1
|
Zhao Y, Li W, Xu J, Bao L, Wu K, Shan R, Hu X, Fu Y, Zhao C. Endogenous retroviruses modulate the susceptibility of mice to Staphylococcus aureus-induced mastitis by activating cGAS-STING signaling. Int Immunopharmacol 2024; 142:113171. [PMID: 39312862 DOI: 10.1016/j.intimp.2024.113171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Recently studies showed that cow mastitis seriously affected the economic benefit of dairy industry and pathogen infection including S. aureus is the main cause of mastitis. However, there is still a lack of safe and effective treatment for S. aureus-induced mastitis due to its complex pathogenesis. Endogenous retroviruses (ERVs) have long been symbiotic with mammals, and most ERVs still have the ability to produces complementary DNA (cDNA) by reverse transcription, whose induction by commensal or pathogens can regulate host immunity and inflammatory responses through the cGAS-STING pathway. However, whether and how ERVs participate in the pathogenesis of S. aureus-induced mastitis still unclear. In this study, we found that S. aureus treatment increased the levels of ERVs and IFN-β. Inhibition the transcription of ERVs by emtricitabine alleviated S. aureus-induced mammary injury, reduced mammary bacterial burden, and inhibited the production of mammary proinflammatory factors including TNF-α, IL-1β and MPO activity. Moreover, inhibition of ERVs restored the function of blood-milk barrier caused by S. aureus. Next, we showed that S. aureus infection activated mammary cGAS-STING signaling pathway, which was mediated by ERVs, as evidenced by emtricitabine inhibited S. aureus-induced activation of the cGAS-STING pathway. Interestingly, inhibition of cGAS-STING by Ru.521 and H151 respectively, significantly alleviated S. aureus-induced mammary injury and inflammatory responses, which was associated with the inhibition of NF-κB and NLRP3 signaling pathways. In conclusion, our study revealed that ERVs regulate the development of S. aureus-induced mastitis in mice through NF-κB- and NLRP3-mediated inflammatory responses via the activation of cGAS-STING pathway, suggesting that targeting ERVs-cGAS-STING axis may be a potential approach for the treatment of S. aureus-induced mastitis.
Collapse
Affiliation(s)
- Yihong Zhao
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin Province, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Wenjia Li
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin Province, China
| | - Jiawen Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Ruping Shan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China.
| |
Collapse
|
2
|
Gazeau S, Deng X, Brunet-Ratnasingham E, Kaufmann DE, Larochelle C, Morel PA, Heffernan JM, Davis CL, Smith AM, Jenner AL, Craig M. Using virtual patient cohorts to uncover immune response differences in cancer and immunosuppressed COVID-19 patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.605860. [PMID: 39131351 PMCID: PMC11312602 DOI: 10.1101/2024.08.01.605860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) resulted in millions of deaths globally. Adults with immunosuppression (e.g., solid organ transplant recipients) and those undergoing active cancer treatments experience worse infections and more severe COVID-19. It is difficult to conduct clinical studies in these populations, resulting in a restricted amount of data that can be used to relate mechanisms of immune dysfunction to COVID-19 outcomes in these vulnerable groups. To study immune dynamics after infection with SARS-CoV-2 and to investigate drivers of COVID-19 severity in individuals with cancer and immunosuppression, we adapted our mathematical model of the immune response during COVID-19 and generated virtual patient cohorts of cancer and immunosuppressed patients. The cohorts of plausible patients recapitulated available longitudinal clinical data collected from patients in Montréal, Canada area hospitals. Our model predicted that both cancer and immunosuppressed virtual patients with severe COVID-19 had decreased CD8+ T cells, elevated interleukin-6 concentrations, and delayed type I interferon peaks compared to those with mild COVID-19 outcomes. Additionally, our results suggest that cancer patients experience higher viral loads (however, with no direct relation with severity), likely because of decreased initial neutrophil counts (i.e., neutropenia), a frequent toxic side effect of anti-cancer therapy. Furthermore, severe cancer and immunosuppressed virtual patients suffered a high degree of tissue damage associated with elevated neutrophils. Lastly, parameter values associated with monocyte recruitment by infected cells were found to be elevated in severe cancer and immunosuppressed patients with respect to the COVID-19 reference group. Together, our study highlights that dysfunction in type I interferon and CD8+ T cells are key drivers of immune dysregulation in COVID-19, particularly in cancer patients and immunosuppressed individuals.
