1
|
Abdel-Megeed RM, Abdel-Hamid AHZ, Kadry MO. Titanium nanostructure mitigating doxorubicin-induced testicular toxicity in rats via regulating major autophagy signaling pathways. Toxicol Rep 2025; 14:101869. [PMID: 39811821 PMCID: PMC11731616 DOI: 10.1016/j.toxrep.2024.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Doxorubicin (DOX) is a powerful antineoplastic FDA-approved anthracycline-derived antibiotic and is considered as the most suitable intervention for solid tumors and hematological cancers therapy. However, its therapeutic application is highly limited due to acute and chronic renal, hematological and testicular toxicity. Oxidative stress, lipid peroxidation and apoptosis in germ cells as well as low sperm count, motility and disturbing steroidogenesis are the principal machineries of DOX-induced testicular toxicity. Nevertheless, the comprehensive molecular pathways responsible for DOX-induced testicular damage are not yet fully understood. The current study aims to clarify the role of autophagy and apoptotic signaling pathways in testicular toxicity induced by DOX in the rat model. The study also investigates the potential role of both titanium dioxide nanoparticles (TiO2NP) loaded with DOX and Lactoferrin in combination with DOX in mitigating testicular toxicity induced by DOX the standard antitumor drug. In the present study, male Wister albino rats were intoxicated with a total cumulative dose of DOX (18 mg/kg) via intra-peritoneal injection and served as positive control group. The other two groups administered either TiO2NP-DOX or lactoferrin-DOX. Furthermore, biochemical and molecular analyses were then performed. DOX intoxication induced testicular toxicity, revealing mineral imbalance as indicated by an increase in both calcium and magnesium concentrations. Administration of either TiO2NP-DOX or lactoferrin-DOX resulted in a significant modulation of disrupted mineral concentrations, with TiO2NP-DOX showing superiority in modulating both magnesium and calcium concentrations. Acid Phosphatase level significantly increased upon DOX-induced testicular damage. Molecular analysis of EGFR and K-RAS gene expression showed significant overexpression, while p53 and JAK-2 gene expression was significantly reduced post-DOX intoxication. Protein expression of both AKT and PI3K significantly increased upon DOX administration. Results showed a remarkable modulation of all disrupted gene and protein expressions upon treatment with TiO2NP-DOX or Lactoferrin-DOX with the superiority of TiO2NP-DOX in modulating these parameters. In conclusion, TiO2NP-DOX could be a promising drug delivery system to improve bioavailability and drug release, as well as reducing DOX's adverse effects particularly on testicular function.
Collapse
Affiliation(s)
- Rehab M. Abdel-Megeed
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt
| | - Abdel-Hamid Z. Abdel-Hamid
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt
| | - Mai O. Kadry
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt
| |
Collapse
|
2
|
Ashrafzadeh A, Yajit NLM, Nathan S, Othman I, Karsani SA. Comprehensive Study of Sperm Proteins and Metabolites Potentially Associated with Higher Fertility of Zebu Cattle ( Bos indicus) in Tropical Areas. J Proteome Res 2025; 24:368-380. [PMID: 39591502 DOI: 10.1021/acs.jproteome.4c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Crossbreeding of zebu cattle (Bos indicus) with European breeds (Bos taurus) producing crossbred cattle was performed to overcome the low growth rates and milk production of indigenous tropical cattle breeds. However, zebu cattle fertility is higher than those of crossbred cattle and European breeds under warm conditions. Combination study of proteomics and metabolomics toward Malaysian indigenous breed Kedah × Kelantan-KK (B. indicus) and crossbreed Mafriwal-M (B. taurus × B. indicus) to understand physiological reasons for higher thermotolerance and fertility in Zebu cattle sperm. 161 regulated metabolites and 96 regulated proteins in KK and M (p < 0.05) showed more efficient carbohydrate and energy metabolism, higher integrity of the DNA and plasma membrane, a lower level of reactive oxygen species, and higher levels of phospholipids, which confirmed higher sperm plasma membrane integrity in KK. A stronger antioxidant system and lower polyunsaturated fatty acids help KK sperm cope with oxidative stress under warm conditions. The higher abundance of flagella structural proteins in KK provides a stronger structure that supports sperm motility. Abnormality of flagella, plasma membrane disruption, and DNA fragmentation were higher in M. These findings provide selective molecular markers for developing high-producing and more thermotolerant cattle breeds in tropical areas (197 words).
Collapse
Affiliation(s)
- Ali Ashrafzadeh
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Agilent Technologies, Inc, 5301 Stevens Creek Blvd, Santa Clara, California 95051, United States
| | - Noor Liana Mat Yajit
- Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Sunway Campus, 47500 Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Du J, Xue J, Tian X, Luo J, Ömür AD, Yang J, Li Y. Selenium-Enriched Aspergillus oryzae A02 Enhances Testicular Antioxidant Capacity in Mice by Regulating Intestinal Microbiota and Serum Metabolite. Biol Trace Elem Res 2024:10.1007/s12011-024-04496-8. [PMID: 39707080 DOI: 10.1007/s12011-024-04496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Selenium (Se) is a trace element that is essential for health. Organic Se created by Se-enriched microorganisms has the characteristics of low toxicity, high bioavailability, and regulation of physiological functions. Here, the regulatory effect of Se-enriched Aspergillus oryzae A02 on the reproductive function of male mice and its potential molecular mechanism was studied. Specifically, twenty-four male mice were randomly divided into a control group and a Se-enriched A. oryzae A02 (Nano-Se) (daily gavage of 0.5 mg/kg, dissolved in saline) for an 8-week experiment. The results showed that Nano-Se intervention did not affect body weight and testicular index, but increased sperm concentration and seminiferous epithelium height in experimental mice, indicating that Nano-Se has the potential to improve the reproductive performance of male mice. Mechanistically, Nano-Se intervention increased the levels of antioxidant-related indicators catalase (CAT) and glutathione peroxidase (GSH-Px) in mouse serum, and increased the relative mRNA expression of GSH-Px, heme oxygenase-1 (HO-1), and NADPH quinine oxidoreductase-1 (NQO-1) in testicular tissues. We identified 9,10,13-trihydroxyoctadecenoic acids (TriHOMEs), stearidonic acid and selenomethionine linked with alpha-linolenic acid metabolism, selenocompound metabolism, folate biosynthesis, ubiquinone, and other terpenoid-quinone biosynthesis and biosynthesis of cofactors. In addition, Nano-Se did not influence the fecal bacterial alpha and beta diversity (P > 0.05), but increased the abundance of the Actinobacteriota and Proteobacteria phyla and the Staphylococcus and Corynebacterium genera, and lowered the abundance of the Bacteroidota phylum and the Lactobacillus and norank_f_Muribaculaceae genera. Nano-Se is considered a novel and promising nutritional regulator to improve reproductive function.
Collapse
Affiliation(s)
- Jiajun Du
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Junyu Xue
- College of Clinical Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xutong Tian
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China
| | - Juyue Luo
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China
| | - Ali Doğan Ömür
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Atatürk University, Erzurum, 25240, Türkiye
| | - Jianying Yang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Yumeng Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, China.
| |
Collapse
|
4
|
Hong Y, Lin Q, Zhang Y, Liu J, Zheng Z. Research Progress of Ribosomal Proteins in Reproductive Development. Int J Mol Sci 2024; 25:13151. [PMID: 39684863 DOI: 10.3390/ijms252313151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Ribosomal proteins constitute the principal components of ribosomes, and their functions span a wide spectrum. Recent investigations have unveiled their involvement in oocyte and embryo development, playing a pivotal role in reproductive development. Numerous pieces of evidence indicate that ribosomal proteins participate in the regulation of various cellular activities, including nucleolar stress, oxidative stress, cell proliferation and autophagy. Despite these findings, the precise mechanisms through which ribosomal proteins influence reproductive development via these cellular activities remain elusive. Therefore, elucidating the mechanisms of action is essential for a comprehensive understanding of the role and function of ribosomal proteins in reproductive development. This paper systematically reviews the progress in research on nucleolar stress, oxidative stress, cell proliferation and autophagy concerning ribosomal proteins during reproductive development. Furthermore, we explore the potential of ribosomal proteins as diagnostic markers for various diseases. Additionally, we propose the development of drugs and therapies targeting ribosomal proteins, underscoring the potential for novel medical interventions in the context of reproductive health.
Collapse
Affiliation(s)
- Yuqi Hong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qisheng Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jilong Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhanhong Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Oppong A, Leung YH, Ghosh A, Peyot ML, Paquet M, Morales C, Clarke HJ, Al-Mulla F, Boyer A, Madiraju SRM, Boerboom D, O'Flaherty C, Prentki M. Essential role of germ cell glycerol-3-phosphate phosphatase for sperm health, oxidative stress control and male fertility in mice. Mol Metab 2024; 90:102063. [PMID: 39542419 PMCID: PMC11617388 DOI: 10.1016/j.molmet.2024.102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
OBJECTIVES Obesity, diabetes and high-calorie diets are associated with defective sperm function and lowered male fertility. Mature spermatozoa primarily use fructose and glucose, and glucose and glycerol metabolism are important for sperm function. We recently discovered a novel mammalian enzyme, glycerol-3-phosphate (Gro3P) phosphatase (G3PP), and showed that it operates the glycerol shunt by hydrolyzing Gro3P to glycerol, and regulates glucose, lipid and energy metabolism in pancreatic β-cells and liver. We now observed that G3PP expression is the highest in the testis and spermatozoa, and investigated its role in male fertility. METHODS We examined G3PP expression during spermatogenesis in mouse and assessed male fertility and spermatozoon function in conditional germ cell specific G3PP-KO (cG3PP-KO) mice and tamoxifen-inducible conditional germ cell G3PP-KO (icG3PP-KO) mice. We also determined the structural and metabolic parameters and oxidative stress in the spermatozoa from icG3PP-KO and control mice. RESULTS G3PP expression in mouse spermatocytes and spermatids markedly increases during spermatogenesis. Male cG3PP-KO mice, in which germ cell G3PP is deleted from embryonic stage, are infertile due to dysfunctional sperm with reduced motility and capacitation, and elevated spontaneous acrosomal reaction and oxidative stress. However, icG3PP-KO male mice do not have altered fertility, due to the presence of ∼10% normal spermatozoa. icG3PP-KO spermatozoa display significantly reduced functionality and morphological and ultrastructural alterations. The icG3PP-KO spermatozoa show reduced glycerol production, elevated levels of Gro3P and reactive oxygen species (ROS), and oxidative stress that is associated with increased mitochondrial membrane potential. CONCLUSIONS Germ cell G3PP deletion leads to the generation of spermatozoa that are functionally and structurally abnormal, likely due to the build-up of Gro3P that increases mitochondrial membrane potential, ROS, and oxidative stress and alters spermatozoa function. Overall, the results indicate that G3PP and the glycerol shunt are essential for normal spermatozoa function and male fertility.
Collapse
Affiliation(s)
- Abel Oppong
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Yat Hei Leung
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Anindya Ghosh
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Marie-Line Peyot
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Marilène Paquet
- Centre de recherche en reproduction et fertilité (CRRF), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Carlos Morales
- Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Hugh J Clarke
- Departments of Obstetrics and Gynecology and Biology, Division of Experimental Medicine, McGill University, Montréal, Canada
| | - Fahd Al-Mulla
- Translational Medicine Department, Dasman Diabetes Institute, Kuwait
| | - Alexandre Boyer
- Centre de recherche en reproduction et fertilité (CRRF), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - S R Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Derek Boerboom
- Centre de recherche en reproduction et fertilité (CRRF), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Cristian O'Flaherty
- Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada; Surgery (Urology Division), Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada; Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada; The Research Institute, McGill University Health Centre, Montréal, Québec, Canada.
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| |
Collapse
|
6
|
Ye JJ, Chen ZY, Wang QH, Liao XY, Wang XY, Zhang CC, Liu LR, Wei Q, Bao YG. Current treatment for male infertility: an umbrella review of systematic reviews and meta-analyses. Asian J Androl 2024; 26:645-652. [PMID: 39028629 PMCID: PMC11614172 DOI: 10.4103/aja202428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/26/2024] [Indexed: 07/21/2024] Open
Abstract
ABSTRACT This umbrella review aimed to summarize and provide a general evaluation of the effectiveness of current treatments for male infertility and assess the quality of evidence and possible biases. An umbrella review of systematic reviews and meta-analyses available in PubMed, Web of Science, and Scopus, covering studies published up to October 2023, was conducted. Sperm concentration, morphology, and motility were used as endpoints to evaluate the effectiveness of the treatments. Of 2998 studies, 18 published meta-analyses were extracted, yielding 90 summary effects on sperm concentration ( n = 36), sperm morphology ( n = 26), and sperm motility ( n = 28) on 28 interventions. None of the meta-analyses were classified as having low methodological quality, whereas 12 (66.7%) and 6 (33.3%) had high and moderate quality, respectively. Of the 90 summary effects, none were rated high-evidence quality, whereas 53.3% ( n = 48), 25.6% ( n = 23), and 21.1% ( n = 19) were rated moderate, low, and very low, respectively. Significant improvements in sperm concentration, morphology, and motility were observed with pharmacological interventions (N-acetyl-cysteine, antioxidant therapy, aromatase inhibitors, selective estrogen receptor modulators, hormones, supplements, and alpha-lipoic acid) and nonpharmacological interventions (varicocele repair and redo varicocelectomy). In addition, vitamin supplementation had no significant positive effects on sperm concentration, motility, or morphology. Treatments for male infertility are increasingly diverse; however, the current evidence is poor because of the limited number of patients. Further well-designed studies on single treatment and high-quality meta-analysis of intertreatment comparisons are recommended.
