1
|
Gray WL. Insertion of foreign genes into the simian varicella virus genome by Tn7-mediated site-specific transposition. J Virol Methods 2024; 327:114936. [PMID: 38583808 PMCID: PMC11129925 DOI: 10.1016/j.jviromet.2024.114936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
A Tn7-transposition approach was utilized for site-specific insertion of foreign genes into the genome of simian varicella virus (SVV), the causative agent of simian varicella in nonhuman primates. The severe acute respiratory syndrome coronavirus (SARS-CoV-2) nucleocapsid (N) gene and receptor binding domain (RBD) of the spike gene were inserted into the ORF 14 region of the SVV genome cloned into a bacterial artificial chromosome and then transfected into Vero cells to generate the infectious recombinant SVV (rSVV). The rSVV replicated efficiently in infected Vero cells and expressed the N and RBD antigens as indicated by immunoblot and immunofluorescence assays. Tn7-mediated transposition provides a rapid and efficient method for constructing rSVVs which may be evaluated as live-attenuated vaccines.
Collapse
Affiliation(s)
- Wayne L Gray
- Biology Department, University of Mississippi, MS 38677, USA.
| |
Collapse
|
2
|
Jia YH, Dong YB, Jiang HY, Li AJ. Effects of herpes zoster vaccination and antiviral treatment on the risk of stroke: a systematic review and meta-analysis. Front Neurol 2023; 14:1176920. [PMID: 37265460 PMCID: PMC10231675 DOI: 10.3389/fneur.2023.1176920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Background Evidence suggests that there is an increased risk of stroke after herpes zoster (HZ). However, reports on the effects of HZ vaccination (HZV) and antiviral treatment on stroke risk are inconsistent. Thus, we examined these associations in a meta-analysis. Methods To identify relevant studies, we searched three databases for articles published up to January 2023. Random-effect models were examined to determine overall pooled estimates and 95% confidence intervals (CIs). Results This review included 12 observational studies (six on HZV and seven on antiviral treatment). When comparing vaccinated and unvaccinated patients, vaccination was found to be associated with a lower risk of stroke (OR, 0.78; 95% CI 0.68-0.9; P = 0.001). A meta-analysis of self-controlled case series (SCCS) revealed evidence of a reduced OR in individuals who received the vaccine (OR, 1.14; 95% CI 0.94-1.37; P = 0.181) compared with unvaccinated individuals (OR, 1.36; 95% CI 1.15-1.61; P < 0.001). Compared with untreated patients, antiviral therapy was not associated with a reduced risk of stroke (OR, 1.13; 95% CI 0.94-1.36; P = 0.201). The meta-analysis of the SCCS showed no evidence of a reduced OR in individuals who received antiviral therapy (OR, 1.33; 95% CI 1.17-1.51; P < 0.001) compared to untreated individuals (OR, 1.45; 95% CI 1.25-1.69; P < 0.001). Conclusions This meta-analysis suggests that the HZV, but not antiviral treatment, decreases the odds of developing stroke.
Collapse
Affiliation(s)
- Yong-Hui Jia
- Pharmacy Department, The 960th Hospital of PLA, Jinan, China
| | - Yu-Bo Dong
- Pharmacy Department, The 960th Hospital of PLA, Jinan, China
| | - Hai-Yin Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ai-Juan Li
- Pharmacy Department, The 960th Hospital of PLA, Jinan, China
| |
Collapse
|
3
|
Pahar B, Gray W, Fahlberg M, Grasperge B, Hunter M, Das A, Mabee C, Aye PP, Schiro F, Hensley K, Ratnayake A, Goff K, LaBranche C, Shen X, Tomaras GD, DeMarco CT, Montefiori D, Kissinger P, Marx PA, Traina-Dorge V. Recombinant Simian Varicella Virus-Simian Immunodeficiency Virus Vaccine Induces T and B Cell Functions and Provides Partial Protection against Repeated Mucosal SIV Challenges in Rhesus Macaques. Viruses 2022; 14:2819. [PMID: 36560823 PMCID: PMC9853323 DOI: 10.3390/v14122819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
HIV vaccine mediated efficacy, using an expanded live attenuated recombinant varicella virus-vectored SIV rSVV-SIVgag/env vaccine prime with adjuvanted SIV-Env and SIV-Gag protein boosts, was evaluated in a female rhesus macaques (RM) model against repeated intravaginal SIV challenges. Vaccination induced anti-SIV IgG responses and neutralizing antibodies were found in all vaccinated RMs. Three of the eight vaccinated RM remained uninfected (vaccinated and protected, VP) after 13 repeated challenges with the pathogenic SIVmac251-CX-1. The remaining five vaccinated and infected (VI) macaques had significantly reduced plasma viral loads compared with the infected controls (IC). A significant increase in systemic central memory CD4+ T cells and mucosal CD8+ effector memory T-cell responses was detected in vaccinated RMs compared to controls. Variability in lymph node SIV-Gag and Env specific CD4+ and CD8+ T cell cytokine responses were detected in the VI RMs while all three VP RMs had more durable cytokine responses following vaccination and prior to challenge. VI RMs demonstrated predominately SIV-specific monofunctional cytokine responses while the VP RMs generated polyfunctional cytokine responses. This study demonstrates that varicella virus-vectored SIV vaccination with protein boosts induces a 37.5% efficacy rate against pathogenic SIV challenge by generating mucosal memory, virus specific neutralizing antibodies, binding antibodies, and polyfunctional T-cell responses.
Collapse
Affiliation(s)
- Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
- School of Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Wayne Gray
- Biology Department, University of Mississippi, Oxford, MS 38677, USA
| | - Marissa Fahlberg
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Brooke Grasperge
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Meredith Hunter
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Christopher Mabee
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Pyone Pyone Aye
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Faith Schiro
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Krystle Hensley
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Aneeka Ratnayake
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Kelly Goff
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Celia LaBranche
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaoying Shen
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Georgia D. Tomaras
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - C. Todd DeMarco
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - David Montefiori
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Patricia Kissinger
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Preston A. Marx
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Vicki Traina-Dorge
- School of Medicine, Tulane University, New Orleans, LA 70118, USA
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| |
Collapse
|
4
|
Gray WL. Comparative Analysis of the Simian Varicella Virus and Varicella Zoster Virus Genomes. Viruses 2022; 14:v14050844. [PMID: 35632586 PMCID: PMC9144398 DOI: 10.3390/v14050844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
Varicella zoster virus (VZV) and simian varicella virus (SVV) cause varicella (chickenpox) in children and nonhuman primates, respectively. After resolution of acute disease, the viruses establish latent infection in neural ganglia, after which they may reactivate to cause a secondary disease, such as herpes zoster. SVV infection of nonhuman primates provides a model to investigate VZV pathogenesis and antiviral strategies. The VZV and SVV genomes are similar in size and structure and share 70–75% DNA homology. SVV and VZV DNAs are co-linear in gene arrangement with the exception of the left end of the viral genomes. Viral gene expression is regulated into immediate early, early, and late transcription during in vitro and in vivo infection. During viral latency, VZV and SVV gene expression is limited to transcription of a viral latency-associated transcript (VLT). VZV and SVV are closely related alphaherpesviruses that likely arose from an ancestral varicella virus that evolved through cospeciation into species-specific viruses.
Collapse
Affiliation(s)
- Wayne L Gray
- Biology Department, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
5
|
He Q, Wu Y, Wang M, Chen S, Jia R, Yang Q, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. ICP22/IE63 Mediated Transcriptional Regulation and Immune Evasion: Two Important Survival Strategies for Alphaherpesviruses. Front Immunol 2021; 12:743466. [PMID: 34925320 PMCID: PMC8674840 DOI: 10.3389/fimmu.2021.743466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
In the process of infecting the host, alphaherpesviruses have derived a series of adaptation and survival strategies, such as latent infection, autophagy and immune evasion, to survive in the host environment. Infected cell protein 22 (ICP22) or its homologue immediate early protein 63 (IE63) is a posttranslationally modified multifunctional viral regulatory protein encoded by all alphaherpesviruses. In addition to playing an important role in the efficient use of host cell RNA polymerase II, it also plays an important role in the defense process of the virus overcoming the host immune system. These two effects of ICP22/IE63 are important survival strategies for alphaherpesviruses. In this review, we summarize the complex mechanism by which the ICP22 protein regulates the transcription of alphaherpesviruses and their host genes and the mechanism by which ICP22/IE63 participates in immune escape. Reviewing these mechanisms will also help us understand the pathogenesis of alphaherpesvirus infections and provide new strategies to combat these viral infections.
