1
|
Durairaj J, Follonier OM, Leuzinger K, Alexander LT, Wilhelm M, Pereira J, Hillenbrand CA, Weissbach FH, Schwede T, Hirsch HH. Structural implications of BK polyomavirus sequence variations in the major viral capsid protein Vp1 and large T-antigen: a computational study. mSphere 2024; 9:e0079923. [PMID: 38501831 PMCID: PMC11036806 DOI: 10.1128/msphere.00799-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
BK polyomavirus (BKPyV) is a double-stranded DNA virus causing nephropathy, hemorrhagic cystitis, and urothelial cancer in transplant patients. The BKPyV-encoded capsid protein Vp1 and large T-antigen (LTag) are key targets of neutralizing antibodies and cytotoxic T-cells, respectively. Our single-center data suggested that variability in Vp1 and LTag may contribute to failing BKPyV-specific immune control and impact vaccine design. We, therefore, analyzed all available entries in GenBank (1516 VP1; 742 LTAG) and explored potential structural effects using computational approaches. BKPyV-genotype (gt)1 was found in 71.18% of entries, followed by BKPyV-gt4 (19.26%), BKPyV-gt2 (8.11%), and BKPyV-gt3 (1.45%), but rates differed according to country and specimen type. Vp1-mutations matched a serotype different than the assigned one or were serotype-independent in 43%, 18% affected more than one amino acid. Notable Vp1-mutations altered antibody-binding domains, interactions with sialic acid receptors, or were predicted to change conformation. LTag-sequences were more conserved, with only 16 mutations detectable in more than one entry and without significant effects on LTag-structure or interaction domains. However, LTag changes were predicted to affect HLA-class I presentation of immunodominant 9mers to cytotoxic T-cells. These global data strengthen single center observations and specifically our earlier findings revealing mutant 9mer epitopes conferring immune escape from HLA-I cytotoxic T cells. We conclude that variability of BKPyV-Vp1 and LTag may have important implications for diagnostic assays assessing BKPyV-specific immune control and for vaccine design. IMPORTANCE Type and rate of amino acid variations in BKPyV may provide important insights into BKPyV diversity in human populations and an important step toward defining determinants of BKPyV-specific immunity needed to protect vulnerable patients from BKPyV diseases. Our analysis of BKPyV sequences obtained from human specimens reveals an unexpectedly high genetic variability for this double-stranded DNA virus that strongly relies on host cell DNA replication machinery with its proof reading and error correction mechanisms. BKPyV variability and immune escape should be taken into account when designing further approaches to antivirals, monoclonal antibodies, and vaccines for patients at risk of BKPyV diseases.
Collapse
Affiliation(s)
- Janani Durairaj
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Océane M. Follonier
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
| | - Karoline Leuzinger
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
- Clinical Virology, Laboratory Medicine, Department Theragnostic, University Hospital Basel, Basel, Switzerland
| | - Leila T. Alexander
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Maud Wilhelm
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
| | - Joana Pereira
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Caroline A. Hillenbrand
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
| | - Fabian H. Weissbach
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
| | - Torsten Schwede
- Biozentrum, University of Basel, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Hans H. Hirsch
- Transplantation & Clinical Virology, Department of Biomedicine, Medical Faculty, University of Basel, Basel, Switzerland
- Infectious Diseases & Hospital Epidemiology, Department Acute Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
2
|
Prezioso C, Pietropaolo V, Moens U, Ciotti M. JC polyomavirus: a short review of its biology, its association with progressive multifocal leukoencephalopathy, and the diagnostic value of different methods to manifest its activity or presence. Expert Rev Mol Diagn 2023; 23:143-157. [PMID: 36786077 DOI: 10.1080/14737159.2023.2179394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
INTRODUCTION JC polyomavirus is the causative agent of progressive multifocal leukoencephalopathy (PML), a demyelinating disease resulting from the lytic infection of oligodendrocytes that may develop in immunosuppressed individuals: HIV1 infected or individuals under immunosuppressive therapies. Understanding the biology of JCPyV is necessary for a proper patient management, the development of diagnostic tests, and risk stratification. AREAS COVERED The review covers different areas of expertise including the genomic characterization of JCPyV strains detected in different body compartments (urine, plasma, and cerebrospinal fluid) of PML patients, viral mutations, molecular diagnostics, viral miRNAs, and disease. EXPERT OPINION The implementation of molecular biology techniques improved our understanding of JCPyV biology. Deep sequencing analysis of viral genomes revealed the presence of viral quasispecies in the cerebrospinal fluid of PML patients characterized by noncoding control region rearrangements and VP1 mutations. These neurotropic JCPyV variants present enhanced replication and an altered cell tropism that contribute to PML development. Monitoring these variants may be relevant for the identification of patients at risk of PML. Multiplex realtime PCR targeting both the LTAg and the archetype NCCR could be used to identify them. Failure to amplify NCCR should indicate the presence of a JCPyV prototype speeding up the diagnostic process.