Collapse
Affiliation(s)
- Sonia Gazeau
- Sainte-Justine University Hospital Research Centre, Montréal, Québec, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Québec, Canada
| | - Xiaoyan Deng
- Sainte-Justine University Hospital Research Centre, Montréal, Québec, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Québec, Canada
| | | | - Daniel E. Kaufmann
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital (CHUV) and Université de Lausanne, Lausanne, Switzerland
| | - Catherine Larochelle
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Penelope A. Morel
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jane M. Heffernan
- Centre for Disease Modelling, Department of Mathematics & Statistics, York University, Toronto, Ontario, Canada
| | - Courtney L. Davis
- Natural Science Division, Pepperdine University, Malibu, California, USA
| | - Amber M. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Adrianne L. Jenner
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Morgan Craig
- Sainte-Justine University Hospital Research Centre, Montréal, Québec, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
3
|
Soleimani-Jelodar R, Arashkia A, Shoja Z, Akhavan S, Yarandi F, Sharifian K, Farahmand M, Nili F, Jalilvand S. The expression analysis of human endogenous retrovirus-K Env, Np9, and Rec transcripts in cervical cancer. J Med Virol 2024; 96:e29501. [PMID: 38445563 DOI: 10.1002/jmv.29501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/27/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
While infection with high-risk human papillomavirus (HPV) types is necessary for cervical cancer (CC) development, it is not enough, and other risk factors are required. Several studies have reported the activation of HERV-K in different cancers; however, the investigation of HERV-K expression levels in CC is scarce. In this study, it was hypothesized that activation of HERV-K could play an essential role in CC development. In this order, the expression levels of HERV-K Env, Np9, and Rec transcripts were investigated on 147 normal to CC uterine cervical tissues using quantitative real-time PCR. The significantly higher levels of HERV-K Env and Np9 transcripts were found in patients with cervical intraepithelial neoplasia (CIN) II-III and CC groups compared to those in the normal/CIN I group. Expression of Rec transcript was also higher only in the CC group than normal/CIN I group. Among CC patients, meaningfully higher levels of HERV-K Env and Np9 transcripts were found in patients with squamous cell carcinoma rather than in adenocarcinoma. When only the HPV 16 positive samples were investigated, it was found that the mean difference in Env and Np9 mRNA levels was meaningfully higher among precancer lesions and the cancer group in comparison with the normal group. However, the Rec mRNA level showed no significant differences. The association between the expression of HERV-K genes was investigated, and a significant positive correlation of Env expression with Np9 transcript was found only in the group with precancer lesions (R = 0.6, p = 0.0037). Moreover, a significant positive correlation was found between Rec and Np9 transcripts in patients with normal cervix tissues (R = 0.26, p = 0.033). However, no correlations were observed between the expression of Env and Rec in the three groups. In conclusion, our results showed that HERV-K transcripts, especially Env and Np9, upregulated during cervical lesion progression. These findings highlight the potential use of HERV-K Env and Np9 as biomarkers for CC diagnosis and prognosis. Further investigation is needed to determine the clinical utility of these markers and whether targeting HERV-K oncogenes could be a viable therapeutic strategy for CC.
Collapse
Affiliation(s)
- Rahim Soleimani-Jelodar
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Setareh Akhavan
- Department of Gynecology Oncology, Imam Khomeini Hospital Complex, Valiasr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Yarandi
- Department of Obstetrics and Gynecology, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Sharifian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farahmand
- Research Center for Emergency and Disaster Society of the Islamic Republic of Iran, Tehran, Iran
| | - Fatemeh Nili
- Department of Pathology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Mantovani F, Kitsou K, Magiorkinis G. HERVs: Expression Control Mechanisms and Interactions in Diseases and Human Immunodeficiency Virus Infection. Genes (Basel) 2024; 15:192. [PMID: 38397182 PMCID: PMC10888493 DOI: 10.3390/genes15020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are the result of retroviral infections acquired millions of years ago; nowadays, they compose around 8% of human DNA. Multiple mechanisms have been employed for endogenous retroviral deactivation, rendering replication and retrotransposition defective, while some of them have been co-opted to serve host evolutionary advantages. A pleiad of mechanisms retains the delicate balance of HERV expression in modern humans. Thus, epigenetic modifications, such as DNA and histone methylation, acetylation, deamination, chromatin remodeling, and even post-transcriptional control are recruited. In this review, we aim to summarize the main HERV silencing pathways, revisit paradigms of human disease with a HERV component, and emphasize the human immunodeficiency virus (HIV) and HERV interactions during HIV infection.
Collapse
Affiliation(s)
| | | | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (F.M.); (K.K.)