Collapse
Affiliation(s)
- Qing He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Gray WL, Wichman G, Das A, Traina-Dorge V. An enzyme-linked immunosorbent assay (ELISA) to determine Simian Varicella Virus antibody titers in infected rhesus monkeys (Macaca mulatta). J Med Primatol 2021; 51:20-26. [PMID: 34778968 DOI: 10.1111/jmp.12552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Simian varicella virus (SVV) is a primate herpesvirus that causes a natural varicella-like disease in Old World monkeys and may cause epizootics in facilities housing nonhuman primates. SVV infection of nonhuman primates is used as an experimental model to investigate varicella pathogenesis and to develop antiviral strategies. METHODS An indirect enzyme-linked immunosorbent assay (ELISA) was developed to detect SVV antibodies in infected rhesus macaque monkeys. RESULTS An ELISA determined SVV antibody titers following experimental infection. SVV IgG was detected by day 14 post-infection and remained elevated for at least 84 days. CONCLUSIONS The SVV ELISA is a safe and rapid approach to confirm SVV seropositivity and to determine SVV antibody titers in naturally and experimentally SVV-infected monkeys. In addition to being a useful diagnostic assay to rapidly confirm acute disease or past SVV infection, the SVV ELISA is a valuable epidemiological tool to determine the incidence of SVV in non-human primate facilities.
Collapse
Affiliation(s)
- Wayne L Gray
- Biology Department, University of Mississippi, Oxford, Mississippi, 38677, USA
| | - Grant Wichman
- Biology Department, University of Mississippi, Oxford, Mississippi, 38677, USA
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisina, 70433, USA
| | - Vicki Traina-Dorge
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisina, 70433, USA
| |
Collapse
|
7
|
Current In Vivo Models of Varicella-Zoster Virus Neurotropism. Viruses 2019; 11:v11060502. [PMID: 31159224 PMCID: PMC6631480 DOI: 10.3390/v11060502] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2019] [Revised: 04/24/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
Varicella-zoster virus (VZV), an exclusively human herpesvirus, causes chickenpox and establishes a latent infection in ganglia, reactivating decades later to produce zoster and associated neurological complications. An understanding of VZV neurotropism in humans has long been hampered by the lack of an adequate animal model. For example, experimental inoculation of VZV in small animals including guinea pigs and cotton rats results in the infection of ganglia but not a rash. The severe combined immune deficient human (SCID-hu) model allows the study of VZV neurotropism for human neural sub-populations. Simian varicella virus (SVV) infection of rhesus macaques (RM) closely resembles both human primary VZV infection and reactivation, with analyses at early times after infection providing valuable information about the extent of viral replication and the host immune responses. Indeed, a critical role for CD4 T-cell immunity during acute SVV infection as well as reactivation has emerged based on studies using RM. Herein we discuss the results of efforts from different groups to establish an animal model of VZV neurotropism.
Collapse
|
8
|
Reactivation of Simian Varicella Virus in Rhesus Macaques after CD4 T Cell Depletion. J Virol 2019; 93:JVI.01375-18. [PMID: 30404798 DOI: 10.1128/jvi.01375-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023] Open
Abstract
Rhesus macaques intrabronchially inoculated with simian varicella virus (SVV), the counterpart of human varicella-zoster virus (VZV), developed primary infection with viremia and rash, which resolved upon clearance of viremia, followed by the establishment of latency. To assess the role of CD4 T cell immunity in reactivation, monkeys were treated with a single 50-mg/kg dose of a humanized monoclonal anti-CD4 antibody; within 1 week, circulating CD4 T cells were reduced from 40 to 60% to 5 to 30% of the total T cell population and remained low for 2 months. Very low viremia was seen only in some of the treated monkeys. Zoster rash developed after 7 days in the monkey with the most extensive CD4 T cell depletion (5%) and in all other monkeys at 10 to 49 days posttreatment, with recurrent zoster in one treated monkey. SVV DNA was detected in the lung from two of five monkeys, in bronchial lymph nodes from one of the five monkeys, and in ganglia from at least two dermatomes in three of five monkeys. Immunofluorescence analysis of skin rash, lungs, lymph nodes, and ganglia revealed SVV ORF63 protein at the following sites: sweat glands in skin; type II cells in lung alveoli, macrophages, and dendritic cells in lymph nodes; and the neuronal cytoplasm of ganglia. Detection of SVV antigen in multiple tissues upon CD4 T cell depletion and virus reactivation suggests a critical role for CD4 T cell immunity in controlling varicella virus latency.IMPORTANCE Reactivation of latent VZV in humans can result in serious neurological complications. VZV-specific cell-mediated immunity is critical for the maintenance of latency. Similar to VZV in humans, SVV causes varicella in monkeys, establishes latency in ganglia, and reactivates to produce shingles. Here, we show that depletion of CD4 T cells in rhesus macaques results in SVV reactivation, with virus antigens found in zoster rash and SVV DNA and antigens found in lungs, lymph nodes, and ganglia. These results suggest the critical role of CD4 T cell immunity in controlling varicella virus latency.
Collapse
|
9
|
The ORF61 Protein Encoded by Simian Varicella Virus and Varicella-Zoster Virus Inhibits NF-κB Signaling by Interfering with IκBα Degradation. J Virol 2015; 89:8687-700. [PMID: 26085158 DOI: 10.1128/jvi.01149-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/04/2015] [Accepted: 06/12/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Varicella-zoster virus (VZV) causes chickenpox upon primary infection and establishes latency in ganglia. Reactivation from latency causes herpes zoster, which may be complicated by postherpetic neuralgia. Innate immunity mediated by interferon and proinflammatory cytokines represents the first line of immune defense upon infection and reactivation. VZV is known to interfere with multiple innate immune signaling pathways, including the central transcription factor NF-κB. However, the role of these inhibitory mechanisms in vivo is unknown. Simian varicella virus (SVV) infection of rhesus macaques recapitulates key aspects of VZV pathogenesis, and this model thus permits examination of the role of immune evasion mechanisms in vivo. Here, we compare SVV and VZV with respect to interference with NF-κB activation. We demonstrate that both viruses prevent ubiquitination of the NF-κB inhibitor IκBα, whereas SVV additionally prevents IκBα phosphorylation. We show that the ORF61 proteins of VZV and SVV are sufficient to prevent IκBα ubiquitination upon ectopic expression. We further demonstrate that SVV ORF61 interacts with β-TrCP, a subunit of the SCF ubiquitin ligase complex that mediates the degradation of IκBα. This interaction seems to inactivate SCF-mediated protein degradation in general, since the unrelated β-TrCP target Snail is also stabilized by ORF61. In addition to ORF61, SVV seems to encode additional inhibitors of the NF-κB pathway, since SVV with ORF61 deleted still prevented IκBα phosphorylation and degradation. Taken together, our data demonstrate that SVV interferes with tumor necrosis factor alpha (TNF-α)-induced NF-κB activation at multiple levels, which is consistent with the importance of these countermechanisms for varicella virus infection. IMPORTANCE The role of innate immunity during the establishment of primary infection, latency, and reactivation by varicella-zoster virus (VZV) is incompletely understood. Since infection of rhesus macaques by simian varicella virus (SVV) is used as an animal model of VZV infection, we characterized the molecular mechanism by which SVV interferes with innate immune activation. Specifically, we studied how SVV prevents activation of the transcription factor NF-κB, a central factor in eliciting proinflammatory responses. The identification of molecular mechanisms that counteract innate immunity might ultimately lead to better vaccines and treatments for VZV, since overcoming these mechanisms, either by small-molecule inhibition or by genetic modification of vaccine strains, is expected to reduce the pathogenic potential of VZV. Moreover, using SVV infection of rhesus macaques, it will be possible to study how increasing the vulnerability of varicella viruses to innate immunity will impact viral pathogenesis.