Collapse
Affiliation(s)
- Carla Prezioso
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome Rome, Italy.,IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies Rome, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome Rome, Italy
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway Tromsø, Norway
| | - Marco Ciotti
- Virology Unit, Polyclinic Tor Vergata Rome, Italy
| |
Collapse
|
3
|
Zhang Y, Yang J, Liu P, Zhang RJ, Li JD, Bi YH, Li Y. Regulatory role of ncRNAs in pulmonary epithelial and endothelial barriers: Molecular therapy clues of influenza-induced acute lung injury. Pharmacol Res 2022; 185:106509. [DOI: 10.1016/j.phrs.2022.106509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
|
4
|
Stincarelli MA, Baj A, Guidotti B, Spezia PG, Novazzi F, Lucenteforte E, Tillati S, Focosi D, Maggi F, Giannecchini S. Plasma Torquetenovirus (TTV) microRNAs and severity of COVID-19. Virol J 2022; 19:79. [PMID: 35562762 PMCID: PMC9099037 DOI: 10.1186/s12985-022-01812-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/27/2022] [Indexed: 12/03/2022] Open
Abstract
Background Torquetenovirus (TTV), a widespread anellovirus recognized as the main component of the healthy human virome, displays viremia that is highly susceptible to variations in immune competence. TTV possesses microRNA (miRNA)-coding sequences that might be involved in viral immune evasion. Among TTV-encoded miRNAs, miRNA t1a, t3b, and tth8 have been found in biological fluids. Here, the presence of TTV DNA and TTV miRNAs in the plasma of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected subjects was investigated to monitor the possible association with coronavirus disease 2019 (COVID-19) severity. Methods Detection of TTV DNA and miRNA t1a, t3b, and tth8 was investigated in plasma samples of 56 SARS-CoV-2-infected subjects with a spectrum of different COVID-19 outcomes. TTV DNA and TTV miRNAs were assessed with a universal single step real-time TaqMan PCR assay and miRNA quantitative RT-PCR miRNA assay, respectively. Results The TTV DNA prevalence was 59%, whereas at least one TTV miRNA was found in 94% of the patients tested. miRNA tth8 was detected in 91% of subjects, followed by miRNAs t3b (64%) and miRNAt1a (30%). Remarkably, although TTV DNA was unrelated to COVID-19 severity, miRNA tth8 was significantly associated with the degree of disease (adjusted incidence rate ratio (IRR) 2.04, 95% CI 1.14–3.63, for the subjects in the high severity group compared to those in the low severity group). Conclusions Our findings encourage further investigation to understand the potential role of TTV miRNAs in the different outcomes of COVID-19 at early and late stages.
Collapse
Affiliation(s)
- Maria Alfreda Stincarelli
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, 50134, Florence, Italy
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, 21100, Varese, Italy
| | - Bernardo Guidotti
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, 50134, Florence, Italy
| | | | - Federica Novazzi
- Department of Medicine and Surgery, University of Insubria, 21100, Varese, Italy
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine, University of Pisa, 56100, Pisa, Italy
| | - Silvia Tillati
- Department of Clinical and Experimental Medicine, University of Pisa, 56100, Pisa, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124, Pisa, Italy
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, 21100, Varese, Italy
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, 50134, Florence, Italy.
| |
Collapse
|
5
|
Abstract
Polyomaviruses are a family of non-enveloped DNA viruses with wide host ranges. Human polyomaviruses typically cause asymptomatic infection and establish persistence but can be reactivated under certain conditions and cause severe diseases. Most well studied polyomaviruses encode a viral miRNA that regulates viral replication and pathogenesis by targeting both viral early genes and host genes. In this review, we summarize the current knowledge of polyomavirus miRNAs involved in virus infection. We review in detail the regulation of polyomavirus miRNA expression, as well as the role polyomavirus miRNAs play in viral pathogenesis by controlling both host and viral gene expression. An overview of the potential application of polyomavirus miRNA as a marker for the progression of polyomaviruses associated diseases and polyomaviruses reactivation is also included.