Collapse
Affiliation(s)
- Jian-Jun Ye
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Ze-Yu Chen
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qi-Hao Wang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Xin-Yang Liao
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xing-Yuan Wang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Chi-Chen Zhang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Liang-Ren Liu
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi-Ge Bao
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Moustakli E, Gkountis A, Dafopoulos S, Zikopoulos A, Sotiriou S, Zachariou A, Dafopoulos K. Comparative Analysis of Fluorescence In Situ Hybridization and Next-Generation Sequencing in Sperm Evaluation: Implications for Preimplantation Genetic Testing and Male Infertility. Int J Mol Sci 2024; 25:11296. [PMID: 39457078 PMCID: PMC11508275 DOI: 10.3390/ijms252011296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Pre-implantation genetic testing (PGT) is a crucial process for selecting embryos created through assisted reproductive technology (ART). Couples with chromosomal rearrangements, infertility, recurrent miscarriages, advanced maternal age, known single-gene disorders, a family history of genetic conditions, previously affected pregnancies, poor embryo quality, or congenital anomalies may be candidates for PGT. Preimplantation genetic testing for aneuploidies (PGT-A) enables the selection and transfer of euploid embryos, significantly enhancing implantation rates in assisted reproduction. Fluorescence in situ hybridization (FISH) is the preferred method for analyzing biopsied cells to identify these abnormalities. While FISH is a well-established method for identifying sperm aneuploidy, NGS offers a more comprehensive assessment of genetic material, potentially enhancing our understanding of male infertility. Chromosomal abnormalities, arising during meiosis, can lead to aneuploid sperm, which may hinder embryo implantation and increase miscarriage rates. This review provides a comparative analysis of fluorescence in situ hybridization (FISH) and next-generation sequencing (NGS) in sperm evaluations, focusing on their implications for preimplantation genetic testing. This analysis explores the strengths and limitations of FISH and NGS, aiming to elucidate their roles in improving ART outcomes and reducing the risk of genetic disorders in offspring. Ultimately, the findings will inform best practices in sperm evaluations and preimplantation genetic testing strategies.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Antonios Gkountis
- Genesis Athens Thessaly, Centre for Human Reproduction, 41335 Larissa, Greece;
| | - Stefanos Dafopoulos
- Department of Health Sciences, European University Cyprus, 2404 Nicosia, Cyprus;
| | | | - Sotirios Sotiriou
- Department of Embryology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece;
| | - Athanasios Zachariou
- Department of Urology, School of Medicine, Ioannina University, 45110 Ioannina, Greece;
| | - Konstantinos Dafopoulos
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
8
|
Maher AM, Elsanosy GA, Ghareeb DA, Elblehi SS, Saleh SR. 10-Hydroxy Decanoic Acid and Zinc Oxide Nanoparticles Retrieve Nrf2/HO-1 and Caspase-3/Bax/Bcl-2 Signaling in Lead-Induced Testicular Toxicity. Biol Trace Elem Res 2024:10.1007/s12011-024-04374-3. [PMID: 39349706 DOI: 10.1007/s12011-024-04374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/10/2024] [Indexed: 12/14/2024]
Abstract
There has been a significant increase in human exposure to heavy metals (HMs) over the course of the previous century, primarily due to the extensive industrial processes. Male infertility is a prominent complication associated with lead exposure, wherein lead has the potential to accumulate within the testes, resulting in oxidative stress and inflammation. In addition, 10-hydroxydecanoic acid (10-HDA) is a component found in the secretions of worker bees and possesses the capacity to mitigate oxidative stress and prevent inflammation. Due to their advantageous properties, zinc oxide nanoparticles (ZnO-NPs) possess a wide range of applications in the field of biomedicine. This study aimed to assess the therapeutic effect of 10-HDA and ZnO-NPs on testicular toxicity in rats induced by lead acetate (PbAc). PbAc was administered orally for a period of 3 months. Following that, 10-HDA and/or ZnO-NPs were administrated for 1 month. PbAc deformed seminal analysis, decreased seminal fructose and sex hormonal levels, and resulted in the development of histopathological complications. Additionally, PbAc increased MDA and decreased Nrf2 and HO-1 expression, confirmed by the declined antioxidant defense system. Furthermore, an increase in testicular inflammatory markers and the Bax/Bcl-2 ratio was observed subsequent to the administration of PbAc. The administration of 10-HDA and ZnO-NPs demonstrated significant efficacy in the restoration of semen quality, pituitary/gonadal hormones, antioxidants, and testicular histoarchitecture. Moreover, 10-HDA and ZnO-NPs decreased testicular inflammatory markers and apoptotic proteins (caspase-3 and Bax expression levels). In conclusion, combining 10-HDA and ZnO-NPs demonstrated synergistic potential in treating PbAc-induced testicular toxicity, thereby presenting a promising approach in nanomedicine and natural drugs.
Collapse
Affiliation(s)
- Adham M Maher
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Ghidaa A Elsanosy
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Doaa A Ghareeb
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), The City of Scientific Research and Technological Applications (SRTA-City), Borg Al‑Arab, Alexandria, Egypt
- Research Projects Unit, Pharos University, Alexandria, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Samar R Saleh
- Bio-Screening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| |
Collapse
|
9
|
Fan Y, Xiao Y, Zhang Y, Chen J, Huang S, Bai W. Transcriptomic and multi-cytokines profile analysis revealed new insights into the integrating mechanisms of cyanidin-3-O-glucoside on male reproductive damage amelioration. Food Res Int 2024; 192:114802. [PMID: 39147501 DOI: 10.1016/j.foodres.2024.114802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Ulcerative colitis is a public health issue with a rising worldwide incidence. It has been found that current medications for treating UC may cause varying degrees of damage to male fertility. Our previous study demonstrated that cyanidin-3-O-glucoside (C3G) treatment could effectively restore reproductive damage in a mouse model of DSS induced colitis. However, the underlying mechanism of C3G alleviates UC induced male reproductive disorders remain scarce. The aim of this study is to discover the molecular mechanisms of C3G on the amelioration of UC stimulated reproductive disorders. The targeted genes toward UC-induced reproductive injury upon C3G treatments were explored by transcriptomic analysis. Hematological analysis, histopathological examination, and real time transcription-polymerase chain reaction (RT-PCR) analysis were applied for conjoined identification. Results showed that C3G may effectively target for reducing pro-inflammatory cytokine IL-6 in testis through cytokine-cytokine receptor interaction pathway. Transcriptome sequencing found that a series of genetic pathways involved in the protective effects of C3G on male reproduction were identified by gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Further results presented that C3G could effectively restore mRNA expression levels of Ly6a and Col1a1, closely linked with UC induced male reproductive damage pathways. Sufficient results implied that Ly6a and Col1a1 may be treated as the promising therapeutic targets for the mechanism of C3G in treating UC induced reproductive impairment. C3G administration might be an effective dietary supplementation strategy for male reproduction improvement.
Collapse
Affiliation(s)
- Yueyao Fan
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yuhang Xiao
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yingying Zhang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiali Chen
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Sammi Huang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Weibin Bai
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Kaiyal RS, Karna KK, Kuroda S, Sgayer I, Shlush E, Vij SC, Lundy SD, Cannarella R. Sperm chromatin dispersion assay reliability and assisted reproductive technology outcomes: Systematic review and meta-analysis. Andrology 2024. [PMID: 39132969 DOI: 10.1111/andr.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE Elevated sperm DNA fragmentation has potential implications for semen quality and fertility. The commonly used sperm chromatin dispersion test offers an indirect estimation but has limitations in terms of bias and variability. This study aimed to assess the reliability of the sperm chromatin dispersion assay for predicting assisted reproductive technology outcomes. MATERIALS AND METHODS This systematic review included studies published until December 2023 that adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. PubMed/MEDLINE, Scopus, and Google Scholar databases were searched. Various assisted reproductive technology outcomes in patients with high (≥ 30%) versus low (< 30%) sperm DNA fragmentation were compared using a sperm chromatin dispersion assay and including a sub-analysis of intracytoplasmic sperm injection versus in vitro fertilization. A comprehensive meta-analysis software facilitated quantitative analysis with statistical comparisons between cases and controls. Interstudy heterogeneity was assessed, and sensitivity and publication bias tests were performed. RESULTS Of the 199 abstracts assessed, 64 full-text articles were screened, and 44 articles were qualitatively synthesized. Fourteen articles representing 5346 participants were quantitatively analyzed. Using the sperm chromatin dispersion assay, elevated sperm DNA fragmentation was associated with lower fertilization and embryo cleavage rates. Notably, high sperm DNA fragmentation levels did not affect the clinical pregnancy, implantation, miscarriage, or live birth outcomes. Sub-analysis revealed lower fertilization, embryo cleavage, clinical pregnancy, live birth rates, and higher miscarriage rates in the intracytoplasmic sperm injection subgroup only. CONCLUSIONS The sperm chromatin dispersion assay did not show significant differences in pregnancy or live birth rates between the high- and low-sperm DNA fragmentation groups. Noteworthy, high sperm DNA fragmentation was associated with worse assisted reproductive technology outcomes in the intracytoplasmic sperm injection group. Given the current quality of the evidence, affected by the experimental design and the absence of correction for female factors of infertility, clinicians should be wary of the assay's limited predictive power for pregnancy and live birth outcomes.
Collapse
Affiliation(s)
- Raneen Sawaid Kaiyal
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Keshab Kumar Karna
- Department of Molecular Cell and Cancer Biology, Umass Chan Medical School, Worcester, Massachusetts, USA
| | - Shinnosuke Kuroda
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Inshirah Sgayer
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya, Israel
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Ekaterina Shlush
- Department of Obstetrics and Gynecology, Galilee Medical Center, Nahariya, Israel
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Sarah C Vij
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Scott D Lundy
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Rossella Cannarella
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
11
|
Gill K, Machałowski T, Harasny P, Grabowska M, Duchnik E, Piasecka M. Low human sperm motility coexists with sperm nuclear DNA damage and oxidative stress in semen. Andrology 2024; 12:1154-1169. [PMID: 38018344 DOI: 10.1111/andr.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Low sperm motility, one of the common causes of male infertility, is associated with abnormal sperm quality. Currently, important sperm/semen biomarkers are sperm chromatin status and oxidation‒reduction potential (ORP) in semen. Because the association between sperm motility and these biomarkers is still not fully clarified, our study was designed to verify the distribution and risk of sperm DNA fragmentation (SDF) and oxidative stress in semen in asthenozoospermic men. MATERIALS AND METHODS This study was carried out on discharged sperm cells of asthenozoospermic men (isolated asthenozoospermia or coexisted with reduced sperm number and/or morphology), nonasthenozoospermic men (reduced total sperm count and/or sperm morphology) (experimental groups) and normozoospermic men (proven and presumed fertility) (control group). Basic semen analysis was evaluated according to the 6th edition of the World Health Organization manual guidelines. SDF was assessed using the sperm chromatin dispersion test, while static(s) ORP in semen was measured by means of a MiOXSYS analyser. RESULTS The men from the asthenozoospermic group had lower basic semen parameters than those from the control and nonasthenozoospermic groups. In men with poor sperm motility SDF and sORP, prevalence and risk for > 20% SDF (high level of DNA damage) and for > 1.37 sORP (oxidative stress) were significantly higher than those of control and nonasthenozoospermic subjects. The risk for sperm DNA damage and oxidative stress in asthenozoospermic men was over 10-fold higher and almost 6-fold higher than those in control subjects and almost or over 3-fold higher than those in nonasthenozoospermic men. CONCLUSIONS AND DISCUSSION Poor human sperm motility coexisted with low basic sperm quality. Sperm DNA damage and oxidative stress in semen were much more frequent in asthenozoospermia. These abnormalities can decrease the sperm fertilizing capability under both natural and medically assisted reproduction conditions. Thus, in asthenozoospermia, the evaluation of sperm chromatin status and oxidation-reduction potential in semen is justified and inevitable, and the appropriate antioxidant therapy can be suggested.
Collapse
Affiliation(s)
- Kamil Gill
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Machałowski
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
- Department of Perinatology, Obstetrics and Gynecology, Faculty of Medicine and Dentistry, Pomeranian Medical University, Police, Poland
| | - Patryk Harasny
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
- Department of Urology and Urological Oncology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Duchnik
- Department of Aesthetic Dermatology, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Małgorzata Piasecka
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
12
|
Gangwar C, Kumar A, Gururaj K, Kumar A, Qureshi S, Kumar M, Mishra AK, Ranjan R. Bolstering Buck Fertility: The Impact of Asparagus racemosus Aqueous Extract on Semen Cryopreservation and Antioxidant Defense System. Biopreserv Biobank 2024. [PMID: 38828507 DOI: 10.1089/bio.2023.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Importance of Study: Semen cryopreservation results in sperm damage due to lipid peroxidation or oxidative stress, leading to a decrease in conception rate. The sperm damage during cryopreservation can be minimized with the use of suitable antioxidant supplements in semen diluent. Some herbs have potent antioxidant potential and can be used in semen diluent to protect the spermatozoa. Objective: Hence, the investigation was planned to evaluate the effect of Asparagus racemosus (A. racemosus) aqueous extract on buck semen quality during cryopreservation. Methodology: In the current study, semen was collected from eight Sirohi bucks, and from each buck, 8 ejaculates were collected. Good-quality semen samples were pooled during each collection. Pooled semen samples were then divided into four equal parts and diluted in TRIS buffer containing different concentrations of A. racemosus aqueous extract (different groups, i.e., G I -5 mg, G II -2.5 mg, G III -1.25 mg, and G IV -0 mg of A. racemosus aqueous extract in 1 mL TRIS buffer). All the diluted semen samples were kept at equilibration temperature (5°C) for 2 hours and then cryopreserved by the manual method. Semen samples were evaluated for various sperm characteristics and antioxidant status before and after cryopreservation. Results: Asparagus racemosus aqueous extract showed significant (p < 0.05) enhancement of sperm viability, sperm motility, acrosomal integrity, and plasma membrane integrity, whereas it reduced sperm abnormality. Furthermore, in the experimental groups, the antioxidant gene expression was found to be increased compared to that of the treatment group. G III (p < 0.05) showed significantly better results in terms of sperm viability, sperm motility, acrosomal integrity, and plasma membrane integrity. Conclusion: Asparagus racemosus aqueous extract has the antioxidant potential to protect buck spermatozoa during semen cryopreservation.
Collapse
Affiliation(s)
- Chetna Gangwar
- Associate Professor, Veterinary Clinical Complex, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan-DUVASU, Mathura, India
| | - Ashok Kumar
- Animal Health Division, ICAR-CIRG, Mathura, India
| | - K Gururaj
- Animal Health Division, ICAR-CIRG, Mathura, India
| | - Anshuman Kumar
- Department of Animal Genetics and Breeding, FVAS, Banaras Hindu University, Mirzapur, India
| | | | - Manish Kumar
- Associate Professor, Veterinary Clinical Complex, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan-DUVASU, Mathura, India
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Goats (ICAR-CIRG), Mathura, India
| | | | - R Ranjan
- Associate Professor, Veterinary Clinical Complex, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan-DUVASU, Mathura, India
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Goats (ICAR-CIRG), Mathura, India
| |
Collapse
|
13
|
Yan L, Wang J, Dai D, Zhang Y, Li Y, Xiao W. Testicular protective effects of hesperidin against chemical and biological toxicants. Toxicol Res (Camb) 2024; 13:tfae078. [PMID: 38799410 PMCID: PMC11116832 DOI: 10.1093/toxres/tfae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/25/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Toxic agents can adversely impact the male reproductive system mainly via activating oxidative stress affecting the seminiferous epithelia, spermatogenesis, sperms, and the testis. Toxic agents lead to the excessive generation of reactive oxygen species (ROS), such as hydroxyl radicals, hydrogen peroxide, and superoxide anions. ROS exert a cytotoxic effect and oxidative damage to nucleic acids, proteins, and membrane lipids. Hesperidin is a pharmacologically active phytoflavone abundantly occurring in citrus fruits, such as oranges and lemons. It has shown various pharmacological properties such as antioxidant, anti-inflammatory, anti-carcinogenic, analgesic, antiviral, anti-coagulant, hypolipidemic, and hypoglycemic effects. Hesperidin has been found to exert protective effects against natural and chemical toxins-induced organ toxicity. Considerable evidence has implicated the testicular protective effects of hesperidin against the toxicological properties of pharmaceutical drugs as well as biological and chemical agents, and in the present review, we discussed, for the first time, the reported studies. The resultant data indicate that hesperidin can exert testicular protective effects through antioxidant properties.