| |
Collapse
|
5
|
Li Z, Li H, Fang K, Lin X, Yu C. Uncovering the link between human endogenous retroviruses, inflammatory pathways, and gastric cancer development. Cancer Biomark 2024; 41:103-113. [PMID: 39331091 PMCID: PMC11492024 DOI: 10.3233/cbm-230417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 08/25/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Endogenous retroviruses, previously deemed "junk" DNA, have gained attention in recent scientific studies. These inherited genomic elements are now recognized for their potential roles in diseases, especially cancer, highlighting their value as potential diagnostic or therapeutic targets. OBJECTIVE This research aims to explore the association between human endogenous retroviruses (HERV) and gastric cancer, focusing on discerning HERV expression patterns and understanding their implications in gastric cancer pathology. METHODS A quantitative analysis of HERV expression was conducted, employing Support Vector Machine (SVM) and AdaBoost algorithms to identify discriminative HERVs. The co-regulation network between protein-coding genes and HERVs was constructed using the Weighted Gene Co-expression Network Analysis (WGCNA). RESULTS Three distinct HERVs (LTR16A|72|451, LTR91|636|874, LTR27D|87|222) were identified as significantly different. Strong correlations were found between HERVs, and gene sets enriched in the inflammatory pathway. CONCLUSIONS HERVs appear to influence abnormal inflammatory responses, suggesting a pivotal role in gastric cancer development.
Collapse
Affiliation(s)
- Zhengtai Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Hongjiang Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Kun Fang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xinglei Lin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
6
|
Johnson KE, Heisel T, Fields DA, Isganaitis E, Jacobs KM, Knights D, Lock EF, Rudolph MC, Gale CA, Schleiss MR, Albert FW, Demerath EW, Blekhman R. Human Cytomegalovirus in breast milk is associated with milk composition, the infant gut microbiome, and infant growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549370. [PMID: 37503212 PMCID: PMC10370112 DOI: 10.1101/2023.07.19.549370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Human cytomegalovirus (CMV) is a highly prevalent herpesvirus that is often transmitted to the neonate via breast milk. Postnatal CMV transmission can have negative health consequences for preterm and immunocompromised infants, but any effects on healthy term infants are thought to be benign. Furthermore, the impact of CMV on the composition of the hundreds of bioactive factors in human milk has not been tested. Here, we utilize a cohort of exclusively breastfeeding full term mother-infant pairs to test for differences in the milk transcriptome and metabolome associated with CMV, and the impact of CMV in breast milk on the infant gut microbiome and infant growth. We find upregulation of the indoleamine 2,3- dioxygenase (IDO) tryptophan-to-kynurenine metabolic pathway in CMV+ milk samples, and that CMV+ milk is associated with decreased Bifidobacterium in the infant gut. Our data indicate a complex relationship between milk CMV, milk kynurenine, and infant growth; with kynurenine positively correlated, and CMV viral load negatively correlated, with infant weight-for-length at 1 month of age. These results suggest CMV transmission, CMV-related changes in milk composition, or both may be modulators of full term infant development.
Collapse
Affiliation(s)
- Kelsey E Johnson
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA
| | - Timothy Heisel
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - David A Fields
- Department of Pediatrics, Diabetes-Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Elvira Isganaitis
- Pediatric, Adolescent and Young Adult Unit, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Katherine M Jacobs
- Department of Obstetrics, Gynecology and Women's Health, Division of Maternal-Fetal Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Dan Knights
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Eric F Lock
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Michael C Rudolph
- Harold Hamm Diabetes Center, Department of Physiology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Cheryl A Gale
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mark R Schleiss
- Division of Pediatric Infectious Diseases and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Frank W Albert
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Ran Blekhman
- Section of Genetic Medicine, Division of Biological Sciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Shah AH, Rivas SR, Doucet-O’Hare TT, Govindarajan V, DeMarino C, Wang T, Ampie L, Zhang Y, Banasavadi-Siddegowda YK, Walbridge S, Maric D, Garcia-Montojo M, Suter RK, Lee MH, Zaghloul KA, Steiner J, Elkahloun AG, Chandar J, Seetharam D, Desgraves J, Li W, Johnson K, Ivan ME, Komotar RJ, Gilbert MR, Heiss JD, Nath A. Human endogenous retrovirus K contributes to a stem cell niche in glioblastoma. J Clin Invest 2023; 133:e167929. [PMID: 37395282 PMCID: PMC10313366 DOI: 10.1172/jci167929] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/19/2023] [Indexed: 07/04/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are ancestral viral relics that constitute nearly 8% of the human genome. Although normally silenced, the most recently integrated provirus HERV-K (HML-2) can be reactivated in certain cancers. Here, we report pathological expression of HML-2 in malignant gliomas in both cerebrospinal fluid and tumor tissue that was associated with a cancer stem cell phenotype and poor outcomes. Using single-cell RNA-Seq, we identified glioblastoma cellular populations with elevated HML-2 transcripts in neural progenitor-like cells (NPC-like) that drive cellular plasticity. Using CRISPR interference, we demonstrate that HML-2 critically maintained glioblastoma stemness and tumorigenesis in both glioblastoma neurospheres and intracranial orthotopic murine models. Additionally, we demonstrate that HML-2 critically regulated embryonic stem cell programs in NPC-derived astroglia and altered their 3D cellular morphology by activating the nuclear transcription factor OCT4, which binds to an HML-2-specific long-terminal repeat (LTR5Hs). Moreover, we discovered that some glioblastoma cells formed immature retroviral virions, and inhibiting HML-2 expression with antiretroviral drugs reduced reverse transcriptase activity in the extracellular compartment, tumor viability, and pluripotency. Our results suggest that HML-2 fundamentally contributes to the glioblastoma stem cell niche. Because persistence of glioblastoma stem cells is considered responsible for treatment resistance and recurrence, HML-2 may serve as a unique therapeutic target.
