1
|
Romeo F, Spetter MJ, Pereyra SB, Morán PE, González Altamiranda EA, Louge Uriarte EL, Odeón AC, Pérez SE, Verna AE. Whole Genome Sequence-Based Analysis of Bovine Gammaherpesvirus 4 Isolated from Bovine Abortions. Viruses 2024; 16:739. [PMID: 38793621 PMCID: PMC11125609 DOI: 10.3390/v16050739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Bovine gammaherpesvirus 4 (BoGHV4) is a member of the Gammaherspivirinae subfamily, Rhadinovirus genus. Its natural host is the bovine, and it is prevalent among the global cattle population. Although the complete genome of BoGHV4 has been successfully sequenced, the functions of most of its genes remain unknown. Currently, only six strains of BoGHV4, all belonging to Genotype 1, have been sequenced. This is the first report of the nearly complete genome of Argentinean BoGHV4 strains isolated from clinical cases of abortion, representing the first BoGHV4 Genotype 2 and 3 genomes described in the literature. Both Argentinean isolates presented the highest nt p-distance values, indicating a greater level of divergence. Overall, the considerable diversity observed in the complete genomes and open reading frames underscores the distinctiveness of both Argentinean isolates compared to the existing BoGHV4 genomes. These findings support previous studies that categorized the Argentinean BoGHV4 strains 07-435 and 10-154 as Genotypes 3 and 2, respectively. The inclusion of these sequences represents a significant expansion to the currently limited pool of BoGHV4 genomes while providing an important basis to increase the knowledge of local isolates.
Collapse
Affiliation(s)
- Florencia Romeo
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Innovación para la Producción Agropecuaria y El Desarrollo Sostenible (IPADS, INTA-CONICET) Ruta 226, km 73.5, Balcarce CC7620, Buenos Aires, Argentina (E.L.L.U.)
| | - Maximiliano Joaquín Spetter
- Facultad de Ciencias Veterinarias, Departamento de Fisiopatología, Centro de Investigación Veterinaria de Tandil (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco s/n, Tandil CC7000, Buenos Aires, Argentina
| | - Susana Beatriz Pereyra
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Innovación para la Producción Agropecuaria y El Desarrollo Sostenible (IPADS, INTA-CONICET) Ruta 226, km 73.5, Balcarce CC7620, Buenos Aires, Argentina (E.L.L.U.)
| | - Pedro Edgardo Morán
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco s/n, Tandil CC7000, Buenos Aires, Argentina
| | - Erika Analía González Altamiranda
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Innovación para la Producción Agropecuaria y El Desarrollo Sostenible (IPADS, INTA-CONICET) Ruta 226, km 73.5, Balcarce CC7620, Buenos Aires, Argentina (E.L.L.U.)
| | - Enrique Leopoldo Louge Uriarte
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Innovación para la Producción Agropecuaria y El Desarrollo Sostenible (IPADS, INTA-CONICET) Ruta 226, km 73.5, Balcarce CC7620, Buenos Aires, Argentina (E.L.L.U.)
| | - Anselmo Carlos Odeón
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Ruta 226, km 73.5, Balcarce CC7620, Buenos Aires, Argentina
| | - Sandra Elizabeth Pérez
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco s/n, Tandil CC7000, Buenos Aires, Argentina
| | - Andrea Elizabeth Verna
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Innovación para la Producción Agropecuaria y El Desarrollo Sostenible (IPADS, INTA-CONICET) Ruta 226, km 73.5, Balcarce CC7620, Buenos Aires, Argentina (E.L.L.U.)
| |
Collapse
|
2
|
Petrini S, Curini V, Righi C, Cammà C, Di Lollo V, Tinelli E, Mincarelli LF, Rossi E, Costantino G, Secondini B, Pirani S, Giammarioli M, Feliziani F. Genomic Characterization of a Wild-Type Bovine alphaherpesvirus 1 (BoAHV-1) Strain Isolated in an Outbreak in Central Italy. Viruses 2024; 16:150. [PMID: 38275960 PMCID: PMC10818397 DOI: 10.3390/v16010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Bovine alphaherpesvirus-1 (BoAHV-1) infection is common in cattle worldwide. However, information on the spread of BoAHV-1-circulating strains in Italy remains limited. In this study, we investigated an outbreak characterized by severe respiratory symptoms in a cattle herd (n = 30) located in Central Italy. BoAHV-1 was isolated from three cattle in a cell culture, which confirmed viral infection. Next, we characterized one (16453/07 TN) of the three isolates of BoAHV-1 using whole-genome sequencing. BLASTn and phylogenetic analysis revealed a nucleotide identity >99% with all BoAHV-1 strains belonging to subtype 1.1, highlighting the genetic stability of the virus. This study reports the first full genomic characterization of a BoAHV-1 isolate in Italy, enriching our understanding of the genetic characteristics of the circulating BoAHV-1 strain in Italy.