Collapse
Affiliation(s)
- Linyin Yan
- Hainan Vocational University of Science and Technology, No. 18, Qiongshan Avenue, Meilan District, Haikou City, Hainan 570100, China
| | - Jia Wang
- Institute of Orthopedic Biomedical and Device Innovation, School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China
| | - Decai Dai
- Hainan Vocational University of Science and Technology, No. 18, Qiongshan Avenue, Meilan District, Haikou City, Hainan 570100, China
| | - Yu Zhang
- Hainan Vocational University of Science and Technology, No. 18, Qiongshan Avenue, Meilan District, Haikou City, Hainan 570100, China
| | - Yanqiang Li
- Hainan Vocational University of Science and Technology, No. 18, Qiongshan Avenue, Meilan District, Haikou City, Hainan 570100, China
| | - Wei Xiao
- Wuhan Aimin Pharmaceutical Co., LTD, No. 10, Entrepreneurship Avenue, Gedian Economic and Technological Development Zone, Ezhou City, Wuhan, Hubei, China
| |
Collapse
|
14
|
Moustakli E, Zikopoulos A, Skentou C, Stavros S, Sofikitis N, Georgiou I, Zachariou A. Integrative Assessment of Seminal Plasma Biomarkers: A Narrative Review Bridging the Gap between Infertility Research and Clinical Practice. J Clin Med 2024; 13:3147. [PMID: 38892858 PMCID: PMC11173072 DOI: 10.3390/jcm13113147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Infertility represents a significant global health challenge impacting millions of couples worldwide. Approximately half of all infertile couples exhibit compromised semen quality, indicative of diminished male fertility. While the diagnosis of male infertility traditionally relies on semen analysis, its limitations in providing a comprehensive assessment of male reproductive health have spurred efforts to identify novel biomarkers. Seminal plasma, a complex fluid containing proteins, lipids, and metabolites, has emerged as a rich source of such indicators. Reproduction depends heavily on seminal plasma, the primary transporter of chemicals from male reproductive glands. It provides a non-invasive sample for urogenital diagnostics and has demonstrated potential in the identification of biomarkers linked to illnesses of the male reproductive system. The abundance of seminal proteins has enabled a deeper understanding of their biological functions, origins, and differential expression in various conditions associated with male infertility, including azoospermia, asthenozoospermia, oligozoospermia, teratozoospermia, among others. The true prevalence of male infertility is understated due to the limitations of the current diagnostic techniques. This review critically evaluates the current landscape of seminal plasma biomarkers and their utility in assessing male infertility. Βy bridging the gap between research and clinical practice, the integrative assessment of seminal plasma biomarkers offers a multimodal approach to comprehensively evaluate male infertility.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Athanasios Zikopoulos
- Obstetrics and Gynecology, Royal Devon and Exeter Hospital, Barrack Rd, Exeter EX 25 DW, UK;
| | - Charikleia Skentou
- Department of Obstetrics and Gynecology, Medical School of Ioannina, University General Hospital, 45110 Ioannina, Greece;
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Nikolaos Sofikitis
- Department of Urology, School of Medicine, Ioannina University, 45110 Ioannina, Greece; (N.S.); (A.Z.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Athanasios Zachariou
- Department of Urology, School of Medicine, Ioannina University, 45110 Ioannina, Greece; (N.S.); (A.Z.)
| |
Collapse
|
15
|
Tiwari P, Yadav A, Kaushik M, Dada R. Cancer risk and male Infertility: Unravelling predictive biomarkers and prognostic indicators. Clin Chim Acta 2024; 558:119670. [PMID: 38614420 DOI: 10.1016/j.cca.2024.119670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
In recent years, there has been a global increase in cases of male infertility. There are about 30 million cases of male infertility worldwide and male reproductive health is showing rapid decline in last few decades. It is now recognized as a potential risk factor for developing certain types of cancer, particularly genitourinary malignancies like testicular and prostate cancer. Male infertility is considered a potential indicator of overall health and an early biomarker for cancer. Cases of unexplained male factor infertility have high levels of oxidative stress and oxidative DNA damage and this induces both denovo germ line mutations and epimutations due to build up of 8-hydroxy 2 deoxygunaosine abase which is highly mutagenic and also induces hypomethylation and genomic instability. Consequently, there is growing evidence to explore the various factors contributing to an increased cancer risk. Currently, the available prognostic and predictive biomarkers associated with semen characteristics and cancer risk are limited but gaining significant attention in clinical research for the diagnosis and treatment of elevated cancer risk in the individual and in offspring. The male germ cell being transcriptionally and translationally inert has a highly truncated repair mechanism and has minimal antioxidants and thus most vulnerable to oxidative injury due to environmental factors and unhealthy lifestyle and social habits. Therefore, advancing our understanding requires a thorough evaluation of the pathophysiologic mechanisms at the DNA, RNA, protein, and metabolite levels to identify key biomarkers that may underlie the pathogenesis of male infertility and associated cancer. Advanced methodologies such as genomics, epigenetics, proteomics, transcriptomics, and metabolomics stand at the forefront of cutting-edge approaches for discovering novel biomarkers, spanning from infertility to associated cancer types. Henceforth, in this review, we aim to assess the role and potential of recently identified predictive and prognostic biomarkers, offering insights into the success of assisted reproductive technologies, causes of azoospermia and idiopathic infertility, the impact of integrated holistic approach and lifestyle modifications, and the monitoring of cancer susceptibility, initiation and progression. Comprehending these biomarkers is crucial for providing comprehensive counselling to infertile men and cancer patients, along with their families.
Collapse
Affiliation(s)
- Prabhakar Tiwari
- Lab for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| | - Anjali Yadav
- Lab for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Meenakshi Kaushik
- Lab for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rima Dada
- Lab for Molecular Reproduction and Genetics, Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
16
|
Zhu P, Bi X, Su D, Li X, Chen B, Li J, Zhao L, Wang Y, Xu S, Wu X. Thiolutin, a selective NLRP3 inflammasome inhibitor, attenuates cyclophosphamide-induced impairment of sperm and fertility in mice. Immunopharmacol Immunotoxicol 2024; 46:172-182. [PMID: 38174705 DOI: 10.1080/08923973.2023.2298894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE The activation of the NLRP3 inflammasome has been implicated in male infertility. Our study aimed to investigate the therapeutic role of Thiolutin (THL), an inhibitor of the NLRP3 inflammasome, on oligoasthenospermia (OA) and to elucidate its mechanisms. MATERIALS AND METHODS Semen from 50 OA and 20 healthy males were analyzed to assess the sperm quality and levels of inflammatory markers. Their correlation was determined using Pearson's correlation coefficient. The BALB/c mice were intraperitoneal injected by cyclophosphamide at 60 mg/kg/day for five days to induce OA, followed by a two-week treatment with THL or L-carnitine. Reproductive organ size and H&E staining were determined to observe the organ and seminiferous tubule morphology. ELISA and western blotting were utilized to measure sex hormone levels, inflammatory markers, and NLRP3 inflammasome levels. Furthermore, male and female mice were co-housed to observe pregnancy success rates. RESULTS OA patients exhibited a decrease in sperm density and motility compared to healthy individuals, along with elevated levels of IL-1β, IL-18 and NLRP3 inflammasome. In vivo, THL ameliorated OA-induced atrophy of reproductive organs, hormonal imbalance, and improved sperm density, motility, spermatogenesis and pregnancy success rates with negligible adverse effects on weight or liver-kidney function. THL also demonstrated to be able to inhibit the activation of NLRP3 inflammasome and associated proteins in OA mice. DISCUSSION THL can improve sperm quality and hormonal balance in OA mice through the inhibition of NLRP3 inflammasome activation. Thus, THL holds promising potential as a therapeutic agent for OA.
Collapse
Affiliation(s)
- Pengfei Zhu
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Xingyu Bi
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Dan Su
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Xiaoling Li
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Bingbing Chen
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Juhua Li
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Lijiang Zhao
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Yaoqing Wang
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Suming Xu
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Xueqing Wu
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| |
Collapse
|
17
|
Grover P, Singh AK, Kumar A, Honparkhe M, Singh N, Singh P. Effect of exogenous melatonin implant on post-thaw semen quality of buffalo bulls. Reprod Domest Anim 2024; 59:e14562. [PMID: 38591843 DOI: 10.1111/rda.14562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024]
Abstract
Melatonin is an intracellular antioxidant of sperm membrane that protects the cells from lipid peroxidation. Yet, its role as an antioxidant on semen quality of buffalo bulls is still obscure. The present study was undertaken to assess the effect of exogenous melatonin implant (18 mg/50 kg bodyweight) on post-thaw sperm characteristics, oxidative stress, endocrinological profiles and fertility of buffalo bulls. Six apparently healthy breeding Murrah buffalo bulls were randomly selected at bull farm, Guru Angad Dev Veterinary and Animal Sciences University for the present study and divided into two groups viz. control (n = 3) and melatonin implanted group (n = 3). A total of 120 ejaculates were collected from bulls of both groups (n = 60 each) throughout the study period. Most beneficial effects of melatonin implants were observed during post-implantation period. The percentages of post-thaw sperm total and progressive motility, viability and mitochondrial membrane potential were higher (p < .05) in melatonin implanted buffalo bulls compared to controls during post-implantation period. Following melatonin implantation, MDA production in post-thaw semen was lower (p < .05) in melatonin implanted group than in control group. Plasma melatonin and testosterone concentrations were higher (p < .05) in buffalo bulls implanted with melatonin as compared to their control counterparts. No differences (p > .05) in plasma LH concentrations were observed in both groups. First service pregnancy rate was 43.3% using semen of melatonin implanted bulls and 30.0% with semen of controls (p > .05). Thus, melatonin was able to protect sperm membrane against oxidative damage and improve post-thaw semen quality, thereby resulting in higher fertilizing potential of spermatozoa.
Collapse
Affiliation(s)
- Prateek Grover
- Department of Veterinary Gynaecology and Obstetrics, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Ashwani Kumar Singh
- Department of Veterinary Gynaecology and Obstetrics, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Ajeet Kumar
- Department of Veterinary Gynaecology and Obstetrics, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Mrigank Honparkhe
- Department of Veterinary Gynaecology and Obstetrics, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Navdeep Singh
- Directorate of Livestock Farms, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Prahlad Singh
- Department of Teaching Veterinary Clinical Services Complex, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
18
|
Li R, Du Y, Li K, Xiong X, Zhang L, Guo C, Gao S, Yao Y, Xu Y, Yang J. Single-cell transcriptome profiling implicates the psychological stress-induced disruption of spermatogenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102158. [PMID: 38439912 PMCID: PMC10910125 DOI: 10.1016/j.omtn.2024.102158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
Male infertility has emerged as a global issue, partly attributed to psychological stress. However, the cellular and molecular mechanisms underlying the adverse effects of psychological stress on male reproductive function remain elusive. We created a psychologically stressed model using terrified-sound and profiled the testes from stressed and control rats using single-cell RNA sequencing. Comparative and comprehensive transcriptome analyses of 11,744 testicular cells depicted the cellular landscape of spermatogenesis and revealed significant molecular alterations of spermatogenesis suffering from psychological stress. At the cellular level, stressed rats exhibited delayed spermatogenesis at the spermatogonia and pachytene phases, resulting in reduced sperm production. Additionally, psychological stress rewired cellular interactions among germ cells, negatively impacting reproductive development. Molecularly, we observed the down-regulation of anti-oxidation-related genes and up-regulation of genes promoting reactive oxygen species (ROS) generation in the stress group. These alterations led to elevated ROS levels in testes, affecting the expression of key regulators such as ATF2 and STAR, which caused reproductive damage through apoptosis or inhibition of testosterone synthesis. Overall, our study aimed to uncover the cellular and molecular mechanisms by which psychological stress disrupts spermatogenesis, offering insights into the mechanisms of psychological stress-induced male infertility in other species and promises in potential therapeutic targets.
Collapse
Affiliation(s)
- Rufeng Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Yuefeng Du
- Department of Urology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Kang Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Xiaofan Xiong
- Center for Tumor and Immunology, the Precision Medical Institute, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, P.R. China
| | - Lingyu Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Chen Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Shanfeng Gao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Yufei Yao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Yungang Xu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Juan Yang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education of China, Xi’an 710061, P.R. China
| |
Collapse
|
19
|
Yuan Q, Hong R, Ni Y, Jiang M, Liu J, Chen Z, Yang D. Correlation between seminal plasma biochemical markers and semen parameters in idiopathic oligoasthenoteratospermia: identification of biomarkers for L-carnitine therapy. Front Endocrinol (Lausanne) 2024; 15:1330629. [PMID: 38532897 PMCID: PMC10963428 DOI: 10.3389/fendo.2024.1330629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/29/2024] [Indexed: 03/28/2024] Open
Abstract
Background L-carnitine therapy for idiopathic sperm abnormalities exhibits variable effectiveness, and currently, there are no established criteria to predict patient response. This study investigated correlations between seminal plasma markers and semen parameters to identify biomarkers that can guide indications for L-carnitine therapy indications in patients with idiopathic sperm abnormalities. Methods A retrospective review was conducted on 223 male patients with idiopathic oligoasthenoteratospermia, who sought medical attention at our clinic between January 2020 and October 2022. These patients underwent a pretreatment seminal plasma biochemical analysis, followed by a three-month continuous L-carnitine treatment. The correlation between seminal plasma biochemical parameters and pretreatment semen parameters was analyzed. Semen quality was compared between cases with normal and abnormal seminal plasma biochemical parameters, both pretreatment and posttreatment. The correlation between the changes in semen parameters after treatment and seminal plasma biochemical parameters were investigated. Results Correlation analyses revealed significant associations between all pretreatment semen parameters and seminal plasma biochemical markers, except for liquefying time and the ratio of normal morphology. Subgroup analysis, stratified by seminal fructose, zinc, citric acid, and neutral glycosidase levels, demonstrated that abnormal groups exhibited significantly different levels of semen parameters compared with the normal groups. The changing difference and changing ratio in the ratio of forward motile sperm showed a negative correlation with seminal fructose levels (r=-0.165 and -0.144). The changing difference in semen volume was negatively correlated with the level of seminal neutral glycosidase (r=-0.158). The changing ratio in semen volume, sperm concentration, total sperm count, and count of forward motile sperm all exhibited negative correlations with the levels of seminal neutral glycosidase (range from -0.178 to -0.224). Conclusion Seminal plasma biochemical markers, particularly fructose and neutral glycosidase, may serve as valuable indicators for determining the eligibility of patients with idiopathic sperm abnormalities for L-carnitine therapy.