Collapse
Affiliation(s)
- Ashish H. Shah
- University of Miami School of Medicine, Department of Neurosurgery, Miami, Florida, USA
| | - Sarah R. Rivas
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Tara T. Doucet-O’Hare
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Vaidya Govindarajan
- University of Miami School of Medicine, Department of Neurosurgery, Miami, Florida, USA
| | - Catherine DeMarino
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Tongguang Wang
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Leonel Ampie
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Yong Zhang
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | | | - Stuart Walbridge
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Marta Garcia-Montojo
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Robert K. Suter
- Georgetown University, Bioinformatics Section, Washington, DC, USA
| | - Myoung-Hwa Lee
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Kareem A. Zaghloul
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Joseph Steiner
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Abdel G. Elkahloun
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Jay Chandar
- University of Miami School of Medicine, Department of Neurosurgery, Miami, Florida, USA
| | - Deepa Seetharam
- University of Miami School of Medicine, Department of Neurosurgery, Miami, Florida, USA
| | - Jelisah Desgraves
- University of Miami School of Medicine, Department of Neurosurgery, Miami, Florida, USA
| | - Wenxue Li
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Kory Johnson
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Michael E. Ivan
- University of Miami School of Medicine, Department of Neurosurgery, Miami, Florida, USA
| | - Ricardo J. Komotar
- University of Miami School of Medicine, Department of Neurosurgery, Miami, Florida, USA
| | - Mark R. Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - John D. Heiss
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Avindra Nath
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Chan JCY, Chaban R, Chang SH, Angel LF, Montgomery RA, Pierson RN. Future of Lung Transplantation: Xenotransplantation and Bioengineering Lungs. Clin Chest Med 2023; 44:201-214. [PMID: 36774165 PMCID: PMC11078107 DOI: 10.1016/j.ccm.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Xenotransplantation promises to alleviate the issue of donor organ shortages and to decrease waiting times for transplantation. Recent advances in genetic engineering have allowed for the creation of pigs with up to 16 genetic modifications. Several combinations of genetic modifications have been associated with extended graft survival and life-supporting function in experimental heart and kidney xenotransplants. Lung xenotransplantation carries specific challenges related to the large surface area of the lung vascular bed, its innate immune system's intrinsic hyperreactivity to perceived 'danger', and its anatomic vulnerability to airway flooding after even localized loss of alveolocapillary barrier function. This article discusses the current status of lung xenotransplantation, and challenges related to immunology, physiology, anatomy, and infection. Tissue engineering as a feasible alternative to develop a viable lung replacement solution is discussed.
Collapse
Affiliation(s)
- Justin C Y Chan
- NYU Transplant Institute, New York University, 530 1st Avenue, Suite 7R, New York, NY 10016, USA.
| | - Ryan Chaban
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA; Department of Cardiovascular Surgery, University Hospital of Johannes Gutenberg University, Langenbeckstr. 1, Bau 505, 5. OG55131 Mainz, Germany
| | - Stephanie H Chang
- NYU Transplant Institute, New York University, 530 1st Avenue, Suite 7R, New York, NY 10016, USA
| | - Luis F Angel
- NYU Transplant Institute, New York University, 530 1st Avenue, Suite 7R, New York, NY 10016, USA
| | - Robert A Montgomery
- NYU Transplant Institute, New York University, 530 1st Avenue, Suite 7R, New York, NY 10016, USA
| | - Richard N Pierson
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
9
|
Clinical significance of human endogenous retrovirus K (HERV-K) in multiple myeloma progression. Int J Hematol 2022; 117:563-577. [PMID: 36522589 DOI: 10.1007/s12185-022-03513-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Human endogenous retroviruses (HERVs) are retrotransposons that infect human germline cells and occupy 5-8% of the human genome. Their expression, though inhibited by mutation, deletion, and epigenetic mechanisms under normal conditions, is associated with diseases including cancer. This study aimed to clarify the association between HERVs and multiple myeloma (MM) progression. We found that HERV-K envelope (env) and long-term repeat (LTR) expression was statistically significantly higher within plasma cells in MM than in monoclonal gammopathy of undetermined significance or controls. HERV-K env knockdown increased proliferation in the MM.1S cell line and decreased the expression of the tumor suppressor genes TP53 and CDKN1A. TP53 and CDKN1A were highly expressed in MM, and their expression was correlated with HERV-K expression. HERV-K knockdown reduced apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3F, 3G, and 3H expression by 10-20% in MM.1S cells. The anti-retroviral agents nevirapine and nelfinavir suppressed proliferation and increased HERV-K expression in MM cell lines. Our results suggest that HERV-K is involved in MM progression, but its role is likely to go beyond promoting cell proliferation. Clarifying the role of HERV-K in MM will lead to the discovery of novel treatment strategies and supply new insights into MM pathogenesis.