Collapse
Affiliation(s)
- Wei Zou
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Michael J Imperiale
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Mamana AC, Stincarelli M, Sarmento DJDS, Mendes Batista A, Tozetto-Mendoza TR, Gallottini M, De Abreu Pestana JOM, Braz-Silva PH, Giannecchini S. Detection of polyomavirus microRNA-5p expression in saliva shortly after kidney transplantation. J Oral Microbiol 2021; 13:1898838. [PMID: 33796229 PMCID: PMC7971308 DOI: 10.1080/20002297.2021.1898838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background: MicroRNAs (miRNAs) of polyomavirus (PyV) are present in several biological fluids and are suggested to be relevant viral factors for monitoring its persistence. Aim: To evaluate the effect of an immunosuppressive regimen on the status of PyV-miRNA-5p in the oral cavity. Materials and Methods: The JCPyV, BKPyV, MCPyV miRNA-5p were investigated in paired saliva and plasma samples obtained from 23 patients before and shortly after renal-transplantation by using real-time RT-PCR. Results: Overall, within a short-time after transplantation, patients exhibited decreased numbers of leukocyte and lymphocyte as well as low levels of creatinine. During the clinical management of the patients, a significant amount of saliva samples were positive for JCPyV and BKPyV miRNA-5p (range: 26%-91%) compared to paired plasma samples (range: 9%-35%). Among the two polyomaviruses showing positive expression of miRNA-5p, BKPyV presented the highest positivity in saliva (91%) and MCPyV-miRNA-5p was constantly negative in both saliva and plasma samples. Compared to the time before transplantation, a significant reduction in the expression of JCPyV-miRNA-5p was observed in saliva samples obtained after transplantation. Conclusions: Altogether, these data suggest that additional investigations of polyomavirus miRNA-5p in saliva should be performed shortly after renal-transplantation to evaluate the potential role in early viral reactivation.
Collapse
Affiliation(s)
- Ana Carolina Mamana
- Laboratory of Virology, Institute of Tropical Medicine of São Paulo, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Maria Stincarelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Alexandre Mendes Batista
- Laboratory of Virology, Institute of Tropical Medicine of São Paulo, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Tânia Regina Tozetto-Mendoza
- Laboratory of Virology, Institute of Tropical Medicine of São Paulo, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Marina Gallottini
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | - Paulo Henrique Braz-Silva
- Laboratory of Virology, Institute of Tropical Medicine of São Paulo, School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
7
|
Giannecchini S. Evidence of the Mechanism by Which Polyomaviruses Exploit the Extracellular Vesicle Delivery System during Infection. Viruses 2020; 12:v12060585. [PMID: 32471033 PMCID: PMC7354590 DOI: 10.3390/v12060585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence suggests that human viruses can hijack extracellular vesicles (EVs) to deliver proteins, mRNAs, microRNAs (miRNAs) and whole viral particles during viral persistence in the host. Human polyomavirus (PyV) miRNAs, which downregulate large T-antigen expression and target host factors, help the virus escape immune elimination and may have roles in the success of viral persistence/replication and the development of diseases. In this context, several investigations have detected PyV miRNAs in EVs obtained from cell culture supernatants after viral infection, demonstrating the ability of these vesicles to deliver miRNAs to uninfected cells, potentially counteracting new viral infection. Additionally, PyV miRNAs have been identified in EVs derived from the biological fluids of clinical samples obtained from patients with or at risk of severe PyV-associated diseases and from asymptomatic control healthy subjects. Interestingly, PyV miRNAs were found to be circulating in blood, urine, cerebrospinal fluid, and saliva samples from patients despite their PyV DNA status. Recently, the association between EVs and PyV viral particles was reported, demonstrating the ability of PyV viral particles to enter the cell without natural receptor-mediated entry and evade antibody-mediated neutralization or to be neutralized at a step different from that of the neutralization of naked whole viral particles. All these data point toward a potential role of the association between PyVs with EVs in viral persistence, suggesting that further work to define the implication of this interaction in viral reactivation is warranted.