Collapse
Affiliation(s)
- Stefano Petrini
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy; (S.P.); (E.T.); (E.R.); (G.C.); (S.P.); (M.G.); (F.F.)
| | - Valentina Curini
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens, Istituto Zooprofilattico Sperimentale Abruzzo-Molise “G. Caporale”, 64100 Teramo, Italy; (V.C.); (C.C.); (V.D.L.); (L.F.M.); (B.S.)
| | - Cecilia Righi
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy; (S.P.); (E.T.); (E.R.); (G.C.); (S.P.); (M.G.); (F.F.)
| | - Cesare Cammà
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens, Istituto Zooprofilattico Sperimentale Abruzzo-Molise “G. Caporale”, 64100 Teramo, Italy; (V.C.); (C.C.); (V.D.L.); (L.F.M.); (B.S.)
| | - Valeria Di Lollo
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens, Istituto Zooprofilattico Sperimentale Abruzzo-Molise “G. Caporale”, 64100 Teramo, Italy; (V.C.); (C.C.); (V.D.L.); (L.F.M.); (B.S.)
| | - Elena Tinelli
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy; (S.P.); (E.T.); (E.R.); (G.C.); (S.P.); (M.G.); (F.F.)
| | - Luana Fiorella Mincarelli
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens, Istituto Zooprofilattico Sperimentale Abruzzo-Molise “G. Caporale”, 64100 Teramo, Italy; (V.C.); (C.C.); (V.D.L.); (L.F.M.); (B.S.)
| | - Elisabetta Rossi
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy; (S.P.); (E.T.); (E.R.); (G.C.); (S.P.); (M.G.); (F.F.)
| | - Giulia Costantino
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy; (S.P.); (E.T.); (E.R.); (G.C.); (S.P.); (M.G.); (F.F.)
| | - Barbara Secondini
- National Reference Center for Whole Genome Sequencing of Microbial Pathogens, Istituto Zooprofilattico Sperimentale Abruzzo-Molise “G. Caporale”, 64100 Teramo, Italy; (V.C.); (C.C.); (V.D.L.); (L.F.M.); (B.S.)
| | - Silvia Pirani
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy; (S.P.); (E.T.); (E.R.); (G.C.); (S.P.); (M.G.); (F.F.)
| | - Monica Giammarioli
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy; (S.P.); (E.T.); (E.R.); (G.C.); (S.P.); (M.G.); (F.F.)
| | - Francesco Feliziani
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche “Togo Rosati”, 06126 Perugia, Italy; (S.P.); (E.T.); (E.R.); (G.C.); (S.P.); (M.G.); (F.F.)
| |
Collapse
|
3
|
Onasanya AE, El-Hage C, Diaz-Méndez A, Vaz PK, Legione AR, Devlin JM, Hartley CA. Genomic diversity and natural recombination of equid gammaherpesvirus 5 isolates. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105517. [PMID: 37879385 DOI: 10.1016/j.meegid.2023.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/09/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Equid gammaherpesvirus 5 (EHV5) is closely related to equid gammaherpesvirus 2 (EHV2). Detection of EHV5 is frequent in horse populations worldwide, but it is often without a clear and significant clinical impact. Infection in horses can often present as subclinical disease; however, it has been associated with respiratory disease, including equine multinodular pulmonary fibrosis (EMPF). Genetic heterogeneity within small regions of the EHV5 glycoprotein B (gB) sequences have been reported and multiple genotypes of this virus have been identified within individual horses, but full genome sequence data for these viruses is limited. The primary focus of this study was to assess the genomic diversity and natural recombination among EHV5 isolates. RESULTS The genome size of EHV5 prototype strain and the five EHV5 isolates cultured for this study, including four isolates from the same horse, ranged from 181,929 to 183,428 base pairs (bp), with the sizes of terminal repeat regions varying from 0 to 10 bp. The nucleotide sequence identity between the six EHV5 genomes ranged from 95.5 to 99.1%, and the estimated average nucleotide diversity between isolates was 1%. Individual genes displayed varying levels of nucleotide diversity that ranged from 0 to 19%. The analysis of nonsynonymous substitution (Ka > 0.025) revealed high diversity in eight genes. Genome analysis using RDP4 and SplitsTree programs detected evidence of past recombination events between EHV5 isolates. CONCLUSION Genomic diversity and recombination hotspots were identified among EHV5 strains. Recombination can drive genetic diversity, particularly in viruses that have a low rate of nucleotide substitutions. Therefore, the results from this study suggest that recombination is an important contributing factor to EHV5 genomic diversity. The findings from this study provide additional insights into the genetic heterogeneity of the EHV5 genome.