Collapse
|
10
|
Chabukswar S, Grandi N, Tramontano E. Prolonged activity of HERV-K(HML2) in Old World Monkeys accounts for recent integrations and novel recombinant variants. Front Microbiol 2022; 13:1040792. [PMID: 36532485 PMCID: PMC9751479 DOI: 10.3389/fmicb.2022.1040792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
Around 8% of the human genome comprises Human Endogenous Retroviruses (HERVs) acquired over primate evolution. Some are specific to primates such as HERV-K, consisting of 10 HML subtypes and including the most recently acquired elements. Particularly, HML2 is the youngest clade, having some human-specific integrations, and while it has been widely described in humans its presence and distribution in non-human primates remain poorly characterized. To investigate HML2 distribution in non-human primates, the present study focused on the characterization of HML2 integrations in Macaca fascicularis and Macaca mulatta which are the most evolutionarily distant species related to humans in the Catarrhini parvorder. We identified overall 208 HML2 proviruses for M. fascicularis (77) and M. mulatta (131). Among them, 46 proviruses are shared by the two species while the others are species specific. Only 12 proviruses were shared with humans, confirming that the major wave of HML2 diffusion in humans occurred after macaques' divergence. Phylogenetic analysis confirmed structural variations between HML2 macaques' species-specific proviruses, and the ones shared between macaques and humans. The HML2 loci were characterized in terms of structure, focusing on potential residual open reading frames (ORFs) for gag, pol, and env genes for the latter being reported to be expressed in human pathological conditions. The analysis identified highly conserved gag and pol genes, while the env genes had a very divergent nature. Of the 208 HML2 proviral sequences present in Macaca species, 81 sequences form a cluster having a MER11A, a characteristic HML8 LTR sequence, insertion in the env region indicating a recombination event that occurred between the HML2 env gene and the HML8 LTR. This recombination event, which was shown to be present only in a subset of macaques' shared sequences and species-specific sequences, highlights a recent viral activity leading to the emergence of an env variant specific to the Old World Monkeys (OWMs). We performed an exhaustive analysis of HML2 in two species of OWMs, in terms of its evolutionary history, structural features, and potential residual coding capacity highlighting recent activity of HML2 in macaques that occurred after its split from the Catarrhini parvorder, leading to the emergence of viral variants, hence providing a better understanding of the endogenization and diffusion of HML2 along primate evolution.
Collapse
|
11
|
Agoni L. Alternative and aberrant splicing of human endogenous retroviruses in cancer. What about head and neck? —A mini review. Front Oncol 2022; 12:1019085. [PMID: 36338752 PMCID: PMC9631305 DOI: 10.3389/fonc.2022.1019085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are transcribed in many cancer types, including head and neck cancer. Because of accumulating mutations at proviral loci over evolutionary time, HERVs are functionally defective and cannot complete their viral life cycle. Despite that, HERV transcripts, including full-length viral RNAs and viral RNAs spliced as expected at the conventional viral splice sites, can be detected in particular conditions, such as cancer. Interestingly, non-viral–related transcription, including aberrant, non-conventionally spliced RNAs, has been reported as well. The role of HERV transcription in cancer and its contribution to oncogenesis or progression are still debated. Nonetheless, HERVs may constitute a suitable cancer biomarker or a target for therapy. Thus, ongoing research aims both to clarify the basic mechanisms underlying HERV transcription in cancer and to exploit its potential toward clinical application. In this mini-review, we summarize the current knowledge, the most recent findings, and the future perspectives of research on HERV transcription and splicing, with particular focus on head and neck cancer.
Collapse
|
12
|
Sahu S, Singh B, Kumar Rai A. Human endogenous retrovirus regulates the initiation and progression of cancers (Review). Mol Clin Oncol 2022; 17:143. [PMID: 36157315 PMCID: PMC9468830 DOI: 10.3892/mco.2022.2576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/22/2022] [Indexed: 11/05/2022] Open
Abstract
The expression of genes is altered in various diseases and is responsible for the disease's initiation, progression and pathology. Several other genes, predominantly inactivated, may become activated in a given condition and contribute to the initiation and progression of the disease. Similarly, human endogenous viruses (HERVs) are an incomplete, non-productive and inactive viral sequence present in the heterochromatin of the human genome, and are often referred to as junk DNA. HERVs were inserted into the host genome millions of years ago. However, they were silenced due to multiple mutations and recombination that occurred over time. However, their expression is increased in cancers due to either epigenetic or transcriptional dysregulation. Some of the HERVs having intact open reading frames have been reported to express virus-like particles, functional peptides and proteins involved in tumorigenesis. To summarize, there is involvement of different HERVs in the initiation and progression of several cancers. The present review aims to provide concise information on HERV and its involvement in the initiation and progression of multiple types of cancer.