Collapse
Affiliation(s)
- Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, I-50134 Florence, Italy
| |
Collapse
|
8
|
Scribano S, Guerrini M, Arvia R, Guasti D, Nardini P, Romagnoli P, Giannecchini S. Archetype JC polyomavirus DNA associated with extracellular vesicles circulates in human plasma samples. J Clin Virol 2020; 128:104435. [PMID: 32442760 DOI: 10.1016/j.jcv.2020.104435] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/21/2020] [Accepted: 05/10/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND JC polyomavirus (JCPyV) establishes a stable and successful interaction with the host, causing progressive multifocal leukoencephalopathy (PML) in immunocompromised subjects. Recently, it has been reported that JCPyV, like other viruses, may exploit extracellular vesicles (EV) in cell cultures. OBJECTIVE To investigate the presence of JCPyV-DNA in EV circulating in human plasma obtained from patients at risk for PML. STUDY DESIGN JCPyV-DNA status was studied in EV obtained from 170 plasma samples collected from 120 HIV positive patients and 50 healthy donors. EV were extracted from plasma and characterized by Nanoparticle tracking analysis, by western blot for presence of tetraspanin CD63, CD81, annexin II, cythocrome C protein and, finally, by immunoelectron microscopy (IEM). Presence and quantitation of JCPyV-DNA were assessed with Multiplex real-time TaqMan PCR assay. RESULTS The JCPyV-DNA plasma prevalence in 120 HIV positive patients and 50 healthy donors was 28% and 4%, respectively. The investigation performed on well-characterized plasma EV reported JCPyV-DNA detection in 15 out of 36 (42%) of the viremic samples (14 were from HIV patients and 1 from healthy people) at a mean level of 23.5 copies/mL. The examination of EV selected samples reported the percentage of JCPyV-DNA in EV of 5.4% of the total viral load. Moreover, IEM reported the presence of JCPyV Vp1 antigen in plasma-derived EV. CONCLUSION The potential role of EV-associated JCPyV-DNA open new avenues and mechanistic insights into the molecular strategies adopted by this polyomavirus to persist in the host and spread to the central nervous system.
Collapse
Affiliation(s)
- Stefano Scribano
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirko Guerrini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Rosaria Arvia
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniele Guasti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paolo Romagnoli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
9
|
O’Hara BA, Morris-Love J, Gee GV, Haley SA, Atwood WJ. JC Virus infected choroid plexus epithelial cells produce extracellular vesicles that infect glial cells independently of the virus attachment receptor. PLoS Pathog 2020; 16:e1008371. [PMID: 32130281 PMCID: PMC7075641 DOI: 10.1371/journal.ppat.1008371] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/16/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
The human polyomavirus, JCPyV, is the causative agent of progressive multifocal leukoencephalopathy (PML) in immunosuppressed and immunomodulated patients. Initial infection with JCPyV is common and the virus establishes a long-term persistent infection in the urogenital system of 50-70% of the human population worldwide. A major gap in the field is that we do not know how the virus traffics from the periphery to the brain to cause disease. Our recent discovery that human choroid plexus epithelial cells are fully susceptible to virus infection together with reports of JCPyV infection of choroid plexus in vivo has led us to hypothesize that the choroid plexus plays a fundamental role in this process. The choroid plexus is known to relay information between the blood and the brain by the release of extracellular vesicles. This is particularly important because human macroglia (oligodendrocytes and astrocytes), the major targets of virus infection in the central nervous system (CNS), do not express the known attachment receptors for the virus and do not bind virus in human tissue sections. In this report we show that JCPyV infected choroid plexus epithelial cells produce extracellular vesicles that contain JCPyV and readily transmit the infection to human glial cells. Transmission of the virus by extracellular vesicles is independent of the known virus attachment receptors and is not neutralized by antisera directed at the virus. We also show that extracellular vesicles containing virus are taken into target glial cells by both clathrin dependent endocytosis and macropinocytosis. Our data support the hypothesis that the choroid plexus plays a fundamental role in the dissemination of virus to brain parenchyma.
Collapse
Affiliation(s)
- Bethany A. O’Hara
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Jenna Morris-Love
- Graduate Program in Pathobiology, Brown University, Providence, Rhode Island, United States of America
| | - Gretchen V. Gee
- MassBiologics, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sheila A. Haley
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Walter J. Atwood
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
10
|
Multiple Signatures of the JC Polyomavirus in Paired Normal and Altered Colorectal Mucosa Indicate a Link with Human Colorectal Cancer, but Not with Cancer Progression. Int J Mol Sci 2019; 20:ijms20235965. [PMID: 31783512 PMCID: PMC6928985 DOI: 10.3390/ijms20235965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
The JC polyomavirus (JCV) has been repeatedly but discordantly detected in healthy colonic mucosa, adenomatous polyps, and colorectal cancer (CRC), and proposed to contribute to oncogenesis. The controversies may derive from differences in JCV targets, patient’s cohorts, and methods. Studies of simultaneous detection, quantification, and characterization of JCV presence/expression in paired samples of normal/altered tissues of the same patient are lacking. Therefore, we simultaneously quantified JCV presence (DNA) and expression (mRNA and protein) of T-antigen (T-Ag), Viral Protein 1 (Vp1), and miR-J1-5p in paired normal/altered tissues of CRC or polyps, and from controls. JCV signatures were found in most samples. They increased in patients, but were higher in normal mucosa than in corresponding polyp or CRC lesions. JCV non-coding control region (NCCR) DNA rearrangements increased in CRC patients, also in normal mucosa, thus before the onset of the lesion. A new ∆98bp NCCR DNA rearrangement was detected. T-Ag levels were higher in normal mucosa than in adenoma and adenocarcinoma lesions, but decreased to levels of controls in established CRC lesions. In CRC, miR-J1-5p expression decreased with CRC progression. Vp1 expression was not detected. The data indicate a JCV link with the disease, but possible JCV contributes to oncogenesis should occur at pre-polyp stages.
