbon double bond (C=C) positions to successfully differentiate monounsaturated fatty acid isomers. Relative quantification was also performed to obtain the relative abundance of fatty acid isomers in different biological tissues. For example, the relative abundance of FA 18:1 (9) was determined to vary across regions of rat brain, rat kidney, and mouse pancreas, and FA 16:1 (9) was found to have a higher relative abundance in the dermis layer compared to the sebaceous glands in human skin tissue.
Collapse
Affiliation(s)
- Julia R Bonney
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| |
Collapse
|
2
|
Yang L, Yuan J, Yu B, Hu S, Bai Y. Sample preparation for fatty acid analysis in biological samples with mass spectrometry-based strategies. Anal Bioanal Chem 2024; 416:2371-2387. [PMID: 38319358 DOI: 10.1007/s00216-024-05185-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/05/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Fatty acids (FAs) have attracted many interests for their pivotal roles in many biological processes. Imbalance of FAs is related to a variety of diseases, which makes the measurement of them important in biological samples. Over the past two decades, mass spectrometry (MS) has become an indispensable technique for the analysis of FAs owing to its high sensitivity and precision. Due to complex matrix effect of biological samples and inherent poor ionization efficiency of FAs in MS, sample preparation including extraction and chemical derivatization prior to analysis are often employed. Here, we describe an updated overview of FA extraction techniques, as well as representative derivatization methods utilized in different MS platforms including gas chromatography-MS, liquid chromatography-MS, and mass spectrometry imaging based on different chain lengths of FAs. Derivatization strategies for the identification of double bond location in unsaturated FAs are also summarized and highlighted. The advantages, disadvantages, and prospects of these methods are compared and discussed. This review provides the development and valuable information for sample pretreatment approaches and qualitative and quantitative analysis of interested FAs using different MS-based platforms in complex biological matrices. Finally, the challenges of FA analysis are summarized and the future perspectives are prospected.
Collapse
Affiliation(s)
- Li Yang
- Department of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| | - Jie Yuan
- Department of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Bolin Yu
- Department of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Shuang Hu
- Department of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Yu Bai
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
3
|
Jia S, Chang S, Zhang L, Gui Z, Liu L, Ma Z, Li S, Huang X, Zhong H. Plasmonic Hydroxyl Radical-Driven Epoxidation of Fatty Acid Double Bonds in Nanoseconds for On-Tissue Mass-Spectrometric Analysis and Bioimaging. Anal Chem 2023; 95:3976-3985. [PMID: 36633955 DOI: 10.1021/acs.analchem.2c03759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Lipids represent a large family of compounds with highly diverse structures that are involved in complex biological processes. A photocatalytic technique of on-tissue epoxidation of C=C double bonds has been developed for in situ mass spectrometric identification and spatial imaging of positional isomers of lipids. It is based on the plasmonic hot-electron transfer from irradiated gold nanowires to redox-active organic matrix compounds that undergo bond cleavages and generate hydroxyl radicals in nanoseconds. Intermediate radical anions and negative fragment ions have been unambiguously identified. Under the irradiation of a pulsed laser of the third harmonic of Nd3+:YAG (355 nm), the hydroxyl radical-driven epoxidation of unsaturated lipids with different numbers of C=C bonds can be completed in nanoseconds with high yields of up to 95%. Locations of C=C bonds were recognized with diagnostic fragment ions that were produced by either collision with an inert gas or auto-fragmentation resulting from the impact of energetic hot electrons and vibrational excitation. This technique has been applied to the analysis of breast cancer tissues of mice models without extensive sample processes. It was experimentally demonstrated that C=C bonds may be formed at different positions of not only regular mono- or poly-unsaturated fatty acids but also other odd-numbered long-chain fatty acids.
Collapse
Affiliation(s)
- Shanshan Jia
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Wuhan, Hubei 430079, P.R. China
| | - Shao Chang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Center for Instrumental Analysis of Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Lin Zhang
- Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhengwei Gui
- Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Linhui Liu
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Wuhan, Hubei 430079, P.R. China
| | - Zhenglan Ma
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Wuhan, Hubei 430079, P.R. China
| | - Shuyu Li
- Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xingchen Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Center for Instrumental Analysis of Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Hongying Zhong
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, Wuhan, Hubei 430079, P.R. China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Center for Instrumental Analysis of Guangxi University, Nanning, Guangxi 530004, P.R. China
| |
Collapse
|
4
|
Chen C, Li R, Wu H. Recent progress in the analysis of unsaturated fatty acids in biological samples by chemical derivatization-based chromatography-mass spectrometry methods. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123572. [PMID: 36565575 DOI: 10.1016/j.jchromb.2022.123572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Unsaturated fatty acids (UFAs) are essential fatty acids that execute various biological functions in the human body. Therefore, the qualitative and quantitative analysis of UFAs in biological samples can help to clarify their roles in the occurrence and development of diseases, so to reveal the mechanisms of pathogenesis and potential drug intervention strategies. Chromatography-mass spectrometry is one of the most commonly used techniques for the analysis of UFAs in biological samples. However, due to factors such as the complex structural information of UFAs (the number and specific location of CC double bonds) and the low concentration of UFAs in biological samples, it is still difficult to conduct accurate qualitative and/or quantitative studies of UFAs in complex biological samples. In recent years, the integration and application of chemical derivatization and chromatography-mass spectrometry has been widely used in the detection of UFAs. Based on this overview, we reviewed recent developments and application progress for chemical derivatization-based chromatography-mass spectrometry methods for the qualitative and/or quantitative analysis of UFAs in biological samples over the past ten years. Potential trends for the design and improvement of novel derivatization reagents were proposed.