Collapse
Affiliation(s)
- Srishti Sahu
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
| | - Bharat Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh 211004, India
| |
Collapse
|
13
|
Zhu W, Wang JZ, Liu Z, Wei JF. The bacteria inside human cancer cells: Mainly as cancer promoters. Front Oncol 2022; 12:897330. [PMID: 36033476 PMCID: PMC9411745 DOI: 10.3389/fonc.2022.897330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022] Open
Abstract
The roles of the microbiome in human beings have become clearer with the development of next-generation sequencing techniques. Several pieces of evidence showed strong correlations between the microbiome and human health and disease, such as metabolic disorders, infectious diseases, digestive system diseases, and cancers. Among these diverse microbiomes, the role of bacteria in human cancers, especially in cancer cells, has received extensive attention. Latest studies found that bacteria widely existed in cancers, mainly in cancer cells and immune cells. In this review, we summarize the latest advances in understanding the role of bacteria in human cancer cells. We also discuss how bacteria are transported into cancer cells and their physiological significance in cancer progression. Finally, we present the prospect of bacterial therapy in cancer treatment.
Collapse
Affiliation(s)
- Wei Zhu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing-Zi Wang
- Department of Urology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhixian Liu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ji-Fu Wei
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
HERV-K and HERV-H Env Proteins Induce a Humoral Response in Prostate Cancer Patients. Pathogens 2022; 11:pathogens11010095. [PMID: 35056043 PMCID: PMC8778306 DOI: 10.3390/pathogens11010095] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 02/01/2023] Open
Abstract
A higher expression of human endogenous retroviruses (HERVs) has been associated with several malignancies, including prostate cancer, implying a possible use as a diagnostic or prognostic cancer biomarker. For this reason, we examined the humoral response against different epitopes obtained from the envelope protein of HERV-K (HERV-K env-su19–37, HERV-K env-su109–126), HERV-H (HERV-H env-su229–241, HERV-H env387–399) and HERV-W (HERV-W env-su93–108, HERV-W env-su248–262) in the plasma of patients affected by prostate cancer (PCa), and compared to that of benign prostate hyperplasia (BPH) and a borderline group of patients with atypical small acinar proliferation (ASAP) and prostate intraepithelial neoplasia (PIN) and healthy controls. A significant antibody response was observed against HERV-K env-su109–126 (p = 0.004) and HERV-H env-su229–241 (p < 0.0001) in PCa patients compared to HCs, BPH and borderline cohorts, whilst no significance difference was found in the antibodies against HERV-W env-su93–108 and HERV-W env-su248–262 in patients with PCa. Our results provided further proof of the association between HERV-K and PCa and added new evidence about the possible involvement of HERV-H in PCa pathogenesis, highlighting their possibility of being used as biomarkers of the disease.
Collapse
|
15
|
Abascal-Palacios G, Jochem L, Pla-Prats C, Beuron F, Vannini A. Structural basis of Ty3 retrotransposon integration at RNA Polymerase III-transcribed genes. Nat Commun 2021; 12:6992. [PMID: 34848735 PMCID: PMC8632968 DOI: 10.1038/s41467-021-27338-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
Retrotransposons are endogenous elements that have the ability to mobilise their DNA between different locations in the host genome. The Ty3 retrotransposon integrates with an exquisite specificity in a narrow window upstream of RNA Polymerase (Pol) III-transcribed genes, representing a paradigm for harmless targeted integration. Here we present the cryo-EM reconstruction at 4.0 Å of an active Ty3 strand transfer complex bound to TFIIIB transcription factor and a tRNA gene. The structure unravels the molecular mechanisms underlying Ty3 targeting specificity at Pol III-transcribed genes and sheds light into the architecture of retrotransposon machinery during integration. Ty3 intasome contacts a region of TBP, a subunit of TFIIIB, which is blocked by NC2 transcription regulator in RNA Pol II-transcribed genes. A newly-identified chromodomain on Ty3 integrase interacts with TFIIIB and the tRNA gene, defining with extreme precision the integration site position.
Collapse
Affiliation(s)
| | - Laura Jochem
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Carlos Pla-Prats
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK.