Collapse
|
11
|
Hirsch HH, Randhawa PS. BK polyomavirus in solid organ transplantation-Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13528. [PMID: 30859620 DOI: 10.1111/ctr.13528] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
The present AST-IDCOP guidelines update information on BK polyomavirus (BKPyV) infection, replication, and disease, which impact kidney transplantation (KT), but rarely non-kidney solid organ transplantation (SOT). As pretransplant risk factors in KT donors and recipients presently do not translate into clinically validated measures regarding organ allocation, antiviral prophylaxis, or screening, all KT recipients should be screened for BKPyV-DNAemia monthly until month 9, and then every 3 months until 2 years posttransplant. Extended screening after 2 years may be considered in pediatric KT. Stepwise immunosuppression reduction is recommended for KT patients with plasma BKPyV-DNAemia of >1000 copies/mL sustained for 3 weeks or increasing to >10 000 copies/mL reflecting probable and presumptive BKPyV-associated nephropathy, respectively. Reducing immunosuppression is also the primary intervention for biopsy-proven BKPyV-associated nephropathy. Hence, allograft biopsy is not required for treating BKPyV-DNAemic patients with baseline renal function. Despite virological rationales, proper randomized clinical trials are lacking to generally recommend treatment by switching from tacrolimus to cyclosporine-A, from mycophenolate to mTOR inhibitors or leflunomide or by the adjunct use of intravenous immunoglobulins, leflunomide, or cidofovir. Fluoroquinolones are not recommended for prophylaxis or therapy. Retransplantation after allograft loss due to BKPyV nephropathy can be successful if BKPyV-DNAemia is definitively cleared, independent of failed allograft nephrectomy.
Collapse
Affiliation(s)
- Hans H Hirsch
- Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland.,Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Parmjeet S Randhawa
- Division of Transplantation Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Thomas E Starzl Transplantation Institute, Pittsburgh, Pennsylvania
| | | |
Collapse
|
12
|
Wong J, Choi SYC, Liu R, Xu E, Killam J, Gout PW, Wang Y. Potential Therapies for Infectious Diseases Based on Targeting Immune Evasion Mechanisms That Pathogens Have in Common With Cancer Cells. Front Cell Infect Microbiol 2019; 9:25. [PMID: 30809511 PMCID: PMC6379255 DOI: 10.3389/fcimb.2019.00025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Many global infectious diseases are not well-controlled, underlining a critical need for new, more effective therapies. Pathogens and pathogen-infected host cells, like cancer cells, evade immune surveillance via immune evasion mechanisms. The present study indicates that pathogenic bacteria, endoparasites, and virus-infected host cells can have immune evasion mechanisms in common with cancers. These include entry into dormancy and metabolic reprogramming to aerobic glycolysis leading to excessive secretion of lactic acid and immobilization of local host immunity. The latter evasion tactic provides a therapeutic target for cancer, as shown by our recent finding that patient-derived cancer xenografts can be growth-arrested, without major host toxicity, by inhibiting their lactic acid secretion (as mediated by the MCT4 transporter)-with evidence of host immunity restoration. Accordingly, the multiplication of bacteria, endoparasites, and viruses that primarily depend on metabolic reprogramming to aerobic glycolysis for survival may be arrested using cancer treatment strategies that inhibit their lactic acid secretion. Immune evasion mechanisms shared by pathogens and cancer cells likely represent fundamental, evolutionarily-conserved mechanisms that may be particularly critical to their welfare. As such, their targeting may lead to novel therapies for infectious diseases.
