1
|
Clark TW, Tregoning JS, Lister H, Poletti T, Amin F, Nguyen-Van-Tam JS. Recent advances in the influenza virus vaccine landscape: a comprehensive overview of technologies and trials. Clin Microbiol Rev 2024:e0002524. [PMID: 39360831 DOI: 10.1128/cmr.00025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
SUMMARYIn the United Kingdom (UK) in 2022/23, influenza virus infections returned to the levels recorded before the COVID-19 pandemic, exerting a substantial burden on an already stretched National Health Service (NHS) through increased primary and emergency care visits and subsequent hospitalizations. Population groups ≤4 years and ≥65 years of age, and those with underlying health conditions, are at the greatest risk of influenza-related hospitalization. Recent advances in influenza virus vaccine technologies may help to mitigate this burden. This review aims to summarize advances in the influenza virus vaccine landscape by describing the different technologies that are currently in use in the UK and more widely. The review also describes vaccine technologies that are under development, including mRNA, and universal influenza virus vaccines which aim to provide broader or increased protection. This is an exciting and important era for influenza virus vaccinations, and advances are critical to protect against a disease that still exerts a substantial burden across all populations and disproportionately impacts the most vulnerable, despite it being over 80 years since the first influenza virus vaccines were deployed.
Collapse
Affiliation(s)
- Tristan W Clark
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - John S Tregoning
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
2
|
D’Onofrio V, Porrez S, Jacobs B, Alhatemi A, De Boever F, Waerlop G, Michels E, Vanni F, Manenti A, Leroux-Roels G, Platenburg PP, Hilgers L, Leroux-Roels I. Safety and Immunogenicity of a Carbohydrate Fatty Acid Monosulphate Ester Adjuvant Combined with a Low-Dose Quadrivalent Split-Virion Inactivated Influenza Vaccine: A Randomised, Observer-Blind, Active-Controlled, First-in-Human, Phase 1 Study. Vaccines (Basel) 2024; 12:1036. [PMID: 39340066 PMCID: PMC11435821 DOI: 10.3390/vaccines12091036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Seasonal influenza vaccine effectiveness is low. Carbohydrate fatty acid monosulphate ester (CMS), a new oil-in-water adjuvant, has proven potency in animal models with suggested capacity for dose-sparing. The objective was to evaluate safety and immunogenicity of CMS when added to a low-dose influenza vaccine (QIV) in humans. In a randomised, double-blind, active-controlled, first-in-human study, sixty participants (18-50 years) received either 0.5 mg CMS or 2 mg CMS with 1/5th dose QIV, or a full dose QIV without CMS. Adverse events (AE) were monitored until 7 days post-vaccination. Haemagglutinin inhibition (HI) titres in serum and CD4+ T cells in PBMCs were determined at day 0, 7, 28, and 180. Mean age was 37.6 (±10.1) years and 42/60 (70.0%) were female. Pain at injection site (42/60, 86.7%) and headache (34/60, 56.7%) were reported most and more frequently in the 2 mg CMS group. HI titres and the frequency of influenza specific CD4+ T cells were equal across strains for the three cohorts on all visits, increased until day 28 and decreased at day 180 to values higher than baseline. CMS was safe in humans. Humoral and cell-mediated immunogenicity was similar across vaccines, even with 1/5th antigen dose. CMS can have beneficial implications in low-resource settings or in a pandemic context.
Collapse
Affiliation(s)
- Valentino D’Onofrio
- Center for Vaccinology (CEVAC), Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; (V.D.); (S.P.); (B.J.); (A.A.); (F.D.B.); (G.W.); (G.L.-R.)
| | - Sharon Porrez
- Center for Vaccinology (CEVAC), Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; (V.D.); (S.P.); (B.J.); (A.A.); (F.D.B.); (G.W.); (G.L.-R.)
| | - Bart Jacobs
- Center for Vaccinology (CEVAC), Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; (V.D.); (S.P.); (B.J.); (A.A.); (F.D.B.); (G.W.); (G.L.-R.)
| | - Azhar Alhatemi
- Center for Vaccinology (CEVAC), Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; (V.D.); (S.P.); (B.J.); (A.A.); (F.D.B.); (G.W.); (G.L.-R.)
| | - Fien De Boever
- Center for Vaccinology (CEVAC), Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; (V.D.); (S.P.); (B.J.); (A.A.); (F.D.B.); (G.W.); (G.L.-R.)