Collapse
|
10
|
Varicella Viruses Inhibit Interferon-Stimulated JAK-STAT Signaling through Multiple Mechanisms. PLoS Pathog 2015; 11:e1004901. [PMID: 25973608 PMCID: PMC4431795 DOI: 10.1371/journal.ppat.1004901] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2014] [Accepted: 04/21/2015] [Indexed: 12/17/2022] Open
Abstract
Varicella zoster virus (VZV) causes chickenpox in humans and, subsequently, establishes latency in the sensory ganglia from where it reactivates to cause herpes zoster. Infection of rhesus macaques with simian varicella virus (SVV) recapitulates VZV pathogenesis in humans thus representing a suitable animal model for VZV infection. While the type I interferon (IFN) response has been shown to affect VZV replication, the virus employs counter mechanisms to prevent the induction of anti-viral IFN stimulated genes (ISG). Here, we demonstrate that SVV inhibits type I IFN-activated signal transduction via the JAK-STAT pathway. SVV-infected rhesus fibroblasts were refractory to IFN stimulation displaying reduced protein levels of IRF9 and lacking STAT2 phosphorylation. Since previous work implicated involvement of the VZV immediate early gene product ORF63 in preventing ISG-induction we studied the role of SVV ORF63 in generating resistance to IFN treatment. Interestingly, SVV ORF63 did not affect STAT2 phosphorylation but caused IRF9 degradation in a proteasome-dependent manner, suggesting that SVV employs multiple mechanisms to counteract the effect of IFN. Control of SVV ORF63 protein levels via fusion to a dihydrofolate reductase (DHFR)-degradation domain additionally confirmed its requirement for viral replication. Our results also show a prominent reduction of IRF9 and inhibition of STAT2 phosphorylation in VZV-infected cells. In addition, cells expressing VZV ORF63 blocked IFN-stimulation and displayed reduced levels of the IRF9 protein. Taken together, our data suggest that varicella ORF63 prevents ISG-induction both directly via IRF9 degradation and indirectly via transcriptional control of viral proteins that interfere with STAT2 phosphorylation. SVV and VZV thus encode multiple viral gene products that tightly control IFN-induced anti-viral responses. In this manuscript we demonstrate that the immediate early protein ORF63 encoded by varicella zoster virus (VZV) and simian varicella virus (SVV) interferes with interferon type I-mediated activation of JAK-STAT signaling and thereby inhibits the expression of interferon stimulated genes. ORF63 blocks this pathway by degrading IRF9, which plays a central role in JAK-STAT signaling. In addition, both viruses code for immune evasion mechanisms affecting the JAK-STAT pathway upstream of IRF9, which results in the inhibition of STAT2 phosphorylation. By fusing a degradation domain derived from dihydrofolate reductase (DHFR) to ORF63 we further demonstrate that this protein is essential for SVV growth and gene expression, indicating that ORF63 also affects IFN-signaling indirectly by regulating the expression of other immune evasion genes.
Collapse
|
11
|
Genome-wide analysis of T cell responses during acute and latent simian varicella virus infections in rhesus macaques. J Virol 2013; 87:11751-61. [PMID: 23986583 DOI: 10.1128/jvi.01809-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023] Open
Abstract
Varicella zoster virus (VZV) is the etiological agent of varicella (chickenpox) and herpes zoster (HZ [shingles]). Clinical observations suggest that VZV-specific T cell immunity plays a more critical role than humoral immunity in the prevention of VZV reactivation and development of herpes zoster. Although numerous studies have characterized T cell responses directed against select VZV open reading frames (ORFs), a comprehensive analysis of the T cell response to the entire VZV genome has not yet been conducted. We have recently shown that intrabronchial inoculation of young rhesus macaques with simian varicella virus (SVV), a homolog of VZV, recapitulates the hallmarks of acute and latent VZV infection in humans. In this study, we characterized the specificity of T cell responses during acute and latent SVV infection. Animals generated a robust and broad T cell response directed against both structural and nonstructural viral proteins during acute infection in bronchoalveolar lavage (BAL) fluid and peripheral blood. During latency, T cell responses were detected only in the BAL fluid and were lower and more restricted than those observed during acute infection. Interestingly, we identified a small set of ORFs that were immunogenic during both acute and latent infection in the BAL fluid. Given the close genome relatedness of SVV and VZV, our studies highlight immunogenic ORFs that may be further investigated as potential components of novel VZV vaccines that specifically boost T cell immunity.
Collapse
|
12
|
Recombinant varicella-zoster virus vaccines as platforms for expression of foreign antigens. Adv Virol 2013; 2013:219439. [PMID: 23843791 PMCID: PMC3697282 DOI: 10.1155/2013/219439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2013] [Accepted: 06/05/2013] [Indexed: 11/17/2022] Open
Abstract
Varicella-zoster virus (VZV) vaccines induce immunity against childhood chickenpox and against shingles in older adults. The safety, efficacy, and widespread use of VZV vaccines suggest that they may also be effective as recombinant vaccines against other infectious diseases that affect the young and the elderly. The generation of recombinant VZV vaccines and their evaluation in animal models are reviewed. The potential advantages and limitations of recombinant VZV vaccines are addressed.
Collapse
|
13
|
Haberthur K, Messaoudi I. Animal models of varicella zoster virus infection. Pathogens 2013; 2:364-82. [PMID: 25437040 PMCID: PMC4235715 DOI: 10.3390/pathogens2020364] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/05/2013] [Revised: 04/16/2013] [Accepted: 05/01/2013] [Indexed: 11/16/2022] Open
Abstract
Primary infection with varicella zoster virus (VZV) results in varicella (chickenpox) followed by the establishment of latency in sensory ganglia. Declining T cell immunity due to aging or immune suppressive treatments can lead to VZV reactivation and the development of herpes zoster (HZ, shingles). HZ is often associated with significant morbidity and occasionally mortality in elderly and immune compromised patients. There are currently two FDA-approved vaccines for the prevention of VZV: Varivax® (for varicella) and Zostavax® (for HZ). Both vaccines contain the live-attenuated Oka strain of VZV. Although highly immunogenic, a two-dose regimen is required to achieve a 99% seroconversion rate. Zostavax vaccination reduces the incidence of HZ by 51% within a 3-year period, but a significant reduction in vaccine-induced immunity is observed within the first year after vaccination. Developing more efficacious vaccines and therapeutics requires a better understanding of the host response to VZV. These studies have been hampered by the scarcity of animal models that recapitulate all aspects of VZV infections in humans. In this review, we describe different animal models of VZV infection as well as an alternative animal model that leverages the infection of Old World macaques with the highly related simian varicella virus (SVV) and discuss their contributions to our understanding of pathogenesis and immunity during VZV infection.
Collapse
Affiliation(s)
- Kristen Haberthur
- Department of Microbiology and Molecular Immunology, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Ilhem Messaoudi
- Department of Microbiology and Molecular Immunology, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
14
|
Abstract
Varicella-zoster virus (VZV) causes varicella, establishes a life-long latent infection of ganglia and reactivates to cause herpes zoster. The cell types that transport VZV from the respiratory tract to skin and ganglia during primary infection are unknown. Clinical, pathological, virological and immunological features of simian varicella virus (SVV) infection of non-human primates parallel those of primary VZV infection in humans. To identify the host cell types involved in virus dissemination and pathology, we infected African green monkeys intratracheally with recombinant SVV expressing enhanced green fluorescent protein (SVV-EGFP) and with wild-type SVV (SVV-wt) as a control. The SVV-infected cell types and virus kinetics were determined by flow cytometry and immunohistochemistry, and virus culture and SVV-specific real-time PCR, respectively. All monkeys developed fever and skin rash. Except for pneumonitis, pathology produced by SVV-EGFP was less compared to SVV-wt. In lungs, SVV infected alveolar myeloid cells and T-cells. During viremia the virus preferentially infected memory T-cells, initially central memory T-cells and subsequently effector memory T-cells. In early non-vesicular stages of varicella, SVV was seen mainly in perivascular skin infiltrates composed of macrophages, dendritic cells, dendrocytes and memory T-cells, implicating hematogenous spread. In ganglia, SVV was found primarily in neurons and occasionally in memory T-cells adjacent to neurons. In conclusion, the data suggest the role of memory T-cells in disseminating SVV to its target organs during primary infection of its natural and immunocompetent host. Varicella-zoster virus (VZV) causes varicella, establishes life-long latent infection in ganglia and reactivates later in life to cause zoster. VZV is acquired via the respiratory route, with skin rash occurring up to 3 weeks after exposure. The cell types that transport VZV to skin and ganglia during primary infection are unknown. Simian varicella virus (SVV) infection of non-human primates mimics clinical, pathological and immunological features of human VZV infection. African green monkeys were infected with recombinant SVV expressing enhanced green fluorescent protein (SVV-EGFP) or wild-type SVV (SVV-wt) as a control. By visualizing SVV-EGFP−infected cells in the living animal and in tissue samples, we identified the virus-infected cell types in blood, lungs, skin and ganglia during primary infection. Our data demonstrate that during viremia, SVV predominantly infects peripheral blood memory T-cells. Detection of SVV-infected memory T-cells in lungs, in early varicella skin lesions and also, albeit to a lesser extent, in ganglia suggests a role for memory T-cells in transporting virus to these organs. Our study provides novel insights into the cell types involved in virus dissemination and the overall pathology of varicella in a non-human primate model.