Collapse
Affiliation(s)
- Jodi Wong
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Stephen Yiu Chuen Choi
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver, BC, Canada.,Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Rongrong Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Eddie Xu
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver, BC, Canada.,Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - James Killam
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Peter W Gout
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.,Vancouver Prostate Centre, Vancouver, BC, Canada.,Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Li YJ, Wu HH, Liu SH, Tu KH, Lee CC, Hsu HH, Chang MY, Yu KH, Chen W, Tian YC. Polyomavirus BK, BKV microRNA, and urinary neutrophil gelatinase-associated lipocalin can be used as potential biomarkers of lupus nephritis. PLoS One 2019; 14:e0210633. [PMID: 30640964 PMCID: PMC6331123 DOI: 10.1371/journal.pone.0210633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 12/29/2018] [Indexed: 12/22/2022] Open
Abstract
Objective Lupus nephritis (LN) frequently progresses to end-stage renal disease. Finding a biomarker for LN and a predictor for the development of chronic kidney disease (CKD) is important for patients with systemic lupus erythematosus (SLE). Methods Ninety patients with SLE were divided into biopsy-proven LN (n = 54) and no kidney involvement (non-LN) (n = 36) groups and followed up for 54 months. Results Of 36 patients with LN, 3 (5.6%) had class II disease, 3 (5.6%) had class III, 35 (64.8%) had class IV, 10 (18.5%) had class V, and 3 (5.6%) had class VI (advanced sclerosis). Compared to the non-LN group, patients in the LN group had higher autoimmunity evidenced by a higher proportion of low C3 and C4 levels, positive anti-double-stranded DNA antibody levels, and lower estimated glomerular filtration rates (eGFR). Urinary neutrophil gelatinase-associated lipocalin (uNGAL) levels were significantly higher in the LN group (LN vs non-LN, 670 vs 33 ng/mL, respectively). The patients with LN had a higher urinary polyomavirus BK (BKV) load (3.6 vs 3.0 log copies/mL) and a lower urinary BKV miRNA (miR-B1) 5p level (0.29 vs 0.55 log copies/mL, p = 0.025), while there was no significant difference in the level of miR-B1-3p. Urinary miR-B1-5p level but not urinary BKV load was negatively correlated with uNGAL level (r = -0.22, p = 0.004). At the cutoff value of 80 ng/mL, the receiver operating characteristic curve analysis showed that uNGAL level as a predictor of the presence of LN had a high sensitivity (98%) and specificity (100%) (area under the curve [AUC], 0.997; p < 0.001). During the 54-month follow-up period, 14 (7%) patients with LN and none of the non-LN patients developed CKD. Multivariate Cox regression analysis revealed that baseline uNGAL level was the only predictive factor for CKD development, while baseline serum creatinine level and eGFR were not. Conclusion An elevated urinary BKV viral load with a decreased level of miR-B1 implies the presence of LN. In addition, an increased uNGAL level is a good biomarker not only in predicting the presence of LN but also for prediction of CKD development in patients with SLE.
Collapse
Affiliation(s)
- Yi-Jung Li
- Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Hsu Wu
- Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shou-Hsuan Liu
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Kun-Hua Tu
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Chia Lee
- Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Hsiang-Hao Hsu
- Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Yang Chang
- Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuang-Hui Yu
- Department of Rheumatology, Allergy, and Immunology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei Chen
- Department of Nephrology, Xiamen Chang Gung Hospital, Fujian Province, China
| | - Ya-Chung Tian
- Kidney Research Center and Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan, Taiwan
- * E-mail:
| |
Collapse
|
14
|
Liang Y, Xu P, Zou Q, Luo H, Yu W. An epigenetic perspective on tumorigenesis: Loss of cell identity, enhancer switching, and NamiRNA network. Semin Cancer Biol 2018; 57:1-9. [PMID: 30213688 DOI: 10.1016/j.semcancer.2018.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/26/2018] [Accepted: 09/06/2018] [Indexed: 02/09/2023]
Abstract
Various tumorigenic theories have been proposed in the past century, which contribute to the prevention and treatment of cancer clinically. However, the underlying mechanisms of the initiation of cancer, drug resistance, neoplasm relapse, and metastasis are still challenging to be panoramically addressed. Based on the abundant evidence provided by others and us, we postulate that Tumor Initiated by Loss of Cell Identity (LOCI), which is an inevitable initiating event of tumorigenesis. As a result, normal cells are transformed into the cancerous cell. In this process, epigenetic regulatory program, especially NamiRNA (Nuclear activating miRNA)-enhancer-gene activation network, is vital for the cell identity. The disorganization of NamiRNA-enhancer-gene activation network is a causal predisposition to the cell identity loss, and the altered cell identity is stabilized by genetic variations of the NamiRNA-enhancer-gene activation network. Furthermore, the additional genetic or epigenetic abnormities confer those cells to carcinogenic characteristics, such as growth advantage over normal cells, and finally yield cancer. In this review, we literally explain our tumor initiation hypothesis based on the corresponding evidence, which will not only help to refresh our understanding of tumorigenesis but also bring benefits to developing "cell identity reversing" based therapies.