| | - Gwenn Waerlop
- Center for Vaccinology (CEVAC), Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; (V.D.); (S.P.); (B.J.); (A.A.); (F.D.B.); (G.W.); (G.L.-R.)
| | - Els Michels
- Harmony Clinical Research BV, 9090 Melle, Belgium;
| | - Francesca Vanni
- VisMederi S.r.l., 53035 Monteriggioni, Italy; (F.V.); (A.M.)
| | | | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; (V.D.); (S.P.); (B.J.); (A.A.); (F.D.B.); (G.W.); (G.L.-R.)
| | | | - Luuk Hilgers
- LiteVax, 4061 BJ Ophemert, The Netherlands; (P.P.P.); (L.H.)
| | - Isabel Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium; (V.D.); (S.P.); (B.J.); (A.A.); (F.D.B.); (G.W.); (G.L.-R.)
| |
Collapse
|
3
|
Cowling BJ, Okoli GN. Influenza Vaccine Effectiveness and Progress Towards a Universal Influenza Vaccine. Drugs 2024; 84:1013-1023. [PMID: 39167316 PMCID: PMC11438668 DOI: 10.1007/s40265-024-02083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2024] [Indexed: 08/23/2024]
Abstract
At various times in recent decades, surges have occurred in optimism about the potential for universal influenza vaccines that provide strong, broad, and long-lasting protection and could substantially reduce the disease burden associated with seasonal influenza epidemics as well as the threat posed by pandemic influenza. Each year more than 500 million doses of seasonal influenza vaccine are administered around the world, with most doses being egg-grown inactivated subunit or split-virion vaccines. These vaccines tend to have moderate effectiveness against medically attended influenza for influenza A(H1N1) and influenza B, and somewhat lower for influenza A(H3N2) where differences between vaccine strains and circulating strains can occur more frequently due to antigenic drift and egg adaptations in the vaccine strains. Several enhanced influenza vaccine platforms have been developed including cell-grown antigen, the inclusion of adjuvants, or higher antigen doses, to improve immunogenicity and protection. During the COVID-19 pandemic there was unprecedented speed in development and roll-out of relatively new vaccine platforms, including mRNA vaccines and viral vector vaccines. These new platforms present opportunities to improve protection for influenza beyond existing products. Other approaches continue to be explored. Incremental improvements in influenza vaccine performance should be achievable in the short to medium term.
Collapse
Affiliation(s)
- Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, Hong Kong, China.
| | - George N Okoli
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| |
Collapse
|
4
|
Hodel KVS, Fiuza BSD, Conceição RS, Aleluia ACM, Pitanga TN, Fonseca LMDS, Valente CO, Minafra-Rezende CS, Machado BAS. Pharmacovigilance in Vaccines: Importance, Main Aspects, Perspectives, and Challenges-A Narrative Review. Pharmaceuticals (Basel) 2024; 17:807. [PMID: 38931474 PMCID: PMC11206969 DOI: 10.3390/ph17060807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Pharmacovigilance plays a central role in safeguarding public health by continuously monitoring the safety of vaccines, being critical in a climate of vaccine hesitancy, where public trust is paramount. Pharmacovigilance strategies employed to gather information on adverse events following immunization (AEFIs) include pre-registration data, media reports, clinical trials, and societal reporting. Early detection of AEFIs during clinical trials is crucial for thorough safety analysis and preventing serious reactions once vaccines are deployed. This review highlights the importance of societal reporting, encompassing contributions from community members, healthcare workers, and pharmaceutical companies. Technological advancements such as quick response (QR) codes can facilitate prompt AEFI reporting. While vaccines are demonstrably safe, the possibility of adverse events necessitates continuous post-marketing surveillance. However, underreporting remains a challenge, underscoring the critical role of public engagement in pharmacovigilance. This narrative review comprehensively examines and synthesizes key aspects of virus vaccine pharmacovigilance, with special considerations for specific population groups. We explore applicable legislation, the spectrum of AEFIs associated with major vaccines, and the unique challenges and perspectives surrounding pharmacovigilance in this domain.