Collapse
|
15
|
James SF, Mahalingam R, Gilden D. Does apoptosis play a role in varicella zoster virus latency and reactivation? Viruses 2012; 4:1509-14. [PMID: 23170169 PMCID: PMC3499816 DOI: 10.3390/v4091509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 12/30/2022] Open
Abstract
Varicella zoster virus (VZV) is an exclusively human highly neurotropic alphaherpesvirus. To date, VZV has been shown to induce apoptosis, primarily through the intrinsic pathway in different cell types, except for neurons in which the virus becomes latent. This review summarizes current studies of varicella-induced apoptosis in non‑neuronal cells. Future studies are proposed to determine whether apoptosis is terminated prematurely or even begins in neurons that are non-productively infected with VZV.
Collapse
Affiliation(s)
- Stephanie F. James
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA; (S.F.J.); (R.M.)
| | - Ravi Mahalingam
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA; (S.F.J.); (R.M.)
| | - Don Gilden
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA; (S.F.J.); (R.M.)
- Department of Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
16
|
Gray WL. The simian varicella virus ORF A is expressed in infected cells but is non-essential for replication in cell culture. Arch Virol 2012; 157:1803-6. [PMID: 22678718 PMCID: PMC3560413 DOI: 10.1007/s00705-012-1367-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
Abstract
The simian varicella virus (SVV) genome encodes ORF A, a truncated homolog of SVV ORF 4. The SVV ORF A was expressed as a 1.0-kb transcript in SVV-infected Vero cells. The ORF A promoter was active in infected Vero cells and was stimulated by the SVV immediate-early gene ORF 62 product (IE62), a viral transactivator of SVV genes. The SVV ORF A did not transactivate SVV IE, early, or late gene promoters in transfected Vero cells and was unable to augment IE62-mediated transactivation of SVV promoters. A SVV mutant lacking ORF A replicated as efficiently as wild-type SVV in infected Vero cells, indicating that ORF A expression is not essential for in vitro replication.
Collapse
Affiliation(s)
- Wayne L Gray
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Slot 511, Little Rock, AR 72205, USA.
| |
Collapse
|
17
|
Pahar B, Gray WL, Phelps K, Didier ES, deHaro E, Marx PA, Traina-Dorge VL. Increased cellular immune responses and CD4+ T-cell proliferation correlate with reduced plasma viral load in SIV challenged recombinant simian varicella virus - simian immunodeficiency virus (rSVV-SIV) vaccinated rhesus macaques. Virol J 2012; 9:160. [PMID: 22889373 PMCID: PMC3485174 DOI: 10.1186/1743-422x-9-160] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2012] [Accepted: 07/11/2012] [Indexed: 11/23/2022] Open
Abstract
Background An effective AIDS vaccine remains one of the highest priorities in HIV-research. Our recent study showed that vaccination of rhesus macaques with recombinant simian varicella virus (rSVV) vector – simian immunodeficiency virus (SIV) envelope and gag genes, induced neutralizing antibodies and cellular immune responses to SIV and also significantly reduced plasma viral loads following intravenous pathogenic challenge with SIVMAC251/CX1. Findings The purpose of this study was to define cellular immunological correlates of protection in rSVV-SIV vaccinated and SIV challenged animals. Immunofluorescent staining and multifunctional assessment of SIV-specific T-cell responses were evaluated in both Experimental and Control vaccinated animal groups. Significant increases in the proliferating CD4+ T-cell population and polyfunctional T-cell responses were observed in all Experimental-vaccinated animals compared with the Control-vaccinated animals. Conclusions Increased CD4+ T-cell proliferation was significantly and inversely correlated with plasma viral load. Increased SIV-specific polyfunctional cytokine responses and increased proliferation of CD4+ T-cell may be crucial to control plasma viral loads in vaccinated and SIVMAC251/CX1 challenged macaques.
Collapse
Affiliation(s)
- Bapi Pahar
- Division of Microbiology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Gray WL, Zhou F, Noffke J, Tischer BK. Cloning the simian varicella virus genome in E. coli as an infectious bacterial artificial chromosome. Arch Virol 2011; 156:739-46. [PMID: 21487663 DOI: 10.1007/s00705-010-0889-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2010] [Accepted: 12/08/2010] [Indexed: 10/18/2022]
Abstract
Simian varicella virus (SVV) is closely related to human varicella-zoster virus and causes varicella and zoster-like disease in nonhuman primates. In this study, a mini-F replicon was inserted into a SVV cosmid, and infectious SVV was generated by co-transfection of Vero cells with overlapping SVV cosmids. The entire SVV genome, cloned as a bacterial artificial chromosome (BAC), was stably propagated upon serial passage in E. coli. Transfection of pSVV-BAC DNA into Vero cells yielded infectious SVV (rSVV-BAC). The mini-F vector sequences flanked by loxP sites were removed by co-infection of Vero cells with rSVV-BAC and adenovirus expressing Cre-recombinase. Recombinant SVV generated using the SVV-BAC genetic system has similar molecular and in vitro replication properties as wild-type SVV. To demonstrate the utility of this approach, a SVV ORF 10 deletion mutant was created using two-step Red-mediated recombination. The results indicate that SVV ORF 10, which encodes a homolog of the HSV-1 virion VP-16 transactivator protein, is not essential for in vitro replication but is required for optimal replication in cell culture.
Collapse
Affiliation(s)
- Wayne L Gray
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, 72205, USA.
| | | | | | | |
Collapse
|
20
|
Traina-Dorge V, Pahar B, Marx P, Kissinger P, Montefiori D, Ou Y, Gray WL. Recombinant varicella vaccines induce neutralizing antibodies and cellular immune responses to SIV and reduce viral loads in immunized rhesus macaques. Vaccine 2010; 28:6483-90. [PMID: 20654666 PMCID: PMC3061394 DOI: 10.1016/j.vaccine.2010.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2010] [Revised: 07/03/2010] [Accepted: 07/07/2010] [Indexed: 10/19/2022]
Abstract
The development of an effective AIDS vaccine remains one of the highest priorities in HIV research. The live, attenuated varicella-zoster virus (VZV) Oka vaccine, safe and effective for prevention of chickenpox and zoster, also has potential as a recombinant vaccine against other pathogens, including human immunodeficiency virus (HIV). The simian varicella model, utilizing simian varicella virus (SVV), offers an approach to evaluate recombinant varicella vaccine candidates. Recombinant SVV (rSVV) vaccine viruses expressing simian immunodeficiency virus (SIV) env and gag antigens were constructed. The hypothesis tested was that a live, attenuated rSVV-SIV vaccine will induce immune responses against SIV in the rhesus macaques and provide protection against SIV challenge. The results demonstrated that rSVV-SIV vaccination induced low levels of neutralizing antibodies and cellular immune responses to SIV in immunized rhesus macaques and significantly reduced viral loads following intravenous challenge with pathogenic SIVmac251-CX-1.
Collapse
Affiliation(s)
- V Traina-Dorge
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, United States.
| | | | | | | | | | | | | |
Collapse
|
21
|
Simian herpesviruses and their risk to humans. Vaccine 2010; 28 Suppl 2:B78-84. [PMID: 20510749 DOI: 10.1016/j.vaccine.2009.11.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2009] [Revised: 07/29/2009] [Accepted: 11/02/2009] [Indexed: 11/22/2022]
Abstract
A high level of genetic and physiological homology with humans has rendered non-human primates (NHP) an essential animal model for biomedical research. As such NHP offer a unique opportunity to study host-pathogen interactions in a species that closely mimics human biology but can yet be maintained under tight laboratory conditions. Indeed, studies using NHP have been critical to our understanding of pathogenesis as well as the development of vaccines and therapeutics. This further facilitated by the fact that NHPs are susceptible to a variety of pathogens that bear significant homology to human pathogens. Unfortunately, these same viruses pose a potential health issue to humans. In this review we discuss the simian herpesviruses and their potential to cause disease in researchers that come into close contact with them.