Collapse
Affiliation(s)
- Ying Liang
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Peng Xu
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Qingping Zou
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Huaibing Luo
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Wenqiang Yu
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
15
|
Liang Y, Xu P, Zou Q, Luo H, Yu W. An epigenetic perspective on tumorigenesis: Loss of cell identity, enhancer switching, and NamiRNA network. Semin Cancer Biol 2018; 83:596-604. [PMID: 30208341 DOI: 10.1016/j.semcancer.2018.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 02/09/2023]
Abstract
Various tumorigenic theories have been proposed in the past century, which contribute to the prevention and treatment of cancer clinically. However, the underlying mechanisms of the initiation of cancer, drug resistance, neoplasm relapse, and metastasis are still challenging to be panoramically addressed. Based on the abundant evidence provided by others and us, we postulate that Tumor Initiated by Loss of Cell Identity (LOCI), which is an inevitable initiating event of tumorigenesis. As a result, normal cells are transformed into the cancerous cell. In this process, epigenetic regulatory program, especially NamiRNA (Nuclear activating miRNA)-enhancer-gene activation network, is vital for the cell identity. The disorganization of NamiRNA-enhancer-gene activation network is a causal predisposition to the cell identity loss, and the altered cell identity is stabilized by genetic variations of the NamiRNA-enhancer-gene activation network. Furthermore, the additional genetic or epigenetic abnormities confer those cells to carcinogenic characteristics, such as growth advantage over normal cells, and finally yield cancer. In this review, we literally explain our tumor imitation hypothesis based on the corresponding evidence, which will not only help to refresh our understanding of tumorigenesis but also bring benefits to developing "cell identity reversing" based therapies.
Collapse
Affiliation(s)
- Ying Liang
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Peng Xu
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Qingping Zou
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Huaibing Luo
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Wenqiang Yu
- Shanghai Public Health Clinical Center & Laboratory of RNA Epigenetics, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai, 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
16
|
BK Polyomavirus MicroRNA Levels in Exosomes Are Modulated by Non-Coding Control Region Activity and Down-Regulate Viral Replication When Delivered to Non-Infected Cells Prior to Infection. Viruses 2018; 10:v10090466. [PMID: 30200237 PMCID: PMC6164188 DOI: 10.3390/v10090466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/29/2018] [Indexed: 12/18/2022] Open
Abstract
In immunosuppressed patients, BKPyV-variants emerge carrying rearranged non-coding control-regions (rr-NCCRs) that increase early viral gene region (EVGR) expression and replication capacity. BKPyV also encodes microRNAs, which have been reported to downregulate EVGR-encoded large T-antigen transcripts, to decrease viral replication in infected cells and to be secreted in exosomes. To investigate the interplay of NCCR and microRNAs, we compared archetype- and rr-NCCR-BKPyV infection in cell culture. We found that laboratory and clinical rr-NCCR-BKPyV-strains show higher replication rates but significantly lower microRNA levels than archetype virus intracellularly and in exosomes. To investigate whether rr-NCCR or increased EVGR activity modulated microRNA levels, we examined the (sp1-4)NCCR-BKPyV, which has an archetype NCCR-architecture but shows increased EVGR expression due to point mutations inactivating one Sp1 binding site. We found that microRNA levels following (sp1-4)NCCR-BKPyV infection were as low as in rr-NCCR-variants. Thus, NCCR rearrangements are not required for lower miRNA levels. Accordingly, Sp1 siRNA knock-down decreased microRNA levels in archetype BKPyV infection but had no effect on (sp1-4)- or rr-NCCR-BKPyV. However, rr-NCCR-BKPyV replication was downregulated by exosome preparations carrying BKPyV-microRNA prior to infection. To explore the potential relevance in humans, urine samples from 12 natalizumab-treated multiple sclerosis patients were analysed. In 7 patients, rr-NCCR-BKPyV were detected showing high urine BKPyV loads but low microRNAs levels, whereas the opposite was seen in 5 patients with archetype BKPyV. We discuss the results in a dynamic model of BKPyV replication according to NCCR activity and exosome regulation, which integrates immune selection pressure, spread to new host cells and rr-NCCR emergence.