Collapse
Affiliation(s)
- Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador 41650-010, Bahia State, Brazil
| | - Bianca Sampaio Dotto Fiuza
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador 41650-010, Bahia State, Brazil
| | - Rodrigo Souza Conceição
- Department of Medicine, College of Pharmacy, Federal University of Bahia, Salvador 40170-115, Bahia State, Brazil
| | - Augusto Cezar Magalhães Aleluia
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador 41650-010, Bahia State, Brazil
- Department of Natural Sciences, Southwestern Bahia State University (UESB), Campus Vitória da Conquista, Vitória da Conquista 45031-300, Bahia State, Brazil
| | - Thassila Nogueira Pitanga
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador 41650-010, Bahia State, Brazil
- Laboratory for Research in Genetics and Translational Hematology, Gonçalo Moniz Institute, FIOCRUZ-BA, Salvador 40296-710, Bahia State, Brazil
| | - Larissa Moraes dos Santos Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador 41650-010, Bahia State, Brazil
| | - Camila Oliveira Valente
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador 41650-010, Bahia State, Brazil
| | | | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CIMATEC University Center, Salvador 41650-010, Bahia State, Brazil
| |
Collapse
|
5
|
Kim SH, Españo E, Padasas BT, Son JH, Oh J, Webby RJ, Lee YR, Park CS, Kim JK. Influenza Virus-Derived CD8 T Cell Epitopes: Implications for the Development of Universal Influenza Vaccines. Immune Netw 2024; 24:e19. [PMID: 38974213 PMCID: PMC11224667 DOI: 10.4110/in.2024.24.e19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 07/09/2024] Open
Abstract
The influenza virus poses a global health burden. Currently, an annual vaccine is used to reduce influenza virus-associated morbidity and mortality. Most influenza vaccines have been developed to elicit neutralizing Abs against influenza virus. These Abs primarily target immunodominant epitopes derived from hemagglutinin (HA) or neuraminidase (NA) of the influenza virus incorporated in vaccines. However, HA and NA are highly variable proteins that are prone to antigenic changes, which can reduce vaccine efficacy. Therefore, it is essential to develop universal vaccines that target immunodominant epitopes derived from conserved regions of the influenza virus, enabling cross-protection among different virus variants. The internal proteins of the influenza virus serve as ideal targets for universal vaccines. These internal proteins are presented by MHC class I molecules on Ag-presenting cells, such as dendritic cells, and recognized by CD8 T cells, which elicit CD8 T cell responses, reducing the likelihood of disease and influenza viral spread by inducing virus-infected cell apoptosis. In this review, we highlight the importance of CD8 T cell-mediated immunity against influenza viruses and that of viral epitopes for developing CD8 T cell-based influenza vaccines.
Collapse
Affiliation(s)
- Sang-Hyun Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Erica Españo
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | | | - Ju-Ho Son
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Jihee Oh
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38195, USA
| | - Young-Ran Lee
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Korea
| | - Chan-Su Park
- Department of Pharmaceutics, College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Jeong-Ki Kim
- Department of Pharmacy, Korea University College of Pharmacy, Sejong 30019, Korea
| |
Collapse
|
6
|
Stein A, Pendrey C, Muscatello D, Van Buynder P, Fielding J, Menche J, Sullivan S. Estimates of Seasonal Influenza Burden That Could Be Averted by Improved Influenza Vaccines in the Australian Population Aged Under 65 Years, 2015-2019. Influenza Other Respir Viruses 2024; 18:e13289. [PMID: 38637994 PMCID: PMC11026859 DOI: 10.1111/irv.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND The interpretation of relative vaccine effectiveness (rVE) of improved influenza vaccines is complex. Estimation of burden averted is useful to contextualise their potential impact across different seasons. For the population aged under 65 years in Australia, this study estimated the additional morbidity and mortality that could be averted using improved influenza vaccines. METHODS We used observed, season-specific (2015-2019) influenza notification and influenza-coded hospitalisation frequencies and published modelled estimates of influenza-associated hospitalisations and deaths that occurred under the prevailing influenza vaccination coverage scenario. After back-calculating to the estimated burden in the population without vaccination, we applied published standard influenza vaccine effectiveness and coverage estimates to calculate the burden potentially averted by standard and improved influenza vaccines. A plausible range of rVE values were used, assuming 50% coverage. RESULTS The percentage point difference in absolute vaccine effectiveness (VE) of an improved vaccine compared to a standard vaccine is directly proportional to its rVE and inversely proportional to the effectiveness of the standard vaccine. The incremental burden averted by an improved vaccine is a function of both its difference in absolute VE and the severity of the influenza season. Assuming an rVE of 15% with 50% coverage, the improved vaccine was estimated to additionally avert 1517 to 12,641 influenza notifications, 287 to 1311 influenza-coded hospitalisations and 9 to 33 modelled all-cause influenza deaths per year compared to the standard vaccine. CONCLUSIONS Improved vaccines can have substantial clinical and population impact, particularly when the effectiveness of standard vaccines is low, and burden is high.