Collapse
|
22
|
Haberthur K, Engelman F, Barron A, Messaoudi I. Immune senescence in aged nonhuman primates. Exp Gerontol 2010; 45:655-61. [PMID: 20558288 DOI: 10.1016/j.exger.2010.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2010] [Revised: 05/27/2010] [Accepted: 06/03/2010] [Indexed: 12/22/2022]
Abstract
Aging is accompanied by a general dysregulation in immune system function, commonly referred to as 'immune senescence'. This progressive deterioration affects both innate and adaptive immunity, although accumulating evidence indicates that the adaptive arm of the immune system may exhibit more profound changes. Most of our current understanding of immune senescence stems from clinical and rodent studies. More recently, the use of nonhuman primates (NHPs) to investigate immune senescence and test interventions aimed at delaying/reversing age-related changes in immune function has dramatically increased. These studies have been greatly facilitated by several key advances in our understanding of the immune system of old world monkeys, specifically the rhesus macaques. In this review we describe the hallmarks of immune senescence in this species and compare them to those described in humans. We also discuss the impact of immune senescence on the response to vaccination and the efficacy of immuno-restorative interventions investigated in this model system.
Collapse
Affiliation(s)
- Kristen Haberthur
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, United States
| | | | | | | |
Collapse
|
23
|
Establishment of specific pathogen-free macaque colonies in Tsukuba Primate Research Center of Japan for AIDS research. Vaccine 2010; 28 Suppl 2:B75-7. [DOI: 10.1016/j.vaccine.2009.09.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2009] [Revised: 08/13/2009] [Accepted: 09/18/2009] [Indexed: 11/20/2022]
|
24
|
Abstract
Because varicella zoster virus (VZV) is an exclusively human pathogen, the development of an animal model is necessary to study pathogenesis, latency, and reactivation. The pathological, virological, and immunological features of simian varicella virus (SVV) infection in nonhuman primates are similar to those of VZV infection in humans. Both natural infection of cynomolgus and African green monkeys as well as intrabronchial inoculation of rhesus macaques with SVV provide the most useful models to study viral and immunological aspects of latency and the host immune response. Experimental immunosuppression of monkeys latently infected with SVV results in zoster, thus providing a new model system to study how the loss of adaptive immunity modulates virus reactivation.
Collapse
|
25
|
Abstract
Simian varicella virus (SVV) is a primate herpesvirus that is closely related to varicella-zoster virus (VZV), the causative agent of varicella (chickenpox) and herpes zoster (shingles). Epizootics of simian varicella occur sporadically in facilities housing Old World monkeys. This review summarizes the molecular properties of SVV. The SVV and VZV genomes are similar in size, structure, and gene arrangement. The 124.5 kilobase pair (kbp) SVV genome includes a 104.7 kbp long component covalently linked to a short component, which includes a 4.9 kbp unique short segment flanked by 7.5 kbp inverted repeat sequences. SVV DNA encodes 69 distinct open reading frames, three of which are duplicated within the viral inverted repeats. The viral genome is coordinately expressed, and immediate early (IE), early, and late genes have been characterized. Genetic approaches have been developed to create SVV mutants, which will be used to study the role of SVV genes in viral pathogenesis, latency, and reactivation. In addition, SVV expressing foreign genes are being investigated as potential recombinant varicella vaccines.
Collapse
|
26
|
|
27
|
Messaoudi I, Barron A, Wellish M, Engelmann F, Legasse A, Planer S, Gilden D, Nikolich-Zugich J, Mahalingam R. Simian varicella virus infection of rhesus macaques recapitulates essential features of varicella zoster virus infection in humans. PLoS Pathog 2009; 5:e1000657. [PMID: 19911054 PMCID: PMC2770849 DOI: 10.1371/journal.ppat.1000657] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2009] [Accepted: 10/13/2009] [Indexed: 11/18/2022] Open
Abstract
Simian varicella virus (SVV), the etiologic agent of naturally occurring varicella in primates, is genetically and antigenically closely related to human varicella zoster virus (VZV). Early attempts to develop a model of VZV pathogenesis and latency in nonhuman primates (NHP) resulted in persistent infection. More recent models successfully produced latency; however, only a minority of monkeys became viremic and seroconverted. Thus, previous NHP models were not ideally suited to analyze the immune response to SVV during acute infection and the transition to latency. Here, we show for the first time that intrabronchial inoculation of rhesus macaques with SVV closely mimics naturally occurring varicella (chickenpox) in humans. Infected monkeys developed varicella and viremia that resolved 21 days after infection. Months later, viral DNA was detected only in ganglia and not in non-ganglionic tissues. Like VZV latency in human ganglia, transcripts corresponding to SVV ORFs 21, 62, 63 and 66, but not ORF 40, were detected by RT-PCR. In addition, as described for VZV, SVV ORF 63 protein was detected in the cytoplasm of neurons in latently infected monkey ganglia by immunohistochemistry. We also present the first in depth analysis of the immune response to SVV. Infected animals produced a strong humoral and cell-mediated immune response to SVV, as assessed by immunohistology, serology and flow cytometry. Intrabronchial inoculation of rhesus macaques with SVV provides a novel model to analyze viral and immunological mechanisms of VZV latency and reactivation.
Collapse
Affiliation(s)
- Ilhem Messaoudi
- Vaccine and Gene Therapy, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | - Alexander Barron
- Vaccine and Gene Therapy, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | - Mary Wellish
- Department of Neurology, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Flora Engelmann
- Vaccine and Gene Therapy, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | - Alfred Legasse
- Vaccine and Gene Therapy, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | - Shannon Planer
- Vaccine and Gene Therapy, Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Sciences University, Beaverton, Oregon, United States of America
| | - Don Gilden
- Department of Neurology, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Microbiology, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Janko Nikolich-Zugich
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Ravi Mahalingam
- Department of Neurology, University of Colorado Denver, Aurora, Colorado, United States of America
| |
Collapse
|
28
|
Simian varicella virus induces apoptosis in monkey kidney cells by the intrinsic pathway and involves downregulation of bcl-2 expression. J Virol 2009; 83:9273-82. [PMID: 19605493 DOI: 10.1128/jvi.00768-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Simian varicella virus (SVV) causes varicella in primates, becomes latent in ganglionic neurons, and reactivates to produce zoster. SVV produces a cytopathic effect in monkey kidney cells in tissue culture. To study the mechanism by which SVV-infected cells die, we examined markers of apoptosis 24 to 64 h postinfection (hpi). Western blot analysis of virus-infected cell lysates revealed a significant increase in the levels of the cleaved active form of caspase-3, accompanied by a parallel increase in caspase-3 activity at 40 to 64 hpi. Caspase-9, a marker for the intrinsic pathway, was activated significantly in SVV-infected cells at all time points, whereas trace levels of the active form of caspase-8, an extrinsic pathway marker, was detected only at 64 hpi. Bcl-2 expression at the mRNA and protein levels was decreased by 50 to 70% throughout the course of virus infection. Release of cytochrome c, an activator of caspase-9, from mitochondria into the cytoplasm was increased by 200% at 64 hpi. Analysis of Vero cells infected with SVV expressing green fluorescent protein (SVV-GFP) at 64 hpi revealed colocalization of the active forms of caspase-3 and caspase-9 and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining with GFP. A significant decrease in the bcl-2 mRNA levels along with an abundance of mRNA specific for SVV genes 63, 40, and 21 was seen in the fraction of Vero cells that were infected with SVV-GFP. Together, these findings indicate that SVV induces apoptosis in cultured Vero cells through the intrinsic pathway in which Bcl-2 is downregulated.
Collapse
|
29
|
Abstract
In general, veterinary dermatologists do not have extensive clinical experience of nonhuman primate (NHP) dermatoses. The bulk of the published literature does not provide an organized evidence-based approach to the NHP dermatologic case. The veterinary dermatologist is left to extract information from both human and veterinary dermatology, an approach that can be problematic as it forces the clinician to make diagnostic and therapeutic decisions based on two very disparate bodies of literature. A more cohesive approach to NHP dermatology - without relying on assumptions that NHP pathology most commonly behaves similarly to other veterinary and human disease - is required. This review of the dermatology of NHP species includes discussions of primary dermatoses, as well as diseases where dermatologic signs represent a significant secondary component, provides a first step towards encouraging the veterinary community to study and report the dermatologic diseases of nonhuman primates.