- Human Technopole, 20157, Milan, Italy.
| |
Collapse
|
16
|
Denner J. Porcine Endogenous Retroviruses and Xenotransplantation, 2021. Viruses 2021; 13:v13112156. [PMID: 34834962 PMCID: PMC8625113 DOI: 10.3390/v13112156] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs, and some of them are able to infect human cells. Therefore, PERVs pose a risk for xenotransplantation, the transplantation of pig cells, tissues, or organ to humans in order to alleviate the shortage of human donor organs. Up to 2021, a huge body of knowledge about PERVs has been accumulated regarding their biology, including replication, recombination, origin, host range, and immunosuppressive properties. Until now, no PERV transmission has been observed in clinical trials transplanting pig islet cells into diabetic humans, in preclinical trials transplanting pig cells and organs into nonhuman primates with remarkable long survival times of the transplant, and in infection experiments with several animal species. Nevertheless, in order to prevent virus transmission to the recipient, numerous strategies have been developed, including selection of PERV-C-free animals, RNA interference, antiviral drugs, vaccination, and genome editing. Furthermore, at present there are no more experimental approaches to evaluate the full risk until we move to the clinic.
Collapse
Affiliation(s)
- Joachim Denner
- Department of Veterinary Medicine, Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| |
Collapse
|
17
|
Li X, Guo Y, Li H, Huang X, Pei Z, Wang X, Liu Y, Jia L, Li T, Bao Z, Wang X, Han L, Han J, Li J, Li L. Infection by Diverse HIV-1 Subtypes Leads to Different Elevations in HERV-K Transcriptional Levels in Human T Cell Lines. Front Microbiol 2021; 12:662573. [PMID: 34079529 PMCID: PMC8165174 DOI: 10.3389/fmicb.2021.662573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
Human endogenous retroviruses (HERVs) make up ~8% of the human genome, and for millions of years, they have been subject to strict biological regulation. Many HERVs do not participate in normal physiological activities in the body. However, in some pathological conditions, they can be abnormally activated. For example, HIV infection can cause abnormal activation of HERVs, and under different infection conditions, HERV expression may be different. We observed significant differences in HERV-K transcription levels among HIV-1 subtype-infected individuals. The transcriptional levels in the HERV-K gag region were significantly increased in HIV-1 B subtype-infected patients, while the transcriptional levels in the HERV-K pol region were significantly increased in CRF01_AE and CRF07_BC subtype-infected patients. In vitro, the transcriptional levels of HEVR-K were increased 5-fold and 15-fold in MT2 cells transfected with two different HIV-1 strains (B and CRF01_AE, respectively). However, there was no significant difference in transcriptional levels among regions of HERV-K. When MT2 cells were infected with different subtypes of HIV-1 Tat proteins (B, CRF01_AE), which is constructed by lentiviruses, and the transcription levels of HERV-K were increased 4-fold and 2-fold, respectively. Thus, different subtypes of HIV-1 have different effects on HERV-K transcription levels, which may be caused by many factors, not only Tat protein.
Collapse
Affiliation(s)
- Xi Li
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yaolin Guo
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hanping Li
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaofeng Huang
- The Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Zhichao Pei
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolin Wang
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yongjian Liu
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Jia
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tianyi Li
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zuoyi Bao
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaorui Wang
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory of Infectious Disease Control and Prevention in Universities of Shandong, Jinan, China
| | - Leilei Han
- School of Public Health and Affiliated Shijiazhuang Fifth Hospital, North China University of Science and Technology, Tangshan, China
| | - Jingwan Han
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingyun Li
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Department of AIDS Research, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
18
|
Nath A, Johnson TP. Mechanisms of viral persistence in the brain and therapeutic approaches. FEBS J 2021; 289:2145-2161. [PMID: 33844441 DOI: 10.1111/febs.15871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022]
Abstract
There is growing recognition of the diversity of viruses that can infect the cells of the central nervous system (CNS). While the majority of CNS infections are successfully cleared by the immune response, some viral infections persist in the CNS. As opposed to resolved infections, persistent viruses can contribute to ongoing tissue damage and neuroinflammatory processes. In this manuscript, we provide an overview of the current understanding of factors that lead to viral persistence in the CNS including how viruses enter the brain, how these pathogens evade antiviral immune system responses, and how viruses survive and transmit within the CNS. Further, as the CNS may serve as a unique viral reservoir, we examine the ways in which persistent viruses in the CNS are being targeted therapeutically.
Collapse
Affiliation(s)
- Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Tory P Johnson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
19
|
Weber M, Padmanabhan Nair V, Bauer T, Sprinzl MF, Protzer U, Vincendeau M. Increased HERV-K(HML-2) Transcript Levels Correlate with Clinical Parameters of Liver Damage in Hepatitis C Patients. Cells 2021; 10:cells10040774. [PMID: 33807462 PMCID: PMC8065411 DOI: 10.3390/cells10040774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 12/23/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is closely associated with a plethora of diseases, including cancers and autoimmune disorders. However, the distinct triggers and cellular networks leading to such HCV-derived diseases are poorly understood. Around 8% of the human genome consists of human endogenous retroviruses. They are usually silenced but can be reactivated by environmental conditions, including viral infections. Our current understanding indicates that the activation of one specific family-namely, HERV-K(HML-2)-is linked to distinct pathologies, including cancer and autoimmunity. In this study, we analyzed the transcription levels of HERV-K(HML-2) in 42 HCV-infected patients receiving direct-acting antiviral therapies. Samples from the start of treatment until 12 weeks post-treatment were investigated. Our results show increased HERV-K(HML-2) transcript levels in patients with HCV-derived liver cirrhosis throughout the observation period. Several clinical parameters specifying poor liver function are positively correlated with HERV-K(HML-2) expression. Of note, patients without a sustained viral clearance showed a drastic increase in HERV-K(HML-2) transcript levels. Together, our data suggest that increased HERV-K(HML-2) expression is correlated with reduced liver function as well as therapy success in HCV-infected patients.