Collapse
Affiliation(s)
| | - Catherine G. A. Pendrey
- WHO Collaborating Centre for Reference and Research on InfluenzaRoyal Melbourne Hospital, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- National Centre for Epidemiology and Population HealthAustralian National UniversityCanberraAustralia
| | | | | | - James E. Fielding
- Victorian Infectious Diseases Reference Laboratoryat the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | | | - Sheena G. Sullivan
- WHO Collaborating Centre for Reference and Research on InfluenzaRoyal Melbourne Hospital, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Department of Infectious DiseasesUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Department of EpidemiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
7
|
Deng Y, Tang M, Ross TM, Schmidt AG, Chakraborty AK, Lingwood D. Repeated vaccination with homologous influenza hemagglutinin broadens human antibody responses to unmatched flu viruses. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.27.24303943. [PMID: 38585939 PMCID: PMC10996724 DOI: 10.1101/2024.03.27.24303943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The on-going diversification of influenza virus necessicates annual vaccine updating. The vaccine antigen, the viral spike protein hemagglutinin (HA), tends to elicit strain-specific neutralizing activity, predicting that sequential immunization with the same HA strain will boost antibodies with narrow coverage. However, repeated vaccination with homologous SARS-CoV-2 vaccine eventually elicits neutralizing activity against highly unmatched variants, questioning this immunological premise. We evaluated a longitudinal influenza vaccine cohort, where each year the subjects received the same, novel H1N1 2009 pandemic vaccine strain. Repeated vaccination gradually enhanced receptor-blocking antibodies (HAI) to highly unmatched H1N1 strains within individuals with no initial memory recall against these historical viruses. An in silico model of affinity maturation in germinal centers integrated with a model of differentiation and expansion of memory cells provides insight into the mechanisms underlying these results and shows how repeated exposure to the same immunogen can broaden the antibody response against diversified targets.
Collapse
|
8
|
Rumi F, Basile M, Cicchetti A, Alvarez FP, Azzi MV, Muzii B. Cost-effectiveness for high dose quadrivalent versus the adjuvanted quadrivalent influenza vaccine in the Italian older adult population. Front Public Health 2023; 11:1200116. [PMID: 38026422 PMCID: PMC10679352 DOI: 10.3389/fpubh.2023.1200116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Objectives To assess the cost-effectiveness of switching from adjuvanted quadrivalent vaccine (aQIV) to high-dose quadrivalent influenza vaccine (HD-QIV) in those aged ≥65 years from the Italian National Health Service perspective. Methods We developed a decision tree model over a 1-year time-horizon to assess influenza-related costs and health outcomes. Two hospitalization approaches were considered: "hospitalization conditional on developing influenza" and "hospitalization possibly related to Influenza." The first approach considered only hospitalizations with influenza ICD-9-CM diagnosis codes. The second included hospitalizations for cardiorespiratory events possibly related to influenza to better capture the "hidden burden". Since comparative efficacy of high-dose quadrivalent influenza vaccine versus adjuvanted quadrivalent vaccine was lacking, we assumed relative efficacy versus a common comparator, standard-dose influenza quadrivalent vaccines (SD-QIV). We assumed the relative efficacy of HD-QIV vs. SD-QIV was 24.2 and 18.2% for the first and second hospitalization approaches, respectively, based on published information. Due to lack of comparative efficacy data for aQIV vs. SD-QIV, we assumed three different scenarios: 0, 6, and 12% relative efficacy in scenarios 1, 2, and 3, respectively. Results For the first hospitalization approach, HD-QIV was a cost-effective alternative to aQIV in all scenarios at a willingness-to-pay threshold of €30,000 per Quality Adjusted Life Years. The incremental cost-effectiveness ratios across the scenarios were €7,301, €9,805, and €14,733, respectively, much lower than the willingness-to-pay per Quality Adjusted Life Years threshold. For the second hospitalization approach, HD-QIV was a dominant alternative to aQIV across all scenarios. The robustness of the results was confirmed in one-way and probabilistic sensitivity analyses. Conclusion Switching to HD-QIV from aQIV for the older adult in Italy would improve health-related outcomes, and would be cost-effective or cost saving.