Collapse
|
30
|
Ward TM, Williams MV, Traina-Dorge V, Gray WL. The simian varicella virus uracil DNA glycosylase and dUTPase genes are expressed in vivo, but are non-essential for replication in cell culture. Virus Res 2009; 142:78-84. [PMID: 19200445 DOI: 10.1016/j.virusres.2009.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2008] [Revised: 01/15/2009] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
Abstract
Neurotropic herpesviruses express viral deoxyuridine triphosphate nucleotidohydrolase (dUTPase) and uracil DNA glycosylase (UDG) enzymes which may reduce uracil misincorporation into viral DNA, particularly in neurons of infected ganglia. The simian varicella virus (SVV) dUTPase (ORF 8) and UDG (ORF 59) share 37.7% and 53.9% amino acid identity, respectively, with varicella-zoster virus (VZV) homologs. Infectious SVV mutants defective in either dUTPase (SVV-dUTPase(-)) or UDG (SVV-UDG(-)) activity or both (SVV-dUTPase(-)/UDG(-)) were constructed using recA assisted restriction endonuclease cleavage (RARE) and a cosmid recombination system. Loss of viral dUTPase and UDG enzymatic activity was confirmed in CV-1 cells infected with the SVV mutants. The SVV-dUTPase(-), SVV-UDG(-), and SVV-dUTPase(-)/UDG(-) mutants replicated as efficiently as wild-type SVV in cell culture. SVV dUTPase and UDG expression was detected in tissues derived from acutely infected animals, but not in tissues derived from latently infected animals. Further studies will evaluate the pathogenesis of SVV dUTPase and UDG mutants and their potential as varicella vaccines.
Collapse
Affiliation(s)
- Toby M Ward
- Department of Microbiology and Immunology, 4301 West Markham Street, University of Arkansas for Medical Sciences, Slot 511, Little Rock, AR 72205, United States
| | | | | | | |
Collapse
|
31
|
Gilden D, Nagel MA, Mahalingam R, Mueller NH, Brazeau EA, Pugazhenthi S, Cohrs RJ. Clinical and molecular aspects of varicella zoster virus infection. FUTURE NEUROLOGY 2009; 4:103-117. [PMID: 19946620 PMCID: PMC2782836 DOI: 10.2217/14796708.4.1.103] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022]
Abstract
A declining cell-mediated immunity to varicella zoster virus (VZV) with advancing age or immunosuppression results in virus reactivation from latently infected human ganglia anywhere along the neuraxis. Virus reactivation produces zoster, often followed by chronic pain (postherpetic neuralgia or PHN) as well as vasculopathy, myelopathy, retinal necrosis and cerebellitis. VZV reactivation also produces pain without rash (zoster sine herpete). Vaccination after age 60 reduces the incidence of shingles by 51%, PHN by 66% and the burden of illness by 61%. However, even if every healthy adult over age 60 years is vaccinated, there would still be about 500,000 zoster cases annually in the United States alone, about 200,000 of whom will experience PHN. Analyses of viral nucleic acid and gene expression in latently infected human ganglia and in an animal model of varicella latency in primates are serving to determine the mechanism(s) of VZV reactivation with the aim of preventing reactivation and the clinical sequelae.
Collapse
Affiliation(s)
- Don Gilden
- Author for correspondence: Department of Neurology, University of Colorado Denver School of Medicine, 4200 E. 9 Avenue, Mail Stop B182, Denver, CO 80262, USA. Tel: 1-303-315-8281; Fax: 1-303-315-8281;
| | | | | | | | | | | | | |
Collapse
|
32
|
Mueller NH, Gilden DH, Cohrs RJ, Mahalingam R, Nagel MA. Varicella zoster virus infection: clinical features, molecular pathogenesis of disease, and latency. Neurol Clin 2008; 26:675-97, viii. [PMID: 18657721 PMCID: PMC2754837 DOI: 10.1016/j.ncl.2008.03.011] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
Varicella zoster virus (VZV) is an exclusively human neurotropic alphaherpesvirus. Primary infection causes varicella (chickenpox), after which virus becomes latent in cranial nerve ganglia, dorsal root ganglia, and autonomic ganglia along the entire neuraxis. Years later, in association with a decline in cell-mediated immunity in elderly and immunocompromised individuals, VZV reactivates and causes a wide range of neurologic disease. This article discusses the clinical manifestations, treatment, and prevention of VZV infection and reactivation; pathogenesis of VZV infection; and current research focusing on VZV latency, reactivation, and animal models.
Collapse
Affiliation(s)
- Niklaus H Mueller
- Department of Neurology, University of Colorado School of Medicine, 4200 East 9th Avenue, Mail Stop B182, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Macaques have served as models for more than 70 human infectious diseases of diverse etiologies, including a multitude of agents—bacteria, viruses, fungi, parasites, prions. The remarkable diversity of human infectious diseases that have been modeled in the macaque includes global, childhood, and tropical diseases as well as newly emergent, sexually transmitted, oncogenic, degenerative neurologic, potential bioterrorism, and miscellaneous other diseases. Historically, macaques played a major role in establishing the etiology of yellow fever, polio, and prion diseases. With rare exceptions (Chagas disease, bartonellosis), all of the infectious diseases in this review are of Old World origin. Perhaps most surprising is the large number of tropical (16), newly emergent (7), and bioterrorism diseases (9) that have been modeled in macaques. Many of these human diseases (e.g., AIDS, hepatitis E, bartonellosis) are a consequence of zoonotic infection. However, infectious agents of certain diseases, including measles and tuberculosis, can sometimes go both ways, and thus several human pathogens are threats to nonhuman primates including macaques. Through experimental studies in macaques, researchers have gained insight into pathogenic mechanisms and novel treatment and vaccine approaches for many human infectious diseases, most notably acquired immunodeficiency syndrome (AIDS), which is caused by infection with human immunodeficiency virus (HIV). Other infectious agents for which macaques have been a uniquely valuable resource for biomedical research, and particularly vaccinology, include influenza virus, paramyxoviruses, flaviviruses, arenaviruses, hepatitis E virus, papillomavirus, smallpox virus, Mycobacteria, Bacillus anthracis, Helicobacter pylori, Yersinia pestis, and Plasmodium species. This review summarizes the extensive past and present research on macaque models of human infectious disease.
Collapse
Affiliation(s)
- Murray B Gardner
- Center for Comparative Medicine, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
34
|
Ward TM, Traina-Dorge V, Davis KA, Gray WL. Recombinant simian varicella viruses expressing respiratory syncytial virus antigens are immunogenic. J Gen Virol 2008; 89:741-750. [PMID: 18272766 DOI: 10.1099/vir.0.83453-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022] Open
Abstract
Recombinant simian varicella viruses (rSVVs) were engineered to express respiratory syncytial virus (RSV) antigens. The RSV surface glycoprotein G and second matrix protein M2 (22k) genes were cloned into the SVV genome, and recombinant viruses were characterized in vitro and in vivo. rSVVs were also engineered to express the membrane-anchored or secreted forms of the RSV-G protein as well as an RSV G lacking its chemokine mimicry motif (CX3C), which may have different effects on priming the host immune response. The RSV genes were efficiently expressed in rSVV/RSV-infected Vero cells as RSV-G and -M2 transcripts were detected by RT-PCR, and RSV antigens were detected by immunofluorescence and immunoblot assays. The rSVVs replicated efficiently in Vero cell culture. Rhesus macaques immunized with rSVV/RSV-G and rSVV/RSV-M2 vaccines produced antibody responses to SVV and RSV antigens. The results demonstrate that recombinant varicella viruses are suitable vectors for the expression of RSV antigens and may represent a novel vaccine strategy for immunization against both pathogens.