Collapse
Affiliation(s)
- Qilong Yuan
- Department of Reproductive Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ruifang Hong
- Department of Pharmacy, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Yunping Ni
- Department of Reproductive Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Manbo Jiang
- Department of Reproductive Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Juan Liu
- Department of Reproductive Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Zhiqiang Chen
- Department of Reproductive Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Dongyu Yang
- Department of Reproductive Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
20
|
Arafa ESA, Hassanein EHM, Ibrahim NA, Buabeid MA, Mohamed WR. Involvement of Nrf2-PPAR-γ signaling in Coenzyme Q10 protecting effect against methotrexate-induced testicular oxidative damage. Int Immunopharmacol 2024; 129:111566. [PMID: 38364740 DOI: 10.1016/j.intimp.2024.111566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
Studies have identified Coenzyme Q10 (CoQ10) as a promising agent in improving idiopathic male infertility; however, its role in chemically or environmentally induced testicular dysfunction is not well-established. We investigated the potential of CoQ10 to attenuate methotrexate (MTX)-induced testicular damage and to identify molecular targets of CoQ10 effects. Wistar rats received a single intraperitoneal dose of 20 mg/kg MTX on the fifth day of the 10-day experimental protocol. 100 mg/kg CoQ10 was given orally daily for ten days, alone or combined with MTX. The testes of MTX-treated animals showed thickened tunica albuginea, distortion of seminiferous tubules with a marked reduction of germinal lining, a few primary spermatocytes with no spermatozoa, apoptotic cells, congested sub-capsular and interstitial blood vessels, and interstitial edema. Reduction of reproductive hormones and increased oxidative, inflammatory, and apoptotic biomarkers levels were also seen in the MTX-treated rats. CoQ10 + MTX-treated rats were protected against MTX-induced testicular histological changes and showed improvement in testosterone, luteinizing-, and follicle-stimulating hormone serum levels compared to the MTX group. The testes of the CoQ10 + MTX-treated rats showed reduced malondialdehyde, myloperoxidase, tumor necrosis factor -α, interleukin-6 and -1β and Bax: Bcl2 ratio and enhanced glutathione, and catalase compared to MTX alone. CoQ10 enhanced MTX-induced downregulation of Nrf2 and PPAR-γ signaling and modulated its downstream targets, the inducible nitric oxide synthase, NF-κB, Bax, and Bcl2. In conclusion, CoQ10 targeted the Nrf2-PPAR-γ signaling loop and its downstream pathways, mitigating MTX-induced oxidative stress-related damages and alleviating the testicular dysfunction MTX caused. Our data suggest Nrf2-PPAR-γ signaling as a potential therapeutic target in testicular toxicity, where oxidative stress, inflammation, and apoptosis trigger damage.
Collapse
Affiliation(s)
- El-Shaimaa A Arafa
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research (CMBAHSR), Ajman University, Ajman, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Nihal A Ibrahim
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research (CMBAHSR), Ajman University, Ajman, United Arab Emirates
| | - Manal A Buabeid
- Fatima College of Health Sciences, Department of Pharmacy, United Arab Emirates
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
21
|
Akbari R, Panahi Z, Ghaemi M, Hantoushzadeh S. The knowledge domain and emerging trends in the infertility field: A 67-year retrospective study. Health Care Women Int 2024:1-31. [PMID: 38231619 DOI: 10.1080/07399332.2024.2304110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Infertility is a significant problem influencing many couples. Our purpose was to assess the field of infertility in Obstetrics and Gynecology from 1955 to 2022 reviewing 3575 documents found in the Web of Science database. Most articles were in the areas of Reproductive Biology, Fertility, Endometriosis & Hysterectomy, and Chromosome Disorders. We found publication has increased dramatically since 1989. Agarwal, Thomas, and Sharma; United States, England, and Canada; Fertility and Sterility, Human Reproduction, and AJOG were the most-cited authors, countries, and journals, respectively. We discovered five substantive clusters: male infertility factors, female infertility factors, causes and treatment of infertility, the consequence of infertility, and assisted reproductive techniques. Using bibliometric review (Co-citation analysis) six research areas were found: semen analysis and sperm morphology, regional differences in the psychological effects of infertility, unexplained infertility, endometriosis, diagnosis and treatment of infertility, and polycystic ovary syndrome. Despite advances in understanding infertility, further research is needed.
Collapse
Affiliation(s)
- Razieh Akbari
- Department of Gynecology and Obstetrics, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Zahra Panahi
- Department of Gynecology and Obstetrics, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Marjan Ghaemi
- Department of Gynecology and Obstetrics, School of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Sedigheh Hantoushzadeh
- Vali-e-Asr Reproductive Health Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
22
|
Mararajah S, Giribabu N, Salleh N. Chlorophytum borivilianum aqueous root extract prevents deterioration of testicular function in mice and preserves human sperm function in hydrogen peroxide (H 2O 2)-induced oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117026. [PMID: 37572930 DOI: 10.1016/j.jep.2023.117026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chlorophytum borivilianum (C. borivilianum) (CB) has traditionally been used to treat male sexual dysfunctions and has been claimed to possess aphrodisiac properties. AIM OF THE STUDY To investigate the ability of CB to ameliorate H2O2-induced oxidative stress in testes and sperm in mice and prevent H2O2-induced oxidative in human sperm. MATERIALS AND METHODS Oxidative stress was induced in male mice by pre-exposure to 2% H2O2 orally for seven consecutive days, followed by 100 and 200 mg/kg b. w. administration. CB for another seven days. At the end of treatment, mice were sacrificed and testes and epididymal sperm were harvested. Serum FSH, LH and testosterone levels were measured and sperm parameters were obtained. Meanwhile, oxidative stress levels in mice testes and sperm, steroidogenesis and spermatogenesis markers in mice testes were assessed by molecular biological techniques. In another experiment, sperm from thirty-two healthy fertile men were incubated with 200 μM H2O2 and CB (100 and 200 μg/ml) simultaneously and were then evaluated for sperm parameter changes. RESULTS In mice, CB administration ameliorates persistent increases in oxidative stress and decreases in anti-oxidative enzyme levels in testes and sperm following H2O2 pre-exposure. Additionally, CB also helps to ameliorate deterioration in sperm parameters and testicular steroidogenesis and spermatogenesis and restores the serum FSH, LH and testosterone levels near normal in mice. In humans, CB helps to prevent deterioration in sperm parameters following H2O2 exposure. CONCLUSION CB is potentially useful to preserve the male reproductive capability and subsequently male fertility in high oxidative stress conditions.
Collapse
Affiliation(s)
- Selvakumar Mararajah
- Department of Physiology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Natural Products and Drug Discovery (CENAR), Faculty of Science, University Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Natural Products and Drug Discovery (CENAR), Faculty of Science, University Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
23
|
Sengupta P, Pinggera G, Calogero AE, Agarwal A. Oxidative stress affects sperm health and fertility-Time to apply facts learned at the bench to help the patient: Lessons for busy clinicians. Reprod Med Biol 2024; 23:e12598. [PMID: 39224210 PMCID: PMC11366688 DOI: 10.1002/rmb2.12598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
Background Increased oxidative stress (OS), resulting from the delicate balance between reactive oxygen species (ROS) production and antioxidant defense, is closely linked to sperm abnormalities and male subfertility. Elevated ROS levels particularly affect sperm quality. The vulnerability of spermatozoa to ROS is due to the absence of DNA repair mechanisms and the high presence of polyunsaturated fatty acids in their membranes. Methods This article updates and advances our understanding of the molecular damage caused by OS in spermatozoa, including lipid peroxidation, DNA damage, motility, and functionality. Additionally, the review discusses the challenges in diagnosing OS in semen and recommends accurate and sensitive testing methods. Case studies are utilized to demonstrate the effective management of male infertility caused by OS. Main findings Highlighting the need to bridge the gap between research and clinical practice, this review suggests strategies for clinicians, such as lifestyle and dietary changes and antioxidant therapies. The review emphasizes lifestyle modifications and personalized care as effective strategies in managing male infertility caused by OS. Conclusion This review calls for early detection and intervention and interdisciplinary collaboration to improve patient care in male infertility cases related to increased OS.
Collapse
Affiliation(s)
- Pallav Sengupta
- Global Andrology ForumMoreland HillsOhioUSA
- Department of Biomedical Sciences, College of MedicineGulf Medical UniversityAjmanUAE
| | - Germar‐M. Pinggera
- Global Andrology ForumMoreland HillsOhioUSA
- Department of UrologyMedical University InnsbruckInnsbruckAustria
| | - Aldo E. Calogero
- Global Andrology ForumMoreland HillsOhioUSA
- Division of Endocrinology, Metabolic Diseases and NutritionUniversity of CataniaCataniaItaly
| | - Ashok Agarwal
- Global Andrology ForumMoreland HillsOhioUSA
- Cleveland ClinicClevelandOhioUSA
| |
Collapse
|
24
|
Ijaz MU, Ishtiaq A, Tahir A, Alvi MA, Rafique A, Wang P, Zhu GP. Antioxidant, anti-inflammatory, and anti-apoptotic effects of genkwanin against aflatoxin B 1-induced testicular toxicity. Toxicol Appl Pharmacol 2023; 481:116750. [PMID: 37980962 DOI: 10.1016/j.taap.2023.116750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023]
Abstract
Aflatoxin B1 (AFB1) is the most hazardous aflatoxin that causes significant damage to the male reproductive system. Genkwanin (GNK) is a bioactive flavonoid that shows antioxidant and anti-inflammatory potential. Therefore, the current study was planned to evaluate the effects of GNK against AFB1-induced testicular toxicity. Forty-eight male rats were distributed into four groups (n = 12 rats). AFB1 (50 μg/kg) and GNK (20 mg/kg) were administered to the rats for eight weeks. Results of the current study revealed that AFB1 exposure induced adverse effects on the Nrf2/Keap1 pathway and reduced the expressions and activities of antioxidant enzymes. Additionally, it increased the levels of oxidative stress markers. Furthermore, expressions of steroidogenic enzymes were down-regulated by AFB1 intoxication. Besides, AFB1 exposure reduced the levels of gonadotropins and plasma testosterone, which subsequently reduced the epididymal sperm count, motility, and hypo-osmotic swelled (HOS) sperms, while increasing the number of dead sperms and causing morphological anomalies of the head, midpiece, and tail of the sperms. In addition, AFB1 decreased the activities of testicular function marker enzymes and the levels of inflammatory markers. Moreover, it severely affected the apoptotic profile by up-regulating the expressions of Bax and Casp3, while down-regulating the Bcl2 expression. Besides, AFB1 significantly damaged the histoarchitecture of testicular tissues. However, GNK treatment reversed all the AFB1-induced damages in the rats. Taken together, the current study reports the potential use of GNK as a therapeutic agent to prevent AFB1-induced testicular toxicity due to its antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Ayesha Ishtiaq
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Arfa Tahir
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Mughees Aizaz Alvi
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Azhar Rafique
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Peng Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Guo-Ping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China.
| |
Collapse
|
25
|
Albekairi NA, Al-Hamamah MA, Alshamrani AA, Attia MSM, Nadeem A, Ansari MA, Ahmad SF, Bakheet SA, Attia SM. Dapagliflozin Mitigated Elevated Disomic and Diploid Sperm in a Mouse Model of Diabetes and Recover the Disrupted Ogg1, Parp1, and P53 Gene Expression. Biomedicines 2023; 11:2980. [PMID: 38001980 PMCID: PMC10669605 DOI: 10.3390/biomedicines11112980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Increases in numerical chromosomal syndromes were observed in children of diabetic mothers. However, the effects of diabetes on male reproduction, specifically numerical chromosomal aberrations (aneuploidy), have not been studied. Furthermore, despite the increasing use of dapagliflozin for diabetes treatment, no data exists on its ability to affect aneuploidy levels in germ cells. Thus, our investigation aimed to evaluate the effects of diabetes on spontaneous sperm aneuploidy and whether treatment with dapagliflozin influences the frequency of aneuploidy in the sperm of an experimental diabetic animal model. Our findings show that dapagliflozin has no aneugenic effects on the meiotic stages of spermatogenesis. In contrast, diabetes raised the frequency of aneuploidy, and dapagliflozin administration decreased the elevated levels of disomic and diploid sperm. The level of oxidative stress was markedly increased in diabetic mice, but were reduced by dapagliflozin treatment. Furthermore, the expression of some of DNA repair genes was disrupted in diabetic animals, whereas dapagliflozin therapy restored these disruptions and significantly enhanced DNA repair. Thus, dapagliflozin may effectively ameliorate diabetes-induced aneugenic effects on male meiosis and treating diabetic patients with dapagliflozin may effectively mitigate the transmission of diabetes-induced chromosomal defects to offspring.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (N.A.A.); (M.A.A.-H.); (A.A.A.); (M.S.M.A.); (M.A.A.); (S.A.B.)
| |
Collapse
|
26
|
Andone BA, Handrea-Dragan IM, Botiz I, Boca S. State-of-the-art and future perspectives in infertility diagnosis: Conventional versus nanotechnology-based assays. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 54:102709. [PMID: 37717928 DOI: 10.1016/j.nano.2023.102709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
According to the latest World Health Organization statistics, around 50 to 80 million people worldwide suffer from infertility, amongst which male factors are responsible for around 20 to 30 % of all infertility cases while 50 % were attributed to the female ones. As it is becoming a recurrent health problem worldwide, clinicians require more accurate methods for the improvement of both diagnosis and treatment schemes. By emphasizing the potential use of innovative methods for the rapid identification of the infertility causes, this review presents the news from this dynamic domain and highlights the benefits brought by emerging research fields. A systematic description of the standard techniques used in clinical protocols for diagnosing infertility in both genders is firstly provided, followed by the presentation of more accurate and comprehensive nanotechnology-related analysis methods such as nanoscopic-resolution imaging, biosensing approaches and assays that employ nanomaterials in their design. Consequently, the implementation of nanotechnology related tools in clinical practice, as recently demonstrated in the selection of spermatozoa, the detection of key proteins in the fertilization process or the testing of DNA integrity or the evaluation of oocyte quality, might confer excellent advantages both for improving the assessment of infertility, and for the success of the fertilization process.