Collapse
Affiliation(s)
- Filippo Rumi
- Alta Scuola di Economia e Management dei Sistemi Sanitari, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michele Basile
- Alta Scuola di Economia e Management dei Sistemi Sanitari, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Americo Cicchetti
- Alta Scuola di Economia e Management dei Sistemi Sanitari, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | |
Collapse
|
9
|
Chang LA, Choi A, Rathnasinghe R, Warang P, Noureddine M, Jangra S, Chen Y, De Geest BG, Schotsaert M. Influenza breakthrough infection in vaccinated mice is characterized by non-pathological lung eosinophilia. Front Immunol 2023; 14:1217181. [PMID: 37600776 PMCID: PMC10437116 DOI: 10.3389/fimmu.2023.1217181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Eosinophils are important mediators of mucosal tissue homeostasis, anti-helminth responses, and allergy. Lung eosinophilia has previously been linked to aberrant Type 2-skewed T cell responses to respiratory viral infection and may also be a consequence of vaccine-associated enhanced respiratory disease (VAERD), particularly in the case of respiratory syncytial virus (RSV) and the formalin-inactivated RSV vaccine. We previously reported a dose-dependent recruitment of eosinophils to the lungs of mice vaccinated with alum-adjuvanted trivalent inactivated influenza vaccine (TIV) following a sublethal, vaccine-matched H1N1 (A/New Caledonia/20/1999; NC99) influenza challenge. Given the differential role of eosinophil subset on immune function, we conducted the investigations herein to phenotype the lung eosinophils observed in our model of influenza breakthrough infection. Here, we demonstrate that eosinophil influx into the lungs of vaccinated mice is adjuvant- and sex-independent, and only present after vaccine-matched sublethal influenza challenge but not in mock-challenged mice. Furthermore, vaccinated and challenged mice had a compositional shift towards more inflammatory eosinophils (iEos) compared to resident eosinophils (rEos), resembling the shift observed in ovalbumin (OVA)-sensitized allergic control mice, however without any evidence of enhanced morbidity or aberrant inflammation in lung cytokine/chemokine signatures. Furthermore, we saw a lung eosinophil influx in the context of a vaccine-mismatched challenge. Additional layers of heterogeneity in the eosinophil compartment were observed via unsupervised clustering analysis of flow cytometry data. Our collective findings are a starting point for more in-depth phenotypic and functional characterization of lung eosinophil subsets in the context of vaccine- and infection-induced immunity.
Collapse
Affiliation(s)
- Lauren A. Chang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Angela Choi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Moataz Noureddine
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sonia Jangra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Yong Chen
- Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | | | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
10
|
Martins JP, Santos M, Martins A, Felgueiras M, Santos R. Seasonal Influenza Vaccine Effectiveness in Persons Aged 15-64 Years: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2023; 11:1322. [PMID: 37631889 PMCID: PMC10459161 DOI: 10.3390/vaccines11081322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Influenza is a respiratory disease caused by the influenza virus, which is highly transmissible in humans. This paper presents a systematic review and meta-analysis of randomized controlled trials (RCTs) and test-negative designs (TNDs) to assess the vaccine effectiveness (VE) of seasonal influenza vaccines (SIVs) in humans aged 15 to 64 years. An electronic search to identify all relevant studies was performed. The outcome measure of interest was VE on laboratory-confirmed influenza (any strain). Quality assessment was performed using the Cochrane risk-of-bias tool for RCTs and the ROBINS-I tool for TNDs. The search identified a total of 2993 records, but only 123 studies from 73 papers were included in the meta-analysis. Of these studies, 9 were RCTs and 116 were TNDs. The pooled VE was 48% (95% CI: 42-54) for RCTs, 55.4% (95% CI: 43.2-64.9) when there was a match between the vaccine and most prevalent circulating strains and 39.3% (95% CI: 23.5-51.9) otherwise. The TNDs' adjusted VE was equal to 39.9% (95% CI: 31-48), 45.1 (95% CI: 38.7-50.8) when there was a match and 35.1 (95% CI: 29.0-40.7) otherwise. The match between strains included in the vaccine and strains in circulation is the most important factor in the VE. It increases by more than 25% when there is a match with the most prevalent circulating strains. The laboratorial method for confirmation of influenza is a possible source of bias when estimating VE.
Collapse
Affiliation(s)
- João Paulo Martins
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- CEAUL—Centro de Estatística e Aplicações, Faculdade de Ciências, Campo Grande, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.F.); (R.S.)
| | - Marlene Santos
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Centro de Investigação em Saúde e Ambiente, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - André Martins
- Centro de Investigação em Saúde e Ambiente, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
| | - Miguel Felgueiras
- CEAUL—Centro de Estatística e Aplicações, Faculdade de Ciências, Campo Grande, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.F.); (R.S.)