Collapse
Affiliation(s)
- Chang Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Ruijuan Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of Chinese Medicinal Formula & Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
5
|
Shields SWJ, Sanders JD, Brodbelt JS. Enhancing the Signal-to-Noise of Diagnostic Fragment Ions of Unsaturated Glycerophospholipids via Precursor Exclusion Ultraviolet Photodissociation Mass Spectrometry (PEx-UVPD-MS). Anal Chem 2022; 94:11352-11359. [PMID: 35917227 PMCID: PMC9484799 DOI: 10.1021/acs.analchem.2c02128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding and elucidating the diverse structures and functions of lipids has motivated the development of many innovative tandem mass spectrometry (MS/MS) strategies. Higher-energy activation methods, such as ultraviolet photodissociation (UVPD), generate unique fragment ions from glycerophospholipids that can be used to perform in-depth structural analysis and facilitate the deconvolution of isomeric lipid structures in complex samples. Although detailed characterization is central to the correlation of lipid structure to biological function, it is often impeded by the lack of sufficient instrument sensitivity for highly bioactive but low-abundance phospholipids. Here, we present precursor exclusion (PEx) UVPD, a simple yet powerful technique to enhance the signal-to-noise (S/N) of informative low-abundance fragment ions produced from UVPD of glycerophospholipids. Through the exclusion of the large population of undissociated precursor ions with an MS3 strategy, the S/N of diagnostic fragment ions from PC 18:0/18:2(9Z, 12Z) increased up to an average of 13x for PEx-UVPD compared to UVPD alone. These enhancements were extended to complex mixtures of lipids from bovine liver extract to confidently identify 35 unique structures using liquid chromatography PEx-UVPD. This methodology has the potential to advance lipidomics research by offering deeper structure elucidation and confident identification of biologically active lipids.
Collapse
Affiliation(s)
- Samuel W J Shields
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Sanders
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Coniglio D, Ventura G, Calvano CD, Losito I, Cataldi TRI. Positional Assignment of C-C Double Bonds in Fatty Acyl Chains of Intact Arsenosugar Phospholipids Occurring in Seaweed Extracts by Epoxidation Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:823-831. [PMID: 35442668 DOI: 10.1021/jasms.2c00006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Water-soluble diacyl arsenosugar phospholipids (As-PL) are natural products widespread in marine animals and algae, including the brown alga Undaria pinnatifida, also known as wakame. The systematic recognition of As-PL has been hampered by the lack of standard and of qualitative methods to establish the carbon-carbon double bond positions of unsaturated fatty acyl chains. Here, the epoxidation reaction of fatty acyl substituents of As-PL was carried out with high selectivity by meta-chloroperoxybenzoic acid and the C-C double bond localization was established by collision-induced dissociation of epoxidized species as deprotonated molecules, [epoM - H]-. Reversed-phase liquid chromatography (RPLC) separation and a sequential triple-stage MS (i.e., MS3) analysis of unsaturated and epoxidized As-PL were very helpful to characterize the carbon-carbon double bond locations of both sn-1 and sn-2 fatty acyl chains, starting from a diagnostic product ion pair with 16.0 Da mass difference. These results indicate that intact As-PL can be annotated in terms of fatty acyl chain composition and in terms of their C-C double bond position(s). Interestingly, hexadecenoic (16:1 Δ9) and octadecenoic (18:1 Δ9) along with octadecadienoic (18:2 Δ9,12) and octadecatrienoic (18:3 Δ9,12,15) were found to be the most abundant unsaturated fatty acyl chains of As-PL in the brown alga wakame, thus confirming it as a good source of essential fatty acids with a balanced ω6/ω3 ratio. Although the toxicity of As-including metabolites of algal As-PL is still a matter of debate and needs to be studied in more detail, the described approach can be exploited to assess if As-PL could contribute to the supply of essential fatty acids related to the use of algae as nutritious food.
Collapse
|
7
|
Mass Spectrometry Imaging Techniques Enabling Visualization of Lipid Isomers in Biological Tissues. Anal Chem 2022; 94:4889-4900. [PMID: 35303408 DOI: 10.1021/acs.analchem.1c05108] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This Feature focuses on a review of recent developments in mass spectrometry imaging (MSI) of lipid isomers in biological tissues. The tandem MS techniques utilizing online and offline chemical derivatization procedures, ion activation techniques such as ozone-induced dissociation (OzID), ultraviolet photodissociation (UVPD), or electron-induced dissociation (EID), and other techniques such as coupling of ion mobility with MSI are discussed. The importance of resolving lipid isomers in diseases is highlighted.
Collapse
|
8
|
Review of Recent Advances in Lipid Analysis of Biological Samples via Ambient Ionization Mass Spectrometry. Metabolites 2021; 11:metabo11110781. [PMID: 34822439 PMCID: PMC8623600 DOI: 10.3390/metabo11110781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022] Open
Abstract
The rapid and direct structural characterization of lipids proves to be critical for studying the functional roles of lipids in many biological processes. Among numerous analytical techniques, ambient ionization mass spectrometry (AIMS) allows for a direct molecular characterization of lipids from various complex biological samples with no/minimal sample pretreatment. Over the recent years, researchers have expanded the applications of the AIMS techniques to lipid structural elucidation via a combination with a series of derivatization strategies (e.g., the Paternò–Büchi (PB) reaction, ozone-induced dissociation (OzID), and epoxidation reaction), including carbon–carbon double bond (C=C) locations and sn-positions isomers. Herein, this review summarizes the reaction mechanisms of various derivatization strategies for C=C bond analysis, typical instrumental setup, and applications of AIMS in the structural elucidation of lipids from various biological samples (e.g., tissues, cells, and biofluids). In addition, future directions of AIMS for lipid structural elucidation are discussed.
Collapse
|