Collapse
Affiliation(s)
- Bianca-Astrid Andone
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania; Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str., 400084 Cluj-Napoca, Romania
| | - Iuliana M Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania; Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str., 400084 Cluj-Napoca, Romania
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
| | - Sanda Boca
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania; National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania.
| |
Collapse
|
27
|
Faix A, Methorst C, Lamazou F, Vialard F, Huyghe E. [Assessment of the man in the infertile couple]. Prog Urol 2023; 33:588-612. [PMID: 38012906 DOI: 10.1016/j.purol.2023.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Among couples consulting for infertility, there is a male component, either alone or associated with a female aetiology in around one in 2 cases. MATERIAL AND METHODS Bibliographic search in PubMed using the keywords "male infertility", "diagnosis", "management" and "evaluation" limited to clinical articles in English and French prior to 1/01/2023. RESULTS The AFU recommends: (1) a complete medical history including: family history, patient history affecting fertility, lifestyle habits (toxicity), treatments, symptoms, sexual dysfunctions; (2) a physical examination including: BMI, signs of hypogonadism, secondary sexual characteristics, scrotal examination (volume and consistency of testes, vas deferens, epididymal or testicular nodules, presence of varicocele); (3) two spermograms, if abnormal on the first; (4) a systematic scrotal ultrasound,± an endorectal ultrasound depending on the clinic; (5) a hormonal work-up (testosterone, FSH; if testosterone is low: LH assay to differentiate between central or peripheral hypogonadism); (6) karyotype if sperm concentration≤10 million/mL; (7) evaluation of Y chromosome microdeletions if concentration≤1 million/mL; (8) evaluation of the CFTR gene in cases of suspected bilateral or unilateral agenesis of the vas deferens and seminal vesicles. The role and usefulness of direct and indirect tests to assess the effects of oxidative stress on sperm DNA will also be explained. CONCLUSION This review complements and updates the AFU/SALF 2021 recommendations.
Collapse
Affiliation(s)
- A Faix
- Clinique Saint-Roch, 560, avenue du Colonel-Pavelet-dit-Villars, 34000 Montpellier, France
| | - C Methorst
- Service de médecine de la reproduction, hôpital des 4-villes, Saint-Cloud, France
| | - F Lamazou
- Clinique Pierre-Cherest, Paris, France
| | - F Vialard
- Service de génétique, CHU de Poissy Saint-Germain, UVSQ, Poissy, France
| | - E Huyghe
- Département d'urologie, hôpital de Rangueil, CHU de Toulouse, Toulouse, France; Service de médecine de la reproduction, hôpital Paule-de-Viguier, CHU de Toulouse, Toulouse, France; UMR DEFE, Inserm 1203, université de Toulouse, université de Montpellier, Toulouse, France.
| |
Collapse
|
28
|
Abu-Khudir R, Almutairi HH, Abd El-Rahman SS, El-Said KS. The Palliative and Antioxidant Effects of Hesperidin against Lead-Acetate-Induced Testicular Injury in Male Wistar Rats. Biomedicines 2023; 11:2390. [PMID: 37760831 PMCID: PMC10525152 DOI: 10.3390/biomedicines11092390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Lead (Pb)-induced reprotoxicity is a detrimental consequence of Pb exposure, which results in abnormal spermatogenesis, testicular degeneration, and pathogenic sperm changes. The association between impaired male reproductive function and Pb-induced oxidative stress (OS) has been demonstrated, with consequent testicular antioxidant deficiency. The current study investigated the protective role of the natural antioxidant hesperidin (HSD) against lead-acetate (PbAc)-induced testicular toxicity. Male Wistar rats (n = 40) were randomly divided into four experimental groups: Group I (negative control) received 2.0 mL/kg BW 0.9% saline; Group II received 100 mg/kg BW PbAc; Group III received 100 mg/kg BW HSD; and Group IV received HSD two hours before PbAc using the abovementioned doses. The treatments were administered daily for 30 consecutive days. The results showed that HSD treatment significantly restored PbAc-induced decrease in body, epididymal, and testicular weights as well as in semen parameters, reproductive hormones, and testicular markers of OS. Reduced MDA levels and improved testicular histopathological findings were also observed. Collectively, this study sheds light on the preventive role of HSD against PbAc-induced testicular injury, which is mediated via the suppression of OS and the modulation of reproductive hormones as well as the plausibility of HSD being used as a supplementary therapeutic option for recovery.
Collapse
Affiliation(s)
- Rasha Abu-Khudir
- Chemistry Department, College of Science, King Faisal University, Al-Ahsa, P.O. Box 380, Hofuf 31982, Saudi Arabia;
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Hayfa Habes Almutairi
- Chemistry Department, College of Science, King Faisal University, Al-Ahsa, P.O. Box 380, Hofuf 31982, Saudi Arabia;
| | - Sahar S. Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Karim Samy El-Said
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
29
|
Alfaro Gómez M, Fernández-Santos MDR, Jurado-Campos A, Soria-Meneses PJ, Montoro Angulo V, Soler AJ, Garde JJ, Rodríguez-Robledo V. On Males, Antioxidants and Infertility (MOXI): Certitudes, Uncertainties and Trends. Antioxidants (Basel) 2023; 12:1626. [PMID: 37627621 PMCID: PMC10451353 DOI: 10.3390/antiox12081626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Male infertility (MI) involves various endogenous and exogenous facts. These include oxidative stress (OS), which is known to alter several physiological pathways and it is estimated to be present at high levels in up to 80% of infertile men. That is why since the late 20th century, the relationship between OS and MI has been widely studied. New terms have emerged, such as Male Oxidative Stress Infertility (MOSI), which is proposed as a new category to define infertile men with high OS levels. Another important term is MOXI: Male, Antioxidants, and Infertility. This term refers to the hypothesis that antioxidants could improve male fertility without the use of assisted reproductive technology. However, there are no evidence-based antioxidant treatments that directly improve seminal parameters or birth ratio. In this regard, there is controversy about their use. While certain scientists argue against their use due to the lack of results, others support this use because of their safety profile and low price. Some uncertainties related to the use of antioxidants for treating MI are their questionable efficacy or the difficulties in knowing their correct dosage. In addition, the lack of quality methods for OS detection can lead to excessive antioxidant supplementation, resulting in "reductive stress". Another important problem is that, although the inflammatory process is interdependent and closely linked to OS, it is usually ignored. To solve these uncertainties, new trends have recently emerged. These include the use of molecules with anti-inflammatory and antioxidant potential, which are also able to specifically target the reproductive tissue; as well as the use of new methods that allow for reliable quantification of OS and a quality diagnosis. This review aims to elucidate the main uncertainties about MOXI and to outline the latest trends in research to develop effective therapies with clinically relevant outcomes.
Collapse
Affiliation(s)
- Manuel Alfaro Gómez
- Facultad de Farmacia, Universidad de Castilla la Mancha, 02071 Albacete, Spain;
| | - María del Rocío Fernández-Santos
- Facultad de Farmacia, Universidad de Castilla la Mancha, 02071 Albacete, Spain;
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - Alejandro Jurado-Campos
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - Pedro Javier Soria-Meneses
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - Vidal Montoro Angulo
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - Ana Josefa Soler
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - José Julián Garde
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| | - Virginia Rodríguez-Robledo
- Facultad de Farmacia, Universidad de Castilla la Mancha, 02071 Albacete, Spain;
- SaBio IREC (CSIC—UCLM—JCCM), Campus Universitario, 02071 Albacete, Spain; (A.J.-C.); (P.J.S.-M.); (V.M.A.); (A.J.S.); (J.J.G.)
| |
Collapse
|
30
|
Wei YS, Chen YL, Li WY, Yang YY, Lin SJ, Wu CH, Yang JI, Wang TE, Yu J, Tsai PS. Antioxidant Nanoparticles Restore Cisplatin-Induced Male Fertility Defects by Promoting MDC1-53bp1-Associated Non-Homologous DNA Repair Mechanism and Sperm Intracellular Calcium Influx. Int J Nanomedicine 2023; 18:4313-4327. [PMID: 37576465 PMCID: PMC10416785 DOI: 10.2147/ijn.s408623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Cisplatin, a commonly used anticancer compound, exhibits severe off-target organ toxicity. Due to its wide application in cancer treatment, the reduction of its damage to normal tissue is an imminent clinical need. Cisplatin-induced testicular oxidative stress and damage lead to male sub- or infertility. Despite earlier studies showing that the natural polyphenol extracts honokiol serve as the free radical scavenger that reduces the accumulation of intracellular free radicals, whether honokiol exhibits direct effects on the testis and sperm is unclear. Thus, the aim of the current study is to investigate the direct effects of honokiol on testicular recovery and sperm physiology. Methods We encapsulated this polyphenol antioxidation compound into liposome-based nanoparticles (nHNK) and gave intraperitoneally to mice at a dosage of 5 mg/kg body mass every other day for consecutive 6 weeks. Results We showed that nHNK promotes MDC1-53bp1-associated non-homologous DNA double-strand break repair signaling pathway that minimizes cisplatin-induced DNA damage. This positive effect restores spermatogenesis and allows the restructuring of the multi-spermatogenic layers in the testis. By reducing mitochondrial oxidative damage, nHNK also protects sperm mitochondrial structure and maintains both testicular and sperm ATP production. By a yet-to-identify mechanism, nHNK restores sperm calcium influx at the sperm midpiece and tail, which is essential for sperm hypermotility and their interaction with the oocyte. Discussion Taken together, the nanoparticulated antioxidant counteracts cisplatin-induced male fertility defects and benefits patients undertaking cisplatin-based chemotherapy. These data may allow the reintroduction of cisplatin for systemic applications in patients at clinics with reduced testicular toxicity.
Collapse
Affiliation(s)
- Yu-Syuan Wei
- Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Liang Chen
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Wei-Yun Li
- Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Ya-Yi Yang
- Department of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Sung-Jan Lin
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 10617, Taiwan
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, 10051, Taiwan
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, 10002, Taiwan
| | - Ching-Ho Wu
- Graduate Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Jiue-In Yang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 10617, Taiwan
| | - Tse-En Wang
- Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Pei-Shiue Tsai
- Graduate Institute of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
- Department of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
31
|
Monageng E, Offor U, Takalani NB, Mohlala K, Opuwari CS. A Review on the Impact of Oxidative Stress and Medicinal Plants on Leydig Cells. Antioxidants (Basel) 2023; 12:1559. [PMID: 37627554 PMCID: PMC10451682 DOI: 10.3390/antiox12081559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/03/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Leydig cells are essential for steroidogenesis and spermatogenesis. An imbalance in the production of reactive oxygen species (ROS) and the cellular antioxidant level brings about oxidative stress. Oxidative stress (OS) results in the dysfunction of Leydig cells, thereby impairing steroidogenesis, spermatogenesis, and ultimately, male infertility. To prevent Leydig cells from oxidative insults, there needs to be a balance between the ROS production and the cellular protective capacity of antioxidants. Evidence indicates that medicinal plants could improve Leydig cell function at specific concentrations under basal or OS conditions. The increased usage of medicinal plants has been considered a possible alternative treatment for male infertility. This review aims to provide an overview of the impact of oxidative stress on Leydig cells as well as the effects of various medicinal plant extracts on TM3 Leydig cells. The medicinal plants of interest include Aspalathus linearis, Camellia sinensis, Moringa oleifera, Morinda officinale, Taraxacum officinale, Trichilia emetica, Terminalia sambesiaca, Peltophorum africanum, Ximenia caffra, Serenoa repens, Zingiber officinale, Eugenia jambolana, and a combination of dandelion and fermented rooibos (CRS-10). According to the findings obtained from studies conducted on the evaluated medicinal plants, it can, therefore, be concluded that the medicinal plants maintain the antioxidant profile of Leydig cells under basal conditions and have protective or restorative effects following exposure to oxidative stress. The available data suggest that the protective role exhibited by the evaluated plants may be attributed to their antioxidant content. Additionally, the use of the optimal dosage or concentration of the extracts in the management of oxidative stress is of the utmost importance, and the measurement of their oxidation reduction potential is recommended.
Collapse
Affiliation(s)
- Elizabeth Monageng
- Department of Medical Biosciences, Faculty of Natural Science, University of Western Cape, Cape Town 7535, South Africa
| | - Ugochukwu Offor
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Ndivhuho Beauty Takalani
- Department of Medical Biosciences, Faculty of Natural Science, University of Western Cape, Cape Town 7535, South Africa
| | - Kutullo Mohlala
- Department of Medical Biosciences, Faculty of Natural Science, University of Western Cape, Cape Town 7535, South Africa
| | - Chinyerum Sylvia Opuwari
- Department of Medical Biosciences, Faculty of Natural Science, University of Western Cape, Cape Town 7535, South Africa
| |
Collapse
|
32
|
Fallah F, Colagar AH, Saleh HA, Ranjbar M. Variation of the genes encoding antioxidant enzymes SOD2 (rs4880), GPX1 (rs1050450), and CAT (rs1001179) and susceptibility to male infertility: a genetic association study and in silico analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86412-86424. [PMID: 37405601 DOI: 10.1007/s11356-023-28474-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023]
Abstract
Enzymatic factors including superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) are among the most important protective antioxidant systems in human semen. This study was conducted to investigate the association between the activities of the mentioned enzymes in semen and also the association between SOD2 rs4880, GPX1 rs1050450, and CAT rs1001179 polymorphisms with male infertility, which was followed by a bioinformatics approach. In a case-control study, 223 infertile men and 154 healthy fertile men were included in the study. After extracting genomic DNA from semen samples, the genotype of rs1001179, rs1050450, and rs4880 polymorphisms was determined using the PCR-RFLP. Next, the activities of SOD, CAT, and GPX enzymes were also measured in semen. Bioinformatics software was used to investigate the effect of polymorphisms on the function of genes. Data analysis indicated that rs1001179 polymorphisms were not associated with male infertility. But our data revealed that the rs1050450 polymorphism is associated with a reduced risk of male infertility as well as asthenozoospermia and teratozoospermia. In addition, rs4880 polymorphism was associated with an increased risk of male infertility as well as teratozoospermia. Further analysis showed that the activity of the CAT enzyme in the infertile group is significantly higher than in the fertile group, but the activity of GPX and SOD enzymes in the infertile group is significantly lower than in the fertile group. Bioinformatic analysis showed that rs1001179 polymorphism affects the transcription factors binding site upstream of the gene, while rs1050450 and rs4880 polymorphisms had an essential role in protein structure and function. On the other hand, rs1050450 (T allele) was exposed to a reduced risk of male infertility and may be a protective factor. And SOD2 rs4880 (C allele) is associated with an increased risk of male infertility, and it is considered a risk factor for male infertility. To reach accurate results, we recommend that the study of SOD2 rs4880 and GPX1 rs1050450 polymorphism effects in the different populations with a larger sample size and meta-analysis are needed.