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, Campus 2, Morro do Lena—Alto do Vieiro, Apartado 4163, 2411-901 Leiria, Portugal
| | - Rui Santos
- CEAUL—Centro de Estatística e Aplicações, Faculdade de Ciências, Campo Grande, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (M.F.); (R.S.)
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, Campus 2, Morro do Lena—Alto do Vieiro, Apartado 4163, 2411-901 Leiria, Portugal
| |
Collapse
|
11
|
Castrodeza-Sanz J, Sanz-Muñoz I, Eiros JM. Adjuvants for COVID-19 Vaccines. Vaccines (Basel) 2023; 11:vaccines11050902. [PMID: 37243006 DOI: 10.3390/vaccines11050902] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
In recent decades, the improvement of traditional vaccines has meant that we have moved from inactivated whole virus vaccines, which provoke a moderate immune response but notable adverse effects, to much more processed vaccines such as protein subunit vaccines, which despite being less immunogenic have better tolerability profiles. This reduction in immunogenicity is detrimental to the prevention of people at risk. For this reason, adjuvants are a good solution to improve the immunogenicity of this type of vaccine, with much better tolerability profiles and a low prevalence of side effects. During the COVID-19 pandemic, vaccination focused on mRNA-type and viral vector vaccines. However, during the years 2022 and 2023, the first protein-based vaccines began to be approved. Adjuvanted vaccines are capable of inducing potent responses, not only humoral but also cellular, in populations whose immune systems are weak or do not respond properly, such as the elderly. Therefore, this type of vaccine should complete the portfolio of existing vaccines, and could help to complete vaccination against COVID-19 worldwide now and over the coming years. In this review we analyze the advantages and disadvantages of adjuvants, as well as their use in current and future vaccines against COVID-19.
Collapse
Affiliation(s)
- Javier Castrodeza-Sanz
- National Influenza Centre, 47005 Valladolid, Spain
- Preventive Medicine and Public Health Unit, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
| | - Iván Sanz-Muñoz
- National Influenza Centre, 47005 Valladolid, Spain
- Instituto de Estudios de Ciencias de la Salud de Castilla y León, ICSCYL, 42002 Soria, Spain
| | - Jose M Eiros
- National Influenza Centre, 47005 Valladolid, Spain
- Microbiology Unit, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
- Microbiology Unit, Hospital Universitario Río Hortega, 47013 Valladolid, Spain
| |
Collapse
|
12
|
Jacob J, Biering-Sørensen T, Holger Ehlers L, Edwards CH, Mohn KGI, Nilsson A, Hjelmgren J, Ma W, Sharma Y, Ciglia E, Mould-Quevedo J. Cost-Effectiveness of Vaccination of Older Adults with an MF59 ®-Adjuvanted Quadrivalent Influenza Vaccine Compared to Standard-Dose and High-Dose Vaccines in Denmark, Norway, and Sweden. Vaccines (Basel) 2023; 11:753. [PMID: 37112667 PMCID: PMC10145635 DOI: 10.3390/vaccines11040753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Individuals aged 65 years and above are at increased risk of complications and death from influenza compared with any other age group. Enhanced vaccines, as the MF59®-adjuvanted quadrivalent influenza vaccine (aQIV) and the high-dose quadrivalent influenza vaccine (HD-QIV), provide increased protection for older adults in comparison to the traditional standard-dose quadrivalent influenza vaccines (SD-QIV). This study aimed to assess the cost-effectiveness of aQIV compared to SD-QIV and HD-QIV in Denmark, Norway, and Sweden for adults aged ≥65 years. A static decision tree model was used to evaluate costs and outcomes of different vaccination strategies from healthcare payer and societal perspectives. This model projects that compared to SD-QIV, vaccination with aQIV could prevent a combined total of 18,772 symptomatic influenza infections, 925 hospitalizations, and 161 deaths in one influenza season across the three countries. From a healthcare payer perspective, the incremental costs per quality adjusted life year (QALY) gained with aQIV versus SD-QIV were EUR 10,170/QALY in Denmark, EUR 12,515/QALY in Norway, and EUR 9894/QALY in Sweden. The aQIV was cost saving compared with HD-QIV. This study found that introducing aQIV to the entire population aged ≥65 years may contribute to reducing the disease and economic burden associated with influenza in these countries.