Collapse
Affiliation(s)
- Adepeju E Onasanya
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Charles El-Hage
- Centre for Equine Infectious Disease, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrés Diaz-Méndez
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paola K Vaz
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alistair R Legione
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joanne M Devlin
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Carol A Hartley
- The Asia-Pacific Centre for Animal Health, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia; Centre for Equine Infectious Disease, Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
4
|
Zhang HL, Zhang RH, Liu G, Li GM, Wang FX, Wen YJ, Shan H. Evaluation of immunogenicity of gene-deleted and subunit vaccines constructed against the emerging pseudorabies virus variants. Virol J 2023; 20:98. [PMID: 37221518 DOI: 10.1186/s12985-023-02051-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Pseudorabies (PR) (also called Aujeszky's disease, AD) is a serious infectious disease affecting pigs and other animals worldwide. The emergence of variant strains of pseudorabies virus (PRV) since 2011 has led to PR outbreaks in China and a vaccine that antigenically more closely matches these PRV variants could represent an added value to control these infections. METHODS The objective of this study was to develop new live attenuated and subunit vaccines against PRV variant strains. Genomic alterations of vaccine strains were based on the highly virulent SD-2017 mutant strain and gene-deleted strains SD-2017ΔgE/gI and SD-2017ΔgE/gI/TK, which constructed using homologous recombination technology. PRV gB-DCpep (Dendritic cells targeting peptide) and PorB (the outer membrane pore proteins of N. meningitidis) proteins containing gp67 protein secretion signal peptide were expressed using the baculovirus system for the preparation of subunit vaccines. We used experimental animal rabbits to test immunogenicity to evaluate the effect of the newly constructed PR vaccines. RESULTS Compared with the PRV-gB subunit vaccine and SD-2017ΔgE/gI inactivated vaccines, rabbits (n = 10) that were intramuscularly vaccinated with SD-2017ΔgE/gI/TK live attenuated vaccine and PRV-gB + PorB subunit vaccine showed significantly higher anti-PRV-specific antibodies as well as neutralizing antibodies and IFN-γ levels in serum. In addition, the SD-2017ΔgE/gI/TK live attenuated vaccine and PRV-gB + PorB subunit vaccine protected (90-100%) rabbits against homologous infection by the PRV variant strain. No obvious pathological damage was observed in these vaccinated rabbits. CONCLUSIONS The SD-2017ΔgE/gI/TK live attenuated vaccine provided 100% protection against PRV variant challenge. Interestingly, the subunit vaccines with gB protein linked to DCpep and PorB protein as adjuvant may also be a promising and effective PRV variant vaccine candidate.
Collapse
Affiliation(s)
- Hong-Liang Zhang
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Rui-Hua Zhang
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
| | - Gang Liu
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Gui-Mei Li
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Feng-Xue Wang
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
| | - Yong-Jun Wen
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China.
| | - Hu Shan
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China.
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P.R. China.
| |
Collapse
|
5
|
Trancart S, Tweedie A, Liu O, Paul-Pont I, Hick P, Houssin M, Whittington RJ. Diversity and molecular epidemiology of Ostreid herpesvirus 1 in farmed Crassostrea gigas in Australia: Geographic clusters and implications for "microvariants" in global mortality events. Virus Res 2023; 323:198994. [PMID: 36332723 PMCID: PMC10194400 DOI: 10.1016/j.virusres.2022.198994] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022]
Abstract
Since 2010, mass mortality events known as Pacific oyster mortality syndrome (POMS) have occurred in Crassostrea gigas in Australia associated with Ostreid herpesvirus 1. The virus was thought to be an OsHV-1 µVar or "microvariant", i.e. one of the dominant variants associated with POMS in Europe, but there are few data to characterize the genotype in Australia. Consequently, the genetic identity and diversity of the virus was determined to understand the epidemiology of the disease in Australia. Samples were analysed from diseased C. gigas over five summer seasons between 2011 and 2016 in POMS-affected estuaries: Georges River in New South Wales (NSW), Hawkesbury River (NSW) and Pitt Water in Tasmania. Sequencing was attempted for six genomic regions. Numerous variants were identified among these regions (n = 100 isolates) while twelve variants were identified from concatenated nucleotide sequences (n = 61 isolates). Nucleotide diversity of the seven genotypes of C region among Australian isolates (Pi 0.99 × 10-3) was the lowest globally. All Australian isolates grouped in a cluster distinct from other OsHV-1 isolates worldwide. This is the first report that Australian outbreaks of POMS were associated with OsHV-1 distinct from OsHV-1 reference genotype, µVar and other microvariants from other countries. The findings illustrate that microvariants are not the only variants of OsHV-1 associated with mass mortality events in C. gigas. In addition, there was mutually exclusive spatial clustering of viral genomic and amino acid sequence variants between estuaries, and a possible association between genotype/amino acid sequence and the prevalence and severity of POMS, as this differed between these estuaries. The sequencing findings supported prior epidemiological evidence for environmental reservoirs of OsHV-1 for POMS outbreaks in Australia.