Collapse
Affiliation(s)
- Melanie Weber
- Institute of Virology, HelmholtzZentrum München, Neuherberg 85764, Germany; (M.W.); (V.P.N.); (T.B.)
| | - Vidya Padmanabhan Nair
- Institute of Virology, HelmholtzZentrum München, Neuherberg 85764, Germany; (M.W.); (V.P.N.); (T.B.)
| | - Tanja Bauer
- Institute of Virology, HelmholtzZentrum München, Neuherberg 85764, Germany; (M.W.); (V.P.N.); (T.B.)
- Institute of Virology, Technische Universität München, Munich 81675, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich 81675, Germany
| | - Martin F. Sprinzl
- Medical Department, University Hospital Mainz, Mainz 55131, Germany;
| | - Ulrike Protzer
- Institute of Virology, HelmholtzZentrum München, Neuherberg 85764, Germany; (M.W.); (V.P.N.); (T.B.)
- Institute of Virology, Technische Universität München, Munich 81675, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich 81675, Germany
- Correspondence: (U.P.); (M.V.)
| | - Michelle Vincendeau
- Institute of Virology, HelmholtzZentrum München, Neuherberg 85764, Germany; (M.W.); (V.P.N.); (T.B.)
- Correspondence: (U.P.); (M.V.)
| |
Collapse
|
20
|
Curty G, Beckerle GA, Iñiguez LP, Furler RL, de Carvalho PS, Marston JL, Champiat S, Heymann JJ, Ormsby CE, Reyes-Terán G, Soares MA, Nixon DF, Bendall ML, Leal FE, de Mulder Rougvie M. Human Endogenous Retrovirus Expression Is Upregulated in the Breast Cancer Microenvironment of HIV Infected Women: A Pilot Study. Front Oncol 2020; 10:553983. [PMID: 33194615 PMCID: PMC7649802 DOI: 10.3389/fonc.2020.553983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
In people living with HIV (PLWH), chronic inflammation can lead to cancer initiation and progression, besides driving a dysregulated and diminished immune responsiveness. HIV infection also leads to increased transcription of Human Endogenous Retroviruses (HERVs), which could increase an inflammatory environment and create a tumor growth suppressive environment with high expression of pro-inflammatory cytokines. In order to determine the impact of HIV infection to HERV expression on the breast cancer microenvironment, we sequenced total RNA from formalin-fixed paraffin-embedded (FFPE) breast cancer samples of women HIV-negative and HIV-positive for transcriptome and retrotranscriptome analyses. We performed RNA extraction from FFPE samples, library preparation and total RNA sequencing (RNA-seq). The RNA-seq analysis shows 185 differentially expressed genes: 181 host genes (178 upregulated and three downregulated) and four upregulated HERV transcripts in HIV-positive samples. We also explored the impact of HERV expression in its neighboring breast cancer development genes (BRCA1, CCND1, NBS1/NBN, RAD50, KRAS, PI3K/PIK3CA) and in long non-coding RNA expression (AC060780.1, also known as RP11-242D8.1). We found a significant positive association of HERV expression with RAD50 and with AC060780.1, which suggest a possible role of HERV in regulating breast cancer genes from PLWH with breast cancer. In addition, we found immune system, extracellular matrix organization and metabolic signaling genes upregulated in HIV-positive breast cancer. In conclusion, our findings provide evidence of transcriptional and retrotranscriptional changes in breast cancer from PLWH compared to non-HIV breast cancer, including dysregulation of HERVs, suggesting an indirect effect of the virus on the breast cancer microenvironment.
Collapse
Affiliation(s)
- Gislaine Curty
- Oncovirology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Greta A Beckerle
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Luis P Iñiguez
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Robert L Furler
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | | | - Jez L Marston
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Stephane Champiat
- Drug Development Department (DITEP), Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Jonas J Heymann
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Christopher E Ormsby
- Center for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases (INER), Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Center for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases (INER), Mexico City, Mexico
| | - Marcelo A Soares
- Oncovirology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Matthew L Bendall
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Fabio E Leal
- Oncovirology Program, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Miguel de Mulder Rougvie
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|