Collapse
|
17
|
Virtanen E, Seppälä H, Helanterä I, Laine P, Lautenschlager I, Paulin L, Mannonen L, Auvinen P, Auvinen E. BK polyomavirus microRNA expression and sequence variation in polyomavirus-associated nephropathy. J Clin Virol 2018. [DOI: 10.1016/j.jcv.2018.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Martelli F, Mencarini J, Rocca A, Malva ND, Bartolozzi D, Giannecchini S. Polyomavirus microRNA in saliva reveals persistent infectious status in the oral cavity. Virus Res 2018. [DOI: 10.1016/j.virusres.2018.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
McNees AL, Harrigal LJ, Kelly A, Minard CG, Wong C, Butel JS. Viral microRNA effects on persistent infection of human lymphoid cells by polyomavirus SV40. PLoS One 2018; 13:e0192799. [PMID: 29432481 PMCID: PMC5809058 DOI: 10.1371/journal.pone.0192799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/30/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Polyomaviruses, including simian virus 40 (SV40), display evidence of lymphotropic properties. This study analyzed the nature of SV40-human lymphocyte interactions in established cell lines and in primary lymphocytes. The effects of viral microRNA and the structure of the viral regulatory region on SV40 persistence were examined. RESULTS SV40 DNA was maintained in infected B cell and myeloid cell lines during cell growth for at least 28 days. Limiting dilution analysis showed that low amounts of SV40 DNA (~2 copies per cell) were retained over time. Infected B cells remained viable and able to proliferate. Genome copies of the SV40 microRNA-null mutant persisted at higher levels than the DNA of wild-type viruses. Complex viral regulatory regions produced modestly higher DNA levels than simple regulatory regions. Viral large T-antigen protein was detected at low frequency and at low levels in infected B cells. Following infection of primary lymphocytes, SV40 DNA was detected in CD19+ B cells and CD14+ monocytes, but not in CD3+ T cells. Rescue attempts using either lysates of SV40-infected B lymphocytes, coculture of live cells, or infectious center assays all showed that replication-competent SV40 could be recovered on rare occasions. SV40 infections altered the expression of several B cell surface markers, with more pronounced changes following infections with the microRNA-null mutant. CONCLUSION These findings indicate that SV40 can establish persistent infections in human B lymphocytes. The cells retain low copy numbers of viral DNA; the infections are nonproductive and noncytolytic but can occasionally produce infectious virus. SV40 microRNA negatively regulates the degree of viral effects on B cells. SIGNIFICANCE Lymphocytes may serve as viral reservoirs and may function to disseminate polyomaviruses to different tissues in a host. To our knowledge, this report is the first extensive analysis of viral microRNA effects on SV40 infection of human lymphocytes.
Collapse
Affiliation(s)
- Adrienne L. McNees
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lindsay J. Harrigal
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Aoife Kelly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Charles G. Minard
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, United States of America
| | - Connie Wong
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Janet S. Butel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
20
|
Liang Y, Zou Q, Yu W. Steering Against Wind: A New Network of NamiRNAs and Enhancers. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:331-337. [PMID: 28882787 PMCID: PMC5673672 DOI: 10.1016/j.gpb.2017.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/19/2017] [Accepted: 06/14/2017] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs with regulatory functions. Traditionally, miRNAs are thought to play a negative regulatory role in the cytoplasm by binding to the 3′UTR of target genes to degrade mRNA or inhibit translation. However, it remains a challenge to interpret the potential function of many miRNAs located in the nucleus. Recently, we reported a new type of miRNAs present in the nucleus, which can activate gene expression by binding to the enhancer, and named them nuclear activating miRNAs (NamiRNAs). The discovery of NamiRNAs showcases a complementary regulatory mechanism of miRNA, demonstrating their differential roles in the nucleus and cytoplasm. Here, we reviewed miRNAs in nucleus to better understand the function of NamiRNAs in their interactions with the enhancers. Accordingly, we propose a NamiRNA–enhancer–target gene activation network model to better understand the crosstalk between NamiRNAs and enhancers in regulating gene transcription. Moreover, we hypothesize that NamiRNAs may be involved in cell identity or cell fate determination during development, although further study is needed to elucidate the underlying mechanisms in detail.
Collapse
Affiliation(s)
- Ying Liang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qingping Zou
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Wenqiang Yu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200032, China; Department of Biochemistry and Molecular Biology, Shanghai Medical College, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Molecular Biology, Fudan University, Shanghai 200032, China; Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
21
|
JCPyV microRNA in plasma inversely correlates with JCPyV seropositivity among long-term natalizumab-treated relapsing-remitting multiple sclerosis patients. J Neurovirol 2017; 23:734-741. [DOI: 10.1007/s13365-017-0560-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/21/2017] [Accepted: 07/24/2017] [Indexed: 12/18/2022]
|