Collapse
Affiliation(s)
- Fatemeh Fallah
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, Babolsar, CP:47416-95447, Mazandaran, Iran
| | - Abasalt Hosseinzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, Babolsar, CP:47416-95447, Mazandaran, Iran.
| | - Hayder Abdulhadi Saleh
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, Babolsar, CP:47416-95447, Mazandaran, Iran
| | - Mojtaba Ranjbar
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Mazandaran, Iran
| |
Collapse
|
33
|
Liu H, Wang D, Ma Y, Sun H, Wang L, Shi Y, Wang J, Chen X. Hyperbaric Oxygen Therapy Ameliorates Sperm Parameters in Apolipoprotein E Knockout Mice Testes by Attenuating Oxidative Stress and Inflammation. Reprod Sci 2023; 30:2252-2262. [PMID: 36745359 DOI: 10.1007/s43032-022-01158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/21/2022] [Indexed: 02/07/2023]
Abstract
Apolipoprotein E (ApoE) is a member of apolipoprotein (apo) family and plays critical role in lipid metabolism. In this study, the relationship between abnormal lipid metabolism caused by ApoE-deficient and male reproduction was investigated. The effect of hyperbaric oxygen (HBO) therapy on 7-month-old ApoE-knockout male mice was assessed subsequently. Mice were randomly divided into 3 groups: control group (WT), ApoE (- / -) group (AP-CON), and ApoE (- / -) plus HBO group (AP-HBO), which received HBO treatment. We found that ApoE knockout caused a decrease in male reproductive capacity due to the reduced total sperm motility, progressive motility (PR), and lower blastocyst formation rate. HBO treatment could accelerate serum lipoprotein metabolism including LDL, T-CHO, and TG and semen quality. As a result, fertilization and blastocyst formation of AP-HBO group were higher than that of AP-CON, proving positive therapeutic effect. Mechanism exploration found that HBO treatment ameliorated the testicular microenvironment by attenuating inflammatory factor production and oxidative stress, eventually improved the sperm motility. Collectively, our study provided more evidences of HBO treatment for improving the semen quality of patients with abnormal lipid metabolism caused by ApoE-deficient.
Collapse
Affiliation(s)
- Huijun Liu
- Center of Reproduction, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 68 Gehu Road, Jiangsu, 213003, Changzhou, China
| | - Danni Wang
- Center of Reproduction, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 68 Gehu Road, Jiangsu, 213003, Changzhou, China
| | - Yang Ma
- Center of Reproduction, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 68 Gehu Road, Jiangsu, 213003, Changzhou, China
| | - Huiting Sun
- Center of Reproduction, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 68 Gehu Road, Jiangsu, 213003, Changzhou, China
| | - Linxiao Wang
- Laboratory of Neurological Diseases, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Yichao Shi
- Center of Reproduction, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 68 Gehu Road, Jiangsu, 213003, Changzhou, China
| | - Jiaping Wang
- Center of Reproduction, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 68 Gehu Road, Jiangsu, 213003, Changzhou, China.
| | - Xia Chen
- Center of Reproduction, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 68 Gehu Road, Jiangsu, 213003, Changzhou, China.
| |
Collapse
|
34
|
Qin Y, He S, Peng H, Ye X, Zhang H, Ding S. Dibutyl Phthalate Adsorbed on Multiwalled Carbon Nanotubes Causes Fetal Developmental Toxicity in Balb/C Mice. TOXICS 2023; 11:565. [PMID: 37505531 PMCID: PMC10385951 DOI: 10.3390/toxics11070565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
This study investigated whether using multiwalled carbon nanotubes (MWCNTs) as a carrier for dibutyl phthalate (DBP) could delay the degradation rate of DBP in mice and increase its estrogen-like interference effect. Pregnant Balb/C mice were divided into four groups and exposed to different treatments via tail-vein injection every 3 days until gestational day 20. The female and male mice were then sacrificed for toxicological study. The results showed that the combination of MWCNTs and DBP resulted in a higher fetal mortality rate than if the mice were exposed to MWCNTs or DBP alone. H&E staining showed that the estrous period of the exposed mice was delayed, the development of oocytes was blocked in the combination group, the number of spermatogenic cells decreased, and the quality of sperm decreased. Our experiment showed that the expression levels of the genes involved in sex hormone synthesis in the testis and ovaries were significantly increased after combined treatment compared with the MWCNT group (p < 0.01). The study suggests that DBP degradation is delayed when absorbed on MWCNTs, which increases its estrogen-like interference and interferes with fetal development, ultimately leading to increased fetal mortality.
Collapse
Affiliation(s)
- Yujie Qin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Suli He
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Haiyan Peng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xin Ye
- Liquor Marking Biological Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Hongmao Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Shumao Ding
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
35
|
Zarhouti A, Mbaye MM, Addoum B, Louanjli N, El Khalfi B, Soukri A. The Impact of Origanum vulgare Supplementation on Human Asthenozoospermic Sperm Parameter Quality. ScientificWorldJournal 2023; 2023:8093795. [PMID: 37440992 PMCID: PMC10335756 DOI: 10.1155/2023/8093795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 07/15/2023] Open
Abstract
Male infertility is a complex multifactorial disease and a real health problem; 50% of infertile men have identifiable causes detectable by fundamental sperm analysis. Numerous research studies have shown the possibility of treating abnormal semen samples with some drugs before artificial insemination, yet evidence of the drug's effectiveness remains minimal. In our previous work, we tested the effectiveness of some essential oils, such as eucalyptus (Eucalyptus globulus Labill.), oregano (Origanum vulgare L.), and sage (Salvia officinalis L.) on sperm parameters. The essential oil of oregano showed the best ameliorative effect. In present, we examined the effect of the essential oil of O. vulgare on the physiological parameters and the specific activity of certain antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), lipid peroxidation rate (MDA), and GAPDH and antioxidant and metabolic biomarkers, characterizing the quality of human sperm. The results showed that in vitro supplementation of oregano significantly improves the mobility and antioxidant activities, without harmful effects on the integrity of the sperm's DNA, and that the selected concentration of oregano EO is nontoxic and may be considered a therapeutic alternative to heal sperm motility problems in asthenozoospermic patients.
Collapse
Affiliation(s)
- Ahlam Zarhouti
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Moudou M. Mbaye
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
- Laboratory of Medical Analysis, Andrology, LABOMAC, Casablanca, Morocco
| | - Boutaina Addoum
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Noureddine Louanjli
- Laboratory of Medical Analysis, Andrology, LABOMAC, Casablanca, Morocco
- IRIFIV In Vitro Fertilization Centre, IRIS Clinic, Casablanca, Morocco
| | - Bouchra El Khalfi
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| | - Abdelaziz Soukri
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Maarif B.P 5366, Casablanca, Morocco
| |
Collapse
|
36
|
Dorostghoal M, Galehdari H, Hemadi M, Izadi F. Seminal prolactin is associated with HSP90 transcript content in ejaculated spermatozoa. Clin Exp Reprod Med 2023; 50:99-106. [PMID: 37258103 DOI: 10.5653/cerm.2022.05757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/06/2023] [Indexed: 06/02/2023] Open
Abstract
OBJECTIVE Evidence indicates that an imbalance between the production of reactive oxygen species and defense ability of antioxidants has clinical significance in the pathophysiology of male infertility. To investigate the role of seminal prolactin (PRL) in the fertilizing capacity of men, the present study evaluated the associations of seminal PRL levels with semen parameters and heat shock protein 90 (HSP90) transcript abundance in ejaculated spermatozoa. METHODS We assessed seminal PRL levels and the abundance of HSP90 transcripts in ejaculated spermatozoa from normozoospermic donors (n=18) and infertile men (n=18). The transcript content of HSP90 in ejaculated spermatozoa was analyzed using real-time polymerase chain reaction. RESULTS Seminal PRL concentrations in infertile patients were significantly lower (p=0.004) than in fertile controls. Seminal PRL showed relatively good diagnostic power for discriminating infertile men (area under the curve=0.776; 95% confidence interval, 0.568 to 0.934; p=0.005). Significant positive correlations were seen between seminal PRL levels and sperm count (r=0.400, p=0.016) and progressive motility (r=0.422, p=0.010). Infertile patients showed a significantly higher abundance of sperm HSP90 than fertile controls (p=0.040). Sperm HSP90 transcript abundance was negatively correlated with sperm progressive motility (r=0.394, p=0.018). Men with higher seminal PRL levels exhibited a lower abundance of sperm HSP90 transcripts. CONCLUSION Our finding demonstrated associations among semen quality, seminal PRL levels, and the abundance of HSP90 transcripts in ejaculated spermatozoa. Seminal PRL may contribute to male fertility by maintaining the seminal antioxidant capacity and may have the potential to act as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Mehran Dorostghoal
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Biotechnology and Bioscience Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Masoud Hemadi
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Fahimeh Izadi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
37
|
Mao Z, Li H, Zhao XL, Zeng XH. Hydrogen sulfide protects Sertoli cells against toxicant Acrolein-induced cell injury. Food Chem Toxicol 2023; 176:113784. [PMID: 37059385 DOI: 10.1016/j.fct.2023.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Acrolein (ACR), a highly toxic α,β-unsaturated aldehyde, is considered to be a common mediator behind the reproductive injury induced by various factors. However, the understanding of its reproductive toxicity and prevention in reproductive system is limited. Given that Sertoli cells provide the first-line defense against various toxicants and that dysfunction of Sertoli cell causes impaired spermatogenesis, we, therefore, examined ACR cytotoxicity in Sertoli cells and tested whether hydrogen sulfide (H2S), a gaseous mediator with potent antioxidative actions, could have a protective effect. Exposure of Sertoli cells to ACR led to cell injury, as indicated by reactive oxygen species (ROS) generation, protein oxidation, P38 activation and ultimately cell death that was prevented by antioxidant N-acetylcysteine (NAC). Further studies revealed that ACR cytotoxicity on Sertoli cells was significantly exacerbated by the inhibition of H2S-synthesizing enzyme cystathionine γ-lyase (CSE), while significantly suppressed by H2S donor Sodium hydrosulfide (NaHS). It was also attenuated by Tanshinone IIA (Tan IIA), an active ingredient of Danshen that stimulated H2S production in Sertoli cells. Apart from Sertoli cells, H2S also protected the cultured germ cells from ACR-initiated cell death. Collectively, our study characterized H2S as endogenous defensive mechanism against ACR in Sertoli cells and germ cells. This property of H2S could be used to prevent and treat ACR-related reproductive injury.
Collapse
Affiliation(s)
- Zhimin Mao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China.
| | - Haitao Li
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Xiu-Ling Zhao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Xu-Hui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
38
|
Doroftei B, Ilie OD, Maftei R, Scripcariu IS, Armeanu T, Stoian IL, Ilea C. A Narrative Review Discussing Vasectomy-Related Impact upon the Status of Oxidative Stress and Inflammation Biomarkers and Semen Microbiota. J Clin Med 2023; 12:jcm12072671. [PMID: 37048754 PMCID: PMC10095584 DOI: 10.3390/jcm12072671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Male contraceptive approaches besides tubal sterilization involve vasectomy and represent the method of choice among midlife men in developing countries thanks to many advantages. However, the subsidiary consequences of this intervention are insufficiently explored since the involved mechanisms may offer insight into a much more complex picture. Methods: Thus, in this manuscript, we aimed to reunite all available data by searching three separate academic database(s) (PubMed, Web of Knowledge, and Scopus) published in the past two decades by covering the interval 2000–2023 and using a predefined set of keywords and strings involving “oxidative stress” (OS), “inflammation”, and “semen microbiota” in combination with “humans”, “rats”, and “mice”. Results: By following all evidence that fits in the pre-, post-, and vasectomy reversal (VR) stages, we identified a total of n = 210 studies from which only n = 21 were finally included following two procedures of eligibility evaluation. Conclusions: The topic surrounding this intricate landscape has created debate since the current evidence is contradictory, limited, or does not exist. Starting from this consideration, we argue that further research is mandatory to decipher how a vasectomy might disturb homeostasis.