Collapse
Affiliation(s)
- Toby M Ward
- Department of Microbiology and Immunology, 4301 West Markham Street, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | - Kara A Davis
- Department of Microbiology and Immunology, 4301 West Markham Street, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Wayne L Gray
- Department of Microbiology and Immunology, 4301 West Markham Street, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
35
|
Amanna IJ, Messaoudi I, Slifka MK. Protective immunity following vaccination: how is it defined? HUMAN VACCINES 2008; 4:316-9. [PMID: 18398296 DOI: 10.4161/hv.4.4.5751] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
Abstract
Vaccination represents an important medical breakthrough pioneered by Edward Jenner over 200 years ago when he developed the world's first vaccine against smallpox. To this day, vaccination remains the most effective means available for combating infectious disease. There are currently over 20 vaccines licensed for use within the US with many more vaccines in the R&D pipeline. Although vaccines must demonstrate clinical efficacy in order to receive FDA approval, the correlates of immunity vary remarkably between different vaccines and may be based primarily on animal studies, clinical evidence, or a combination of these sources of information. Correlates of protection are critical for measuring vaccine efficacy but researchers should know the history and limitations of these values. As vaccine technologies advance, the way in which we measure and define protective correlates may need to evolve as well. Here, we describe the correlates of protective immunity for vaccines against smallpox, tetanus, yellow fever and measles and compare these to a more recently introduced vaccine against varicella zoster virus, wherein a strict correlate of immunity has yet to be fully defined.
Collapse
Affiliation(s)
- Ian J Amanna
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | |
Collapse
|
36
|
Mahalingam R, Gray WL. The simian varicella virus genome contains an invertible 665 base pair terminal element that is absent in the varicella zoster virus genome. Virology 2007; 366:387-93. [PMID: 17555785 PMCID: PMC2023966 DOI: 10.1016/j.virol.2007.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2007] [Revised: 04/21/2007] [Accepted: 04/26/2007] [Indexed: 10/23/2022]
Abstract
Simian varicella virus (SVV) causes chickenpox in monkeys, establishes latency and reactivates to produce zoster thus providing a model to study human varicella zoster virus (VZV) infection. Sequence analysis of a recombinant cosmid clone containing the left end of the SVV genome revealed a 665 base pair (bp) segment that is absent in VZV DNA. This segment inverts and contains 507 bp of unique sequences flanked on either side by 79 bp inverted repeats, making the SVV genome to be 124,785 bp in size. Part of the inverted repeat sequence (64 bp) is also present at the junction of the long and short segments of the SVV genome. The terminal DNA sequences are conserved among different SVV isolates and present in tissues from infected monkeys. The terminal region is transcriptionally active and is also present in the genomes of other animal varicelloviruses but absent in the VZV genome.
Collapse
Affiliation(s)
- Ravi Mahalingam
- Department of Neurology, Mail Box B183, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA.
| | | |
Collapse
|
37
|
Ou Y, Davis KA, Traina-Dorge V, Gray WL. Simian varicella virus expresses a latency-associated transcript that is antisense to open reading frame 61 (ICP0) mRNA in neural ganglia of latently infected monkeys. J Virol 2007; 81:8149-56. [PMID: 17507490 PMCID: PMC1951321 DOI: 10.1128/jvi.00407-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022] Open
Abstract
Simian varicella virus (SVV) and varicella-zoster virus (VZV) are closely related alphaherpesviruses that cause varicella (chickenpox) in nonhuman primates and humans, respectively. After resolution of the primary disease, SVV and VZV establish latent infection of neural ganglia and may later reactivate to cause a secondary disease (herpes zoster). This study investigated SVV gene expression in neural ganglia derived from latently infected vervet monkeys. SVV transcripts were detected in neural ganglia, but not in liver or lung tissues, of latently infected animals. A transcript mapping to open reading frame (ORF) 61 (herpes simplex virus type 1 [HSV-1] ICP0 homolog) was consistently detected in latently infected trigeminal, cervical, and lumbar ganglia by reverse transcriptase PCR. Further analysis confirmed that this SVV latency-associated transcript (LAT) was oriented antisense to the gene 61 mRNA. SVV ORF 21 transcripts were also detected in 42% of neural ganglia during latency. In contrast, SVV ORF 28, 29, 31, 62, and 63 transcripts were not detected in ganglia, liver, or lung tissues of latently infected animals. The results demonstrate that viral gene expression is limited during SVV latency and that a LAT antisense to an ICP0 homolog is expressed. In this regard, SVV gene expression during latency is similar to that of HSV-1 and other neurotropic animal alphaherpesviruses but differs from that reported for VZV.
Collapse
Affiliation(s)
- Yang Ou
- Dept. of Microbiology and Immunology, Slot 511, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
38
|
Ou Y, Traina-Dorge V, Davis KA, Gray WL. Recombinant simian varicella viruses induce immune responses to simian immunodeficiency virus (SIV) antigens in immunized vervet monkeys. Virology 2007; 364:291-300. [PMID: 17434552 PMCID: PMC1986657 DOI: 10.1016/j.virol.2007.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2006] [Revised: 01/04/2007] [Accepted: 03/09/2007] [Indexed: 11/28/2022]
Abstract
The varicella-zoster virus (VZV) Oka vaccine offers potential as a recombinant vaccine against other pathogens. In this study, recombinant simian varicella viruses (rSVV) expressing simian immunodeficiency virus (SIV) envelope (env, gp130) and gag antigens were constructed. Expression of the SIV env and gag transcripts and antigens in rSVV-infected Vero cells was confirmed. The rSVV-SIVenv and rSVV-SIVgag viruses replicated as efficiently as wild-type SVV in cell culture. The immunogenicity of rSVV-SIVenv and rSVV-SIVgag was investigated in immunized vervet monkeys. Humoral immune responses to the SIV gp130 and gag antigens were detected as early as 4 weeks after the initial immunization with higher antibody titers following a booster immunization. Cellular immune responses against the SIV gp130 antigen were detected by ELISPOT assay. The rSVV established latent infection in neural ganglia. A subsequent study will evaluate the ability of rSVV vaccines expressing SIV antigens to protect nonhuman primates against simian AIDS.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Base Sequence
- Cell Line
- Chickenpox Vaccine/administration & dosage
- Chickenpox Vaccine/genetics
- Chlorocebus aethiops
- DNA Primers/genetics
- DNA, Viral/genetics
- DNA, Viral/isolation & purification
- Ganglia/virology
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Herpesvirus 3, Human/genetics
- Herpesvirus 3, Human/immunology
- Herpesvirus 3, Human/physiology
- Immunity, Cellular
- Immunization
- Immunization, Secondary
- Models, Animal
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- Recombination, Genetic
- SAIDS Vaccines/administration & dosage
- SAIDS Vaccines/genetics
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- Simian Immunodeficiency Virus/physiology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vero Cells
- Virus Replication
Collapse
Affiliation(s)
- Yang Ou
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | | | - Kara A. Davis
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Wayne L. Gray
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
- Correspondence address*- Dr. Wayne L. Gray, Dept. of Microbiology and Immunology, Slot 511, Univ. of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205. Phone: (501) 686-5187. Fax: (501) 686-5359.
| |
Collapse
|
39
|
Grinfeld E, Kennedy PGE. The pattern of viral persistence in monkeys intra-tracheally infected with Simian varicella virus. Virus Genes 2007; 35:289-92. [PMID: 17253123 DOI: 10.1007/s11262-007-0077-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2006] [Accepted: 01/02/2007] [Indexed: 10/23/2022]
Abstract
In situ PCR (ISPCR) and in situ hybridisation (ISH) was performed on 32 tissues from 10 monkeys, intra-tracheally (IT) infected with simian varicella virus (SVV) and 5 tissues from 3 uninfected control animals. The results showed persistence of SVV DNA up to 2 years post-infection (pi) and the localisation of SVV to be confined to neurons except at time points 9 and 10 months pi where SVV positive satellite cells were also detected. There was no evidence for transcription of SVV ORFs 63 and 21 in the ganglia of the one IT infected and 2 naturally infected monkeys investigated using RNA ISH.