Collapse
Affiliation(s)
| | - Tor Biering-Sørensen
- Department of Cardiology, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
- Center for Translational Cardiology and Pragmatic Randomized Trials, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Christina H Edwards
- Department of Public Health and Nursing, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Kristin Greve-Isdahl Mohn
- Influenza Centre, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Anna Nilsson
- Infectious Disease Unit, Malmö, Skåne University Hospital, 214 28 Malmö, Sweden
| | - Jonas Hjelmgren
- The Swedish Institute for Health Economics, 223 61 Lund, Sweden
| | | | | | | | | |
Collapse
|
13
|
Trimeric, APC-Targeted Subunit Vaccines Protect Mice against Seasonal and Pandemic Influenza. J Virol 2023; 97:e0169422. [PMID: 36719241 PMCID: PMC9972960 DOI: 10.1128/jvi.01694-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Viral subunit vaccines contain the specific antigen deemed most important for development of protective immune responses. Typically, the chosen antigen is a surface protein involved in cellular entry of the virus, and neutralizing antibodies may prevent this. For influenza, hemagglutinin (HA) is thus a preferred antigen. However, the natural trimeric form of HA is often not considered during subunit vaccine development. Here, we have designed a vaccine format that maintains the trimeric HA conformation while targeting antigen toward major histocompatibility complex class II (MHCII) molecules or chemokine receptors on antigen-presenting cells (APC) for enhanced immunogenicity. Results demonstrated that a single DNA vaccination induced strong antibody and T-cell responses in mice. Importantly, a single DNA vaccination also protected mice from lethal challenges with influenza viruses H1N1 and H5N1. To further evaluate the versatility of the format, we developed MHCII-targeted HA from influenza A/California/04/2009(H1N1) as a protein vaccine and benchmarked this against Pandemrix and Flublok. These vaccine formats are different, but similar immune responses obtained with lower vaccine doses indicated that the MHCII-targeted subunit vaccine has an immunogenicity and efficacy that warrants progression to larger animals and humans. IMPORTANCE Subunit vaccines present only selected viral proteins to the immune system and allow for safe and easy production. Here, we have developed a novel vaccine where influenza hemagglutinin is presented in the natural trimeric form and then steered toward antigen-presenting cells for increased immunogenicity. We demonstrate efficient induction of antibodies and T-cell responses, and demonstrate that the vaccine format can protect mice against influenza subtypes H1N1, H5N1, and H7N1.
Collapse
|
14
|
Teljeur C, Comber L, Jordan K, Murchu EO, Harrington P, O'Neill M, Ryan M. Challenges encountered during the systematic review of newer and enhanced influenza vaccines and recommendations for the future. Rev Med Virol 2022; 32:e2335. [PMID: 35191127 DOI: 10.1002/rmv.2335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/08/2022]
Abstract
There are a variety of challenges in the conduct of systematic reviews of influenza vaccines. We describe our experience of completing four systematic reviews of newer and enhanced inactivated seasonal influenza vaccines. The reporting of the included studies created significant challenges for study identification, data extraction and analysis. Those challenges have implications for the resources required to conduct reviews and, more significantly, for the accuracy of the estimated treatment effect. There is a substantial burden of morbidity and mortality associated with seasonal influenza, and the evidence used to support vaccination strategies requires regular review. An improved review process will facilitate robust decision-making both nationally and internationally. We recommend the development of reporting guidelines, increased engagement between researchers and decision makers, a database of identified trials, and research into search optimisation.