Collapse
Affiliation(s)
- Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street, no 3C, 700032 Iasi, Romania
| | - Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue no 20A, 700505 Iasi, Romania
| | - Radu Maftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street, no 3C, 700032 Iasi, Romania
| | - Ioana-Sadyie Scripcariu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
| | - Theodora Armeanu
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street, no 3C, 700032 Iasi, Romania
| | - Irina-Liviana Stoian
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
| | - Ciprian Ilea
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street no 16, 700115 Iasi, Romania
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street no 34, 700038 Iasi, Romania
| |
Collapse
|
39
|
Huang D, Zhang Y, Wang X, Guo R, Leng X, Du Q, Wu Q, Pan B, Zhao Y. Dietary total antioxidant capacity and the risk of developing asthenozoospermia: a hospital-based case-control study in China. Hum Reprod 2023; 38:537-548. [PMID: 36728412 DOI: 10.1093/humrep/dead010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/06/2023] [Indexed: 02/03/2023] Open
Abstract
STUDY QUESTION Is dietary total antioxidant capacity (DTAC) associated with the odds of developing asthenozoospermia in Chinese men? SUMMARY ANSWER There is no statistically significant association between DTAC indices and the odds of developing asthenozoospermia. WHAT IS KNOWN ALREADY Both diet and oxidative stress may be related to sperm quality; however, few studies have investigated the association between DTAC and sperm quality. STUDY DESIGN, SIZE, DURATION This case-control study was conducted from June 2020 to December 2020. Those diagnosed with asthenozoospermia were assigned to the case group, whereas those with normal sperm parameters were assigned to the control group. Data from a total of 553 cases and 586 controls were included in the final analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS Men who had been referred to the infertility clinic of Shengjing Hospital of China Medical University were enrolled. Dietary intake was assessed using a validated food frequency questionnaire. DTAC was based on ferric-reducing ability of plasma (FRAP), total oxygen radical absorbance capacity (T-ORAC), hydrophilic oxygen radical absorbance capacity (H-ORAC), lipophilic oxygen radical absorbance capacity (L-ORAC), total phenolics (TP), total radical-trapping antioxidant parameter (TRAP), and Trolox equivalent antioxidant capacity (TEAC). Asthenozoospermia was defined according to the criteria published in the fifth edition of the World Health Organization laboratory manual for the examination and processing of human semen. MAIN RESULTS AND THE ROLE OF CHANCE No significant association was observed between the DTAC indices and the odds of asthenozoospermia after multivariable adjustment (T3 vs T1, odds ratio (OR) = 0.99, 95% CI: 0.73-1.33 for FRAP; OR = 1.05, 95% CI: 0.77-1.42 for T-ORAC; OR = 0.88, 95% CI: 0.65-1.18 for H-ORAC; OR = 0.98, 95% CI: 0.71-1.34 for L-ORAC; OR = 1.03, 95% CI: 0.76-1.39 for TP; OR = 1.18, 95% CI: 0.87-1.59 for TRAP; and OR = 1.15, 95% CI: 0.85-1.55 for TEAC). Both additive and multiplicative interaction analyses suggested that smoking might modify the association of T-ORAC with the odds of developing asthenozoospermia (relative excess risk due to interaction = 0.45, 95% CI: 0.07-0.83, attributable proportion due to interaction = 0.46, 95% CI: 0.07-0.84 for additive interaction; P = 0.033 for multiplicative interaction). LIMITATIONS, REASONS FOR CAUTION Recall bias and protopathic bias were inevitable in this retrospective case-control study. The estimation accuracy of the DTAC indices may have also affected the findings. WIDER IMPLICATIONS OF THE FINDINGS To the best of our knowledge, this is the first study to specifically investigate whether an association exists between DTAC and the odds of developing asthenozoospermia. Although no significant association was found, this study provides novel information pertaining to the fields of nutrition and human reproduction. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the JieBangGuaShuai Project of Liaoning Province (2021JH1/10400050), the Shengjing Hospital Clinical Research Project (M0071), and the Outstanding Scientific Fund of Shengjing Hospital (M1150). All authors have no competing interests to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Donghui Huang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Liaoning, China
| | - Yixiao Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaobin Wang
- Center for Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center for Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xu Leng
- Center for Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Du
- Center for Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qijun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Liaoning, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Bochen Pan
- Center for Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Liaoning, China
| |
Collapse
|
40
|
Ofosu J, Nartey MA, Mo X, Ye J, Zhang Y, Zeng C, Zhang M, Fang Y, Zhou G. Ram sperm cryopreservation disrupts metabolism of unsaturated fatty acids. Theriogenology 2023; 204:8-17. [PMID: 37030173 DOI: 10.1016/j.theriogenology.2023.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023]
Abstract
In ram sperm, metabolites are important components of the plasma membrane, energy metabolism cycle, and precursors for other membrane lipids, and they may have important roles in maintaining plasma membrane integrity, energy metabolism, and regulation of cryotolerance. In this study, the ejaculates from 6 Dorper rams were pooled and sperm were systematically investigated by metabolomics at various steps of cryopreservation (37 °C, fresh [F]; from 37 to 4 °C, cooling [C]; and from 4 to -196 to 37 °C, frozen-thawed [FT]) to identify differential metabolites (DM). There were 310 metabolites identified, of which 86 were considered DMs. Regarding the DMs, there were 23 (0 up and 23 down), 25 (12 up and 13 down), and 38 (7 up and 31 down) identified during cooling (C vs F), freezing (FT vs C), and cryopreservation (FT vs F), respectively. Furthermore, some key polyunsaturated fatty acids (FAs), particularly, linoleic acid (LA), docosahexaenoic acid (DHA), and arachidonic acid (AA) were down-regulated during cooling and cryopreservation. Significant DMs were enriched in several metabolic pathways including biosynthesis of unsaturated FAs, LA metabolism, mammalian target of rapamycin (mTOR), forkhead box transcription factors (FoxO), adenosine monophosphate-activated protein kinase (AMPK), phosphatidylinositol 3-kinase/protein kinase B (PI3K-Akt) signaling pathways, regulation of lipolysis in adipocytes, and FA biosynthesis. This was apparently the first report to compare metabolomics profiles of ram sperm during cryopreservation and provided new knowledge to improve this process.
Collapse
Affiliation(s)
- Jones Ofosu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Moses Addo Nartey
- Department of Animal and Health Science, University of Energy and Natural Resources, Ghana
| | - Xianhong Mo
- College of Chemistry and Life Science, Chifeng University, Chifeng, 024000, PR China
| | - Jiangfeng Ye
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yan Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Changjun Zeng
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Ming Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yi Fang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China.
| | - Guangbin Zhou
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, PR China.
| |
Collapse
|
41
|
Harmak H, Redouane S, Charoute H, Aniq Filali O, Barakat A, Rouba H. In silico exploration and molecular dynamics of deleterious SNPs on the human TERF1 protein triggering male infertility. J Biomol Struct Dyn 2023; 41:14665-14688. [PMID: 36995171 DOI: 10.1080/07391102.2023.2193995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/18/2023] [Indexed: 03/31/2023]
Abstract
By limiting chromosome erosion and end-to-end fusions, telomere integrity is critical for chromosome stability and cell survival. During mitotic cycles or due to environmental stresses, telomeres become progressively shorter and dysfunctional, thus triggering cellular senescence, genomic instability and cell death. To avoid such consequences, the telomerase action, as well as the Shelterin and CST complexes, assure the telomere's protection. Telomeric repeat binding factor 1 (TERF1), which is one of the primary components of the Shelterin complex, binds directly to the telomere and controls its length and function by regulating the telomerase activity. Several reports about TERF1 gene variations have been associated with different diseases, and some of them have linked these variations to male infertility. Hence, this paper can be advantageous to investigate the association between the missense variants of the TERF1 gene and the susceptibility to male infertility. The stepwise prediction of SNPs pathogenicity followed in this study was based on stability and conservation analysis, post-translational modification, secondary structure, functional interaction prediction, binding energy evaluation and finally molecular dynamic simulation. Prediction matching among the tools revealed that out of 18 SNPs, only four (rs1486407144, rs1259659354, rs1257022048 and rs1320180267) were predicted as the most damaging and highly deleterious SNPs affecting the TERF1 protein and its molecular dynamics when interacting with the TERB1 protein by influencing the function, structural stability, flexibility and compaction of the overall complex. Interestingly, these polymorphisms should be considered during genetic screening so they can be used effectively as genetic biomarkers for male infertility diagnosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Houda Harmak
- Laboratory of Genomics and Human Genetics, 1, Place Louis Pasteur, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratory of Physiopathology, Molecular Genetics and Biotechnology, Department of Biology, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Salaheddine Redouane
- Laboratory of Genomics and Human Genetics, 1, Place Louis Pasteur, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hicham Charoute
- Research Unit of Epidemiology, Biostatistics and Bioinformatics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Ouafaa Aniq Filali
- Laboratory of Physiopathology, Molecular Genetics and Biotechnology, Department of Biology, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Abdelhamid Barakat
- Laboratory of Genomics and Human Genetics, 1, Place Louis Pasteur, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hassan Rouba
- Laboratory of Genomics and Human Genetics, 1, Place Louis Pasteur, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
42
|
Dal Y, Nazıroğlu M, Özkaya MO. Low molecular weight heparin treatment reduced apoptosis and oxidative cytotoxicity in the thrombocytes of patients with recurrent pregnancy loss and thrombophilia: Involvements of TRPM2 and TRPV1 channels. J Obstet Gynaecol Res 2023; 49:1355-1365. [PMID: 36807656 DOI: 10.1111/jog.15612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/01/2023] [Indexed: 02/20/2023]
Abstract
AIM Recurrent pregnancy loss (RPL) is known to be associated with increased thrombophilia and oxidative toxicity. However, the mechanism of thrombophilia apoptosis and oxidative toxicity is still unclear. In addition, the treatment of heparin induced regulator roles on intracellular free Ca2+ ([Ca2+ ]i ) and cytosolic reactive oxygen species (cytROS) concentrations in several diseases. TRPM2 and TRPV1 channels are activated by different stimuli, including oxidative toxicity. The aim of this study was to investigate the effects of low molecular weight heparin (LMWH) via modulation of TRPM2 and TRPV1 on calcium signaling, oxidative toxicity, and apoptosis in the thrombocytes of RPL patients. STUDY DESIGN Thrombocyte and plasma samples collected from 10 patients with RPL and 10 healthy controls were used in the current study. MAIN FINDINGS The [Ca2+ ]i concentration, cytROS (DCFH-DA), mitochondrial membrane potential (JC-1), apoptosis, caspase-3, and caspase-9 levels were high in the plasma and thrombocytes of RPL patients, although they were diminished by the treatments of LMWH, TRPM2 (N-(p-amylcinnamoyl)anthranilic acid) and TRPV1 (capsazepine) channel blockers. CONCLUSIONS The current study results suggest that the treatment of LMWH is useful against apoptotic cell death and oxidative toxicity in the thrombocytes of patients with RPL, which seem to be dependent on increased levels of [Ca2+ ]i concentration via the activation of TRPM2 and TRPV1.
Collapse
Affiliation(s)
- Yusuf Dal
- Department of Obstetrics and Gynecology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey.,Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mehmet Okan Özkaya
- Department of Obstetrics and Gynecology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
43
|
Mauchart P, Vass RA, Nagy B, Sulyok E, Bódis J, Kovács K. Oxidative Stress in Assisted Reproductive Techniques, with a Focus on an Underestimated Risk Factor. Curr Issues Mol Biol 2023; 45:1272-1286. [PMID: 36826028 PMCID: PMC9954903 DOI: 10.3390/cimb45020083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Based on current findings, the presence of oxidative stress has a significant impact on the quality of gametes and embryos when performing assisted reproductive techniques (ART). Unfortunately, in vitro manipulation of these cells exposes them to a higher level of reactive oxygen species (ROS). The primary goal of this review is to provide a comprehensive overview of the development of oxidative stress in female and male reproductive systems, as well as in the case of the pre-implantation embryo and its environment. This review also focuses on the origins of ROS and the mechanisms of oxidative stress-induced damage during ART procedures. A well-known but underestimated hazard, light exposure-related photo-oxidation, is particularly concerning. The effect of oxidative stress on ART outcomes, as well as the various strategies for preventing it, are also discussed. We emphasize the role and significance of antioxidants and light protection including forms, functions, and mechanisms in the development of gametes and embryos in vivo and in vitro.
Collapse
Affiliation(s)
- Péter Mauchart
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
- Correspondence:
| | - Réka Anna Vass
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Bernadett Nagy
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Endre Sulyok
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Faculty of Health Sciences, Doctoral School of Health Sciences, University of Pécs, 7621 Pécs, Hungary
| | - József Bódis
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
- Faculty of Health Sciences, Doctoral School of Health Sciences, University of Pécs, 7621 Pécs, Hungary
| | - Kálmán Kovács
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| |
Collapse
|
44
|
Balló A, Busznyákné Székvári K, Czétány P, Márk L, Török A, Szántó Á, Máté G. Estrogenic and Non-Estrogenic Disruptor Effect of Zearalenone on Male Reproduction: A Review. Int J Mol Sci 2023; 24:ijms24021578. [PMID: 36675103 PMCID: PMC9862602 DOI: 10.3390/ijms24021578] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
According to some estimates, at least 70% of feedstuffs and finished feeds are contaminated with one or more mycotoxins and, due to its significant prevalence, both animals and humans are highly likely to be exposed to these toxins. In addition to health risks, they also cause economic issues. From a healthcare point of view, zearalenone (ZEA) and its derivatives have been shown to exert many negative effects. Specifically, ZEA has hepatotoxicity, immunotoxicity, genotoxicity, carcinogenicity, intestinal toxicity, reproductive toxicity and endocrine disruption effects. Of these effects, male reproductive deterioration and processes that lead to this have been reviewed in this study. Papers are reviewed that demonstrate estrogenic effects of ZEA due to its analogy to estradiol and how these effects may influence male reproductive cells such as spermatozoa, Sertoli cells and Leydig cells. Data that employ epigenetic effects of ZEA are also discussed. We discuss literature data demonstrating that reactive oxygen species formation in ZEA-exposed cells plays a crucial role in diminished spermatogenesis; reduced sperm motility, viability and mitochondrial membrane potential; altered intracellular antioxidant enzyme activities; and increased rates of apoptosis and DNA fragmentation; thereby resulting in reduced pregnancy.
Collapse
Affiliation(s)
- András Balló
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | | | - Péter Czétány
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - László Márk
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Attila Török
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Árpád Szántó
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Gábor Máté
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
45
|
Naderi N, Nejad ZD, Tavalaee M, Nasr-Esfahani MH. The effect of alpha-lipoic acid on sperm functions in rodent models for male infertility: A systematic review. Life Sci 2023; 323:121383. [PMID: 36640903 DOI: 10.1016/j.lfs.2023.121383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023]
Abstract
In this systematic review, we assessed different studies to evaluate the protective effect of alpha-lipoic acid (ALA), as a multifaceted antioxidant, on sperm functions in rodent models. Four databases were searched to find papers reporting the effect of ALA treatment on animal models of male infertility. Up to December 2022, 11,787 articles were identified to explain the ALA protective effects. The included studies were evaluated for eligibility and risk of bias (CRD42022341370). Finally, we identified 23 studies that explain the effect of ALA on sperm functions in rodents. Among them, 15 studies indicated that ALA could restore sperm parameters. Six studies showed a significant reduction in sperm DNA damage by ALA treatment. Seventeen papers displayed the ALA antioxidant ability, and four studies indicated the ALA anti-inflammatory effect. Besides, thirteen studies displayed that ALA could modulate androgenesis. Also, eighteen studies revealed that ALA restored the testicular architecture to normal, and was also effective in restoring reproductive performance in two included studies. This systematic review provided cogent evidence for the protective effect of ALA in rodent models for male infertility by re-establishing spermatogenesis and steroidogenesis and maintaining redox and immune systems homeostasis.