Collapse
Affiliation(s)
- Esther Grinfeld
- Department of Neurology, Institute of Neurological Sciences, University of Glasgow, Southern General Hospital, 1345 Govan Road, Glasgow G51 4TF, Scotland, UK
| | | |
Collapse
|
40
|
Gray WL, Davis K, Ou Y, Ashburn C, Ward TM. Simian varicella virus gene 61 encodes a viral transactivator but is non-essential for in vitro replication. Arch Virol 2006; 152:553-63. [PMID: 17115302 DOI: 10.1007/s00705-006-0866-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/02/2006] [Accepted: 09/01/2006] [Indexed: 11/25/2022]
Abstract
Simian varicella virus (SVV) is closely related to varicella-zoster virus (VZV), the causative agent of chickenpox and shingles. The SVV and VZV gene 61 polypeptides are homologs of the HSV-1 ICP0, a viral transactivator which appears to play a role in viral latency and reactivation. In this study, the molecular properties of the SVV 61 were characterized. The SVV open reading frame (ORF) 61 encodes a 54.1-kDa polypeptide with 37% amino acid identity to the VZV 61. Homology to the HSV-1 ICP-0 is limited to a conserved RING finger motif at the amino terminus of the protein. A nuclear localization sequence (nls) at the carboxy-terminus directs the SVV 61 to the cell nucleus, while a SVV 61nls(-) mutant is confined to the cell cytoplasm. The SVV 61 transactivates its own promoter as well as SVV immediate early (IE, ORF 62), early (ORFs 28 and 29), and late (ORF 68) gene promoters in transfected Vero cells. The RING finger and nls motifs are required for efficient SVV 61 transactivation. The SVV 61 has no effect on the ability of the major SVV transactivator (IE62) to induce SVV promoters. Generation and propagation of a SVV gene 61 deletion mutant demonstrated that the SVV 61 is non-essential for in vitro replication. SVV gene 61 is expressed in liver, lung, and neural ganglia of infected monkeys during acute simian varicella.
Collapse
Affiliation(s)
- W L Gray
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | |
Collapse
|
41
|
Kolappaswamy K, Mahalingam R, Traina-Dorge V, Shipley ST, Gilden DH, Kleinschmidt-Demasters BK, McLeod CG, Hungerford LL, DeTolla LJ. Disseminated simian varicella virus infection in an irradiated rhesus macaque (Macaca mulatta). J Virol 2006; 81:411-5. [PMID: 17079326 PMCID: PMC1797240 DOI: 10.1128/jvi.01825-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
We describe correlative clinicopathological/virological findings from a simian varicella virus (SVV)-seronegative monkey that developed disseminated varicella 105 days after gamma-irradiation. Twelve other monkeys in the colony were also irradiated, none of which developed varicella. Before irradiation, sera from the monkey that developed disseminated infection and one asymptomatic monkey were available. Analysis indicated that subclinical reactivation of latent SVV from an asymptomatic irradiated monkey likely led to disseminated varicella in the seronegative irradiated monkey. These findings parallel those from humans with disseminated varicella infection and support the usefulness of SVV infection as a model for human varicella-zoster virus infection, particularly virus reactivation after gamma-irradiation.
Collapse
Affiliation(s)
- Krishnan Kolappaswamy
- Program of Comparative Medicine, Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ou Y, Gray WL. Simian varicella virus gene 28 and 29 promoters share a common upstream stimulatory factor-binding site and are induced by IE62 transactivation. J Gen Virol 2006; 87:1501-1508. [PMID: 16690914 DOI: 10.1099/vir.0.81645-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Simian varicella virus (SVV) is a neurotropic alphaherpesvirus that causes a natural, varicella-like disease in non-human primates. After resolution of the primary disease, SVV, like its human counterpart, varicella-zoster virus (VZV), establishes latent infection in the neural ganglia of the host. In this study, gene expression of SVV open reading frames (ORFs) 28 and 29, which encode the viral DNA polymerase and DNA-binding protein, respectively, was characterized during lytic infection of Vero cells. The results indicate that the intergenic region controlling gene 28 and 29 expression includes overlapping, divergent promoters. The ORF 28 and 29 promoters are active in SVV-infected Vero cells, but not in uninfected cells. The SVV immediate-early gene 62 (IE62) product transactivates ORF 28 and 29 expression, and a cellular upstream stimulatory factor-binding site is important for efficient IE62 induction of genes 28 and 29. DNA sequence analysis of the 185 bp intergenic region identified putative cellular transcription factor-binding sites. Transcriptional analysis mapped ORF 28 and 29 RNA start sites. A recombinant SVV was employed to demonstrate that the ORF 29 promoter can express a heterologous gene (green fluorescent protein) when inserted into a novel site (the ORF 12/13 intergenic region) within the SVV genome. The findings demonstrate similarities between SVV and VZV ORF 28/29 expression and indicate that the simian varicella model may be useful to investigate the differential regulation of viral genes during lytic and latent infection.
Collapse
Affiliation(s)
- Yang Ou
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA
| | - Wayne L Gray
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA
| |
Collapse
|
43
|
Gray WL, Mahalingam R. A cosmid-based system for inserting mutations and foreign genes into the simian varicella virus genome. J Virol Methods 2005; 130:89-94. [PMID: 16043236 DOI: 10.1016/j.jviromet.2005.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2005] [Revised: 06/09/2005] [Accepted: 06/14/2005] [Indexed: 10/25/2022]
Abstract
Simian varicella is a natural varicella-like disease of nonhuman primates. The etiologic agent, simian varicella virus (SVV), is genetically related to varicella-zoster virus (VZV) and SVV infection of nonhuman primates is a useful model to investigate VZV pathogenesis and latency. In this study, we report development of a cosmid-based genetic system to generate SVV mutant viruses. SVV subgenomic DNA fragments (32-38kb) that span the viral genome were cloned into cosmid vectors. Co-transfection of Vero cells with four overlapping cosmid clones representing the entire SVV genome resulted in recombination and generation of infectious virus. SVV mutants were produced by manipulation of one cosmid and substitution into the genetic system. This genetic approach was used to insert a site-specific mutation within the SVV open reading frame 14 which encodes the nonessential glycoprotein C gene. In a subsequent experiment, the green fluorescent protein (GFP) gene was inserted into the SVV genome within ORF 14. These SVV mutants replicate as efficiently as wild-type SVV in cell culture. This cosmid-based genetic system will be useful to investigate the effect of viral mutations on SVV pathogenesis and latency and also to develop and evaluate recombinant varicella vaccines that express foreign antigens.
Collapse
Affiliation(s)
- Wayne L Gray
- Department of Microbiology and Immunology, Slot 511, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205, USA. :
| | | |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Varicella-zoster virus (VZV) remains a public health issue around the globe despite the availability of a live attenuated vaccine and several highly active antiviral agents. A program of universal infant vaccination against varicella was introduced in the US almost 10 years ago. Epidemiological data continue to accumulate that will inform decision-making on vaccine use elsewhere. These findings, together with relevant advances in VZV virology, form the substance of this review. RECENT FINDINGS Understanding of the pathogenesis of varicella has significantly advanced with the demonstration that the cation-independent mannose 6-phosphate receptor is critical to both entry and egress of enveloped VZV. While our knowledge of intervening events remains sketchy, the future study of VZV will be facilitated by the recent successful cloning of the VZV genome into a bacterial artificial chromosome. Models of latency and reactivation are also being developed, which may help us to understand the epidemiology of herpes zoster in vaccinated populations. Continued evidence of decline in the incidence of varicella, associated hospitalizations and deaths suggests that the vaccine as used in the US is highly effective. However, rates of breakthrough disease are significant and sufficient to sustain outbreaks, even among highly vaccinated populations. This is so despite the generally reduced infectiousness of varicella occurring in vaccinated individuals. There is some evidence of attrition of the immune response over time following immunization in a small proportion of vaccinees. SUMMARY Our ability to prevent and treat varicella still outstrips our knowledge of pathogenetic and immune mechanisms. Further clinical advances are likely to arise from growing understanding of VZV biology.
Collapse
Affiliation(s)
- Sophie Hambleton
- Department of pediatrics, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| |
Collapse
|
45
|
Mori I, Nishiyama Y. Herpes simplex virus and varicella-zoster virus: why do these human alphaherpesviruses behave so differently from one another? Rev Med Virol 2005; 15:393-406. [PMID: 16173110 DOI: 10.1002/rmv.478] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
Members of the Herpesviridae family of viruses are classified into the alpha, beta and gamma subfamilies. The alpha subfamily is estimated to have diverged from the beta and gamma subfamilies 200-220 million years ago. The ancestors of the herpes simplex virus (HSV) and the varicella-zoster virus (VZV), two ubiquitous and clinically important human pathogens, appeared 70-80 million years ago. As these viruses coevolved with their specific primate hosts, genetic rearrangements led to the development of the contemporary alphaherpesviruses and their distinct complement of genes. Here the distinct features of HSV and VZV are discussed in terms of their transmissibility, clinical picture, tissue tropism, establishment of latency/reactivation and immune evasion, which can, at least in part, be explained by differences in their genomes.
Collapse
Affiliation(s)
- Isamu Mori
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan.
| | | |
Collapse
|