Collapse
Affiliation(s)
- Conor Teljeur
- Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Laura Comber
- Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Karen Jordan
- Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Eamon O Murchu
- Health Information and Quality Authority (HIQA), Dublin, Ireland
| | | | - Michelle O'Neill
- Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Máirín Ryan
- Health Information and Quality Authority (HIQA), Dublin, Ireland
- Department of Pharmacology & Therapeutics, Trinity College Dublin, Trinity Health Sciences, Dublin, Ireland
| |
Collapse
|
15
|
Okoli GN, Reddy VK, Lam OLT, Racovitan F, Al-Yousif Y, Askin N. Characteristics and methodological standards across systematic reviews with Meta-analysis of efficacy and/or effectiveness of influenza vaccines: an overview of reviews. Infect Dis (Lond) 2022; 54:861-880. [PMID: 36000220 DOI: 10.1080/23744235.2022.2114537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND While systematic reviews (SR) generally suggest that vaccination is an effective way to prevent influenza infection, it is not clear if these conclusions are based on high quality SR methods. As such, we systematically identified, critically appraised, and summarised the characteristics and adherence to methodological standards in SRs with meta-analysis of efficacy/effectiveness of influenza vaccines. METHODS We searched MEDLINE, Embase, Scopus, CINAHL, Global Health, and CDSR for English-language SR publications up to July 11, 2022. We summarised the characteristics, adherence to methodological standards and SR quality (AMSTAR 2). RESULTS From 11,193 retrieved citations, we included 48 publications (47 SRs). Seventy-five percent were of a critically low quality, 19% of a low quality, 2% of a moderate quality, and 4% of a high quality. Thirteen percent were industry-funded, about 13% co-authored by industry employee(s), and 4% commissioned by an organisation or authority. Only 45% percent reported protocol registration, 6% reported collaboration with a knowledge synthesis librarian/information specialist, and 60% utilised a reporting checklist (e.g. PRISMA). CONCLUSIONS AND RELEVANCE SRs with meta-analysis of efficacy/effectiveness of influenza vaccines are mostly of critically low quality and even the more recent reviews did not follow current best SR practices. These findings are significant in view of the controversies that surround influenza vaccines, and the use of SRs in informed decision-making. However, the findings do not justify curtailment or cessation of influenza vaccine use as vaccines continue to offer substantial net public health benefit.HighlightsWe systematically identified, critically appraised, and summarised the characteristics and adherence to methodological standards in 47 systematic reviews with meta-analysis of efficacy/effectiveness of influenza vaccines.13% of the reviews were industry-funded.About 13% of the reviews were co-authored by industry employee(s).4% of the reviews were commissioned by an organisation/authority.45% of the reviews reported protocol registration.6% of the reviews reported collaborating with a knowledge synthesis librarian/information specialist to prepare the search strategy.60% of the reviews reported using the PRISMA (or similar) checklist.75% of the reviews were judged to be of critically low quality; 19% of low quality; 2% of moderate quality; 4% of high quality.
Collapse
Affiliation(s)
- George N Okoli
- Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Vaccine and Drug Evaluation Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Viraj K Reddy
- Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Otto L T Lam
- Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Florentin Racovitan
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Yahya Al-Yousif
- Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Nicole Askin
- Neil John Maclean Health Sciences Library, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
16
|
Nguyen VH, Roy B. Modelling the Economic Impact of lnfluenza Vaccine Programs with the Cell-Based Quadrivalent Influenza Vaccine and Adjuvanted Trivalent Influenza Vaccine in Canada. Vaccines (Basel) 2022; 10:vaccines10081257. [PMID: 36016145 PMCID: PMC9412987 DOI: 10.3390/vaccines10081257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
In Canada, approximately 12,000 people annually are hospitalized with influenza. While vaccination is the most effective method for reducing the burden of seasonal influenza, the propagation of vaccine virus strains in eggs can result in egg adaption, resulting in reduced antigenic similarity to circulating strains and thus lower vaccine effectiveness (VE). Cell-based propagation methods avoid these alterations and therefore may be more effective than egg-propagation vaccines. We evaluated three different scenarios: (1) egg-based quadrivalent influenza vaccine (QIVe) for individuals <65 years and adjuvanted trivalent influenza vaccine (aTIV) for ≥65 years; (2) QIVe (<65 years) and high-dose QIV (HD −; QIV; ≥65 years); and (3) cell-based derived QIV (QIVc; <65 years) and aTIV (≥65 years) compared with a baseline scenario of QIVe for all age groups. Modelling was performed using a dynamic age-structured SEIR model, which assessed each strain individually using data from the 2012−2019 seasons. Probabilistic sensitivity analysis assessed the robustness of the results with respect to variation in absolute VE, relative VE, number of egg-adapted seasons, and economic parameters. QIVe + aTIV was cost-saving compared with the baseline scenario (QIVe for all), and QIVe + HD − QIV was not cost-effective in the majority of simulations, reflecting the high acquisition cost of HD − QIV. Overall, while the incremental benefits may vary by influenza season, QIVc + aTIV resulted in the greatest reductions in cases, hospitalizations, and mortality, and was cost-effective (ICER < CAD 50,000) in all simulations.
Collapse
Affiliation(s)
- Van Hung Nguyen
- VHN Consulting Inc., 95 McCulloch, Montreal, QC H2V3L8, Canada
| | - Bertrand Roy
- Seqirus Canada, 16766 Trans-Canada Hwy Suite 504, Kirkland, QC H9H 4M7, Canada
- Correspondence:
| |
Collapse
|