Collapse
Affiliation(s)
- Nushin Naderi
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Zahra Darmishon Nejad
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Isfahan Fertility and Infertility Center, Isfahan, Iran.
| |
Collapse
|
46
|
Sangild J, Faldborg A, Schousboe C, Fedder MDK, Christensen LP, Lausdahl AK, Arnspang EC, Gregersen S, Jakobsen HB, Knudsen UB, Fedder J. Effects of Chokeberries ( Aronia spp.) on Cytoprotective and Cardiometabolic Markers and Semen Quality in 109 Mildly Hypercholesterolemic Danish Men: A Prospective, Double-Blinded, Randomized, Crossover Trial. J Clin Med 2023; 12:jcm12010373. [PMID: 36615174 PMCID: PMC9821700 DOI: 10.3390/jcm12010373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Chokeberries (Aronia spp.) are known to exhibit both direct and indirect antioxidant properties and have been associated with beneficial effects on human health, including cardiovascular risk factors (inflammation, serum lipids, sugars, blood pressure), oxidative stress, and semen quality. This prospective, double-blinded, randomized, crossover clinical trial was conducted to elucidate the effects of Aronia supplementation on these health targets in mildly hypercholesterolemic men. Methods: The standardized Aronia supplementation comprised three wild Aronia spp. (A. arbutifolia, A prunifolia and A. melanocarpa) and the Aronia hybrid × Sorbaronia mitschurinii (standardized to 150 mg anthocyanins daily). Participants (n = 109) were healthy men with respect to all outcome targets except for the total cholesterol level (5.0−7.0 mM). Participants were randomized to supplementation with either Aronia or placebo for 90 days, followed by a wash-out period and lastly the complementary supplementation. Effects on the health parameters were compared among both the whole group of men and in subgroups according to age, body mass index (BMI), lifestyle, dietary habits, and serum glutathione levels at baseline. The study is registered in ClinicalTrials.gov.: NCT03405753. Results: Glutathione levels were significantly improved after 90 days intake of Aronia supplementation compared to placebo in the subgroup of men with a low level of glutathione at baseline (p = 0.038) and a high coffee intake (p = 0.045). A significant decrease in levels of sperm DNA fragmentation and an increase in the percentage of motile sperm were observed in men aged >40 and in men with BMI > 25. Further, these parameters were significantly improved in the dietary subgroup defined by a high level of coffee intake. Total cholesterol and low-density lipoprotein-cholesterol levels decreased significantly in men <40 years after Aronia supplementation. No statistically significant effects were observed regarding blood pressure, markers of blood sugar regulation, hemoglobin A1c, superoxide dismutase, catalase, isoprostane levels, high sensitivity C reactive protein, or other semen parameters. Conclusions: This study demonstrated a significant increase in glutathione levels and improvement of cytoprotective targets following Aronia supplementation in specific subgroups of men >40 years of age and BMI > 25 but did not demonstrate a significant effect in the overall analysis. The observed concurrent increase in glutathione levels and improvement of cytoprotective targets following Aronia supplementation in subgroups of men, suggests that the endogenous phase II antioxidant glutathione is involved in the modulation of the observed cytoprotective effects. This study is a good foundation for further investigation of these cytoprotective effects in groups with oxidative stress in a dose−response study.
Collapse
Affiliation(s)
- Julie Sangild
- Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus, Denmark
| | - Anne Faldborg
- Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus, Denmark
| | - Cecilie Schousboe
- Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus, Denmark
| | | | - Lars Porskjær Christensen
- Department of Physics, Chemistry and Pharmacy, Faculty of Science, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Astrid Komal Lausdahl
- Department of Green Technology, Faculty of Engineering, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Eva Christensen Arnspang
- Department of Green Technology, Faculty of Engineering, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Søren Gregersen
- Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus, Denmark
- Steno Diabetes Center Aarhus, DK-8200 Aarhus, Denmark
| | | | - Ulla Breth Knudsen
- Department of Clinical Medicine, Aarhus University, DK-8200 Aarhus, Denmark
- Department of Obstetrics and Gynecology, Fertility Clinic, Horsens Regional Hospital, DK-8700 Horsens, Denmark
| | - Jens Fedder
- Centre of Andrology, Fertility Clinic, Department D, Odense University Hospital, DK-5000 Odense, Denmark
- Department of Clinical Medicine, University of Southern Denmark, DK-5000 Odense, Denmark
- Correspondence:
| |
Collapse
|
47
|
Moustakli E, Zikopoulos A, Sakaloglou P, Bouba I, Sofikitis N, Georgiou I. Functional association between telomeres, oxidation and mitochondria. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1107215. [PMID: 36890798 PMCID: PMC9986632 DOI: 10.3389/frph.2023.1107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Prior research has substantiated the vital role of telomeres in human fertility. Telomeres are prerequisites for maintaining the integrity of chromosomes by preventing the loss of genetic material following replication events. Little is known about the association between sperm telomere length and mitochondrial capacity involving its structure and functions. Mitochondria are structurally and functionally distinct organelles that are located on the spermatozoon's midpiece. Mitochondria produce adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS), which is necessary for sperm motility and generate reactive oxygen species (ROS). While a moderate concentration of ROS is critical for egg-sperm fusion, and fertilization, excessive ROS generation is primarily related to telomere shortening, sperm DNA fragmentation, and alterations in the methylation pattern leading to male infertility. This review aims to highlight the functional connection between mitochondria biogenesis and telomere length in male infertility, as mitochondrial lesions have a damaging impact on telomere length, leading both to telomere lengthening and reprogramming of mitochondrial biosynthesis. Furthermore, it aims to shed light on how both inositol and antioxidants can positively affect male fertility.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | | | - Prodromos Sakaloglou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Ioanna Bouba
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Nikolaos Sofikitis
- Department of Urology, Ioannina University School of Medicine, Ioannina, Greece
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
48
|
Agarwal A, Cannarella R, Saleh R, Harraz AM, Kandil H, Salvio G, Boitrelle F, Kuroda S, Farkouh A, Rambhatla A, Zini A, Colpi G, Gül M, Kavoussi P, Hamoda TAAAM, Ko E, Calik G, Toprak T, Pinggera GM, Park HJ, Ghayda RA, Minhas S, Busetto GM, Bakırcıoğlu ME, Kadioglu A, Chung E, Russo GI, Calogero AE, Ambar RF, Jayasena CN, Shah R. Impact of Antioxidant Therapy on Natural Pregnancy Outcomes and Semen Parameters in Infertile Men: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. World J Mens Health 2023; 41:14-48. [PMID: 36102104 PMCID: PMC9826914 DOI: 10.5534/wjmh.220067] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/24/2022] [Accepted: 05/12/2022] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Seminal oxidative stress (OS) is a recognized factor potentially associated with male infertility, but the efficacy of antioxidant (AOX) therapy is controversial and there is no consensus on its utility. Primary outcomes of this study were to investigate the effect of AOX on spontaneous clinical pregnancy, live birth and miscarriage rates in male infertile patients. Secondary outcomes were conventional semen parameters, sperm DNA fragmentation (SDF) and seminal OS. MATERIALS AND METHODS Literature search was performed using Scopus, PubMed, Ovid, Embase, and Cochrane databases. Only randomized controlled trials (RCTs) were included and the meta-analysis was conducted according to PRISMA guidelines. RESULTS We assessed for eligibility 1,307 abstracts, and 45 RCTs were finally included, for a total of 4,332 infertile patients. We found a significantly higher pregnancy rate in patients treated with AOX compared to placebo-treated or untreated controls, without significant inter-study heterogeneity. No effects on live-birth or miscarriage rates were observed in four studies. A significantly higher sperm concentration, sperm progressive motility, sperm total motility, and normal sperm morphology was found in patients compared to controls. We found no effect on SDF in analysis of three eligible studies. Seminal levels of total antioxidant capacity were significantly higher, while seminal malondialdehyde acid was significantly lower in patients than controls. These results did not change after exclusion of studies performed following varicocele repair. CONCLUSIONS The present analysis upgrades the level of evidence favoring a recommendation for using AOX in male infertility to improve the spontaneous pregnancy rate and the conventional sperm parameters. The failure to demonstrate an increase in live-birth rate, despite an increase in pregnancy rates, is due to the very few RCTs specifically assessing the impact of AOX on live-birth rate. Therefore, further RCTs assessing the impact of AOX on live-birth rate and miscarriage rate, and SDF will be helpful.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Global Andrology Forum, Moreland Hills, OH, USA
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt.,Ajyal IVF Center, Ajyal Hospital, Sohag, Egypt
| | - Ahmed M. Harraz
- Department of Urology, Mansoura University Urology and Nephrology Center, Mansoura, Egypt.,Department of Surgery, Urology Unit, Farwaniya Hospital, Farwaniya, Kuwait.,Department of Urology, Sabah Al Ahmad Urology Center, Kuwait City, Kuwait
| | | | - Gianmaria Salvio
- Department of Endocrinology, Polytechnic University of Marche, Ancona, Italy
| | - Florence Boitrelle
- Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, Poissy, France.,Department of Biology, Reproduction, Epigenetics, Environment and Development, Pari. Saclay University, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | - Shinnosuke Kuroda
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ala’a Farkouh
- American Center for Reproductive Medicine, Global Andrology Forum, Moreland Hills, OH, USA
| | - Amarnath Rambhatla
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System, Detroit, MI, USA
| | - Armand Zini
- Division of Urology, Department of Surgery, McGill University, Montreal, QC, Canada
| | | | - Murat Gül
- Department of Urology, Selcuk University School of Medicine, Konya, Turkey
| | - Parviz Kavoussi
- Austin Fertility & Reproductive Medicine/Westlake IVF, Austin, TX, USA
| | - Taha Abo-Almagd Abdel-Meguid Hamoda
- Department of Urology, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Urology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Edmund Ko
- Department of Urology, Loma Linda University Health, Loma Linda, CA, USA
| | - Gokhan Calik
- Department of Urology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Tuncay Toprak
- Department of Urology, Fatih Sultan Mehmet Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | | | - Hyun Jun Park
- Department of Urology, Pusan National University School of Medicine, Busan, Korea.,Medical Research Institute of Pusan National University Hospital, Busan, Korea
| | - Ramy Abou Ghayda
- Urology Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, USA
| | - Suks Minhas
- Division of Surgery, Department of Surgery and Cancer, Imperial College, London, UK
| | - Gian Maria Busetto
- Department of Urology and Organ Transplantation, University of Foggia, Ospedali Riuniti of Foggia, Foggia, Italy
| | | | - Ates Kadioglu
- Section of Andrology, Department of Urology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Eric Chung
- Department of Urology, Princess Alexandra Hospital, University of Queensland, Brisbane, Australia
| | | | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rafael F. Ambar
- Department of Urology, Centro Universitario em Saude do ABC, Santo André, Brazil.,Andrology Group at Ideia Fertil Institute of Human Reproduction, Santo André, Brazil
| | - Channa N. Jayasena
- Department of Reproductive Endocrinology and Andrology, Imperial College London, London, UK.,Department of Andrology, Hammersmith & St. Mary’s Hospitals, London, UK
| | - Rupin Shah
- Division of Andrology, Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
| |
Collapse
|
49
|
Hu X, Lin R, Zhang C, Pian Y, Luo H, Zhou L, Shao J, Ren X. Nano-selenium Alleviates Cadmium-Induced Mouse Leydig Cell Injury, via the Inhibition of Reactive Oxygen Species and the Restoration of Autophagic Flux. Reprod Sci 2022; 30:1808-1822. [PMID: 36509961 DOI: 10.1007/s43032-022-01146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Cadmium (Cd) is a well-known environmental pollutant that can contribute to male reproductive toxicity through oxidative stress. Nano-selenium (Nano-se) is an active single body of selenium with strong antioxidant properties and low toxicity. Some studies have addressed the potential ameliorative effect of Nano-se against Cd-induced testicular toxicity; however, the underlying mechanisms remain to be investigated. This study aimed to explore the protective effect of Nano-se on Cd-induced mouse testicular TM3 cell toxicity by regulating autophagy process. We showed that cadmium exposure to TM3 cells inhibited cell viability and elevated the level of reactive oxygen species (ROS) generation. Morphology observation by transmission electron microscope and the presence of mRFP-GFP-LC3 fluorescence puncta demonstrated that cadmium increased autophagosome formation and accumulation in TM3 cells, resulting in blocking the autophagic flux of TM3 cells. Meanwhile, cadmium remarkably increased the ratio of LC3-II to LC3-I protein expression (2.07 ± 0.31) and the Beclin-1 protein expression (1.97 ± 0.40) in TM3 cells (P < 0.01). Pretreatment with Nano-se significantly reduced Cd-induced TM3 cell toxicity (P < 0.01). Furthermore, Nano-se treatment reversed Cd-induced ROS production and autophagosome accumulation, and autophagy as evidenced by the ratio of LC3-II to LC3-I and Beclin-1 expression. In addition, ROS scavenger, N-acetyl-L-cysteine (NAC) or autophagy inhibitor, 3-methyladenine (3-MA) reversed cadmium-induced ROS generation, autophagosome accumulation, and autophagy-related protein expression levels, which confirmed that cadmium induced TM3 cell injury via ROS signal pathway and blockage of autophagic flux. Collectively, our results reveal that Nano-se attenuates Cd-induced TM3 cell toxicity through the inhibition of ROS production and the amelioration of autophagy disruption.
Collapse
Affiliation(s)
- Xindi Hu
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Rui Lin
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Chaoqin Zhang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Yajing Pian
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Haolong Luo
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Li Zhou
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jihong Shao
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China.,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xiangmei Ren
- Department of Nutrition, School of Public Health, Xuzhou Medical University, No. 209 Tongshan Road, Yunlong Area, Xuzhou, 221004, Jiangsu Province, China. .,Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
50
|
Burke ND, Nixon B, Roman SD, Schjenken JE, Walters JLH, Aitken RJ, Bromfield EG. Male infertility and somatic health - insights into lipid damage as a mechanistic link. Nat Rev Urol 2022; 19:727-750. [PMID: 36100661 DOI: 10.1038/s41585-022-00640-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Over the past decade, mounting evidence has shown an alarming association between male subfertility and poor somatic health, with substantial evidence supporting the increased incidence of oncological disease, cardiovascular disease, metabolic disorders and autoimmune diseases in men who have previously received a subfertility diagnosis. This paradigm is concerning, but might also provide a novel window for a crucial health reform in which the infertile phenotype could serve as an indication of potential pathological conditions. One of the major limiting factors in this association is the poor understanding of the molecular features that link infertility with comorbidities across the life course. Enzymes involved in the lipid oxidation process might provide novel clues to reconcile the mechanistic basis of infertility with incident pathological conditions. Building research capacity in this area is essential to enhance the early detection of disease states and provide crucial information about the disease risk of offspring conceived through assisted reproduction.
Collapse
Affiliation(s)
- Nathan D Burke
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Shaun D Roman
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
- Priority Research Centre for Drug Development, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - John E Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Jessica L H Walters
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia.
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia.
- Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|