Collapse
Affiliation(s)
- Suzanne Trancart
- LABÉO Research Department, 1 Route de Rosel, Cedex 4, Caen 14053, France
| | - Alison Tweedie
- The University of Sydney, Sydney School of Veterinary Science, Faculty of Science, 425 Werombi Rd, Camden, NSW 2570, Australia; Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Olivia Liu
- The University of Sydney, Sydney School of Veterinary Science, Faculty of Science, 425 Werombi Rd, Camden, NSW 2570, Australia; Department of Agriculture, Water and the Environment, Canberra, ACT 2601, Australia
| | - Ika Paul-Pont
- The University of Sydney, Sydney School of Veterinary Science, Faculty of Science, 425 Werombi Rd, Camden, NSW 2570, Australia; LEMAR, Rue Dumont d'Urville, Plouzané 29280, France
| | - Paul Hick
- The University of Sydney, Sydney School of Veterinary Science, Faculty of Science, 425 Werombi Rd, Camden, NSW 2570, Australia; Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Maryline Houssin
- LABÉO Research Department, 1 Route de Rosel, Cedex 4, Caen 14053, France; UMR BOREA Université de Caen Normandie, MNHN, CNRS 8067, SU, IRD 207, UCN, UA, Esplanade de la Paix Caen Cedex 4 14032, France
| | - Richard J Whittington
- The University of Sydney, Sydney School of Veterinary Science, Faculty of Science, 425 Werombi Rd, Camden, NSW 2570, Australia.
| |
Collapse
|
6
|
Brake DA. African Swine Fever Modified Live Vaccine Candidates: Transitioning from Discovery to Product Development through Harmonized Standards and Guidelines. Viruses 2022; 14:2619. [PMID: 36560623 PMCID: PMC9788307 DOI: 10.3390/v14122619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The recent centennial anniversary of R.E. Montgomery's seminal published description of "a form of swine fever" disease transmitted from wild African pigs to European domestic pigs is a call to action to accelerate African Swine Fever (ASF) vaccine research and development. ASF modified live virus (MLV) first-generation gene deleted vaccine candidates currently offer the most promise to meet international and national guidelines and regulatory requirements for veterinary product licensure and market authorization. A major, rate-limiting impediment to the acceleration of current as well as future vaccine candidates into regulatory development is the absence of internationally harmonized standards for assessing vaccine purity, potency, safety, and efficacy. This review summarizes the asymmetrical landscape of peer-reviewed published literature on ASF MLV vaccine approaches and lead candidates, primarily studied to date in the research laboratory in proof-of-concept or early feasibility clinical safety and efficacy studies. Initial recommendations are offered toward eventual consensus of international harmonized guidelines and standards for ASF MLV vaccine purity, potency, safety, and efficacy. To help ensure the successful regulatory development and approval of ASF MLV first generation vaccines by national regulatory associated government agencies, the World Organisation for Animal Health (WOAH) establishment and publication of harmonized international guidelines is paramount.
Collapse
Affiliation(s)
- David A Brake
- BioQuest Associates, LLC, P.O. Box 787, Stowe, VT 05672, USA
| |
Collapse
|
7
|
Li K, Yu Z, Lan X, Wang Y, Qi X, Cui H, Gao L, Wang X, Zhang Y, Gao Y, Liu C. Complete genome analysis reveals evolutionary history and temporal dynamics of Marek’s disease virus. Front Microbiol 2022; 13:1046832. [PMID: 36406400 PMCID: PMC9669313 DOI: 10.3389/fmicb.2022.1046832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Marek’s disease has caused enormous losses in poultry production worldwide. However, the evolutionary process and molecular mechanisms underlying Marek’s disease virus (MDV) remain largely unknown. Using complete genomic sequences spanning an unprecedented diversity of MDVs, we explored the evolutionary history and major patterns in viruses sampled from 1964 to 2018. We found that the evolution of MDV strains had obvious geographical features, with the Eurasian and North American strains having independent evolutionary paths, especially for Asian strains. The evolution of MDVs generally followed a clock-like structure with a relatively high evolutionary rate. Asian strains had evolved at a faster rate than European strains, with most genetic mutations occurring in Asian strains. Our results showed that all recombination events occurred in the UL and US subregions. We found direct evidence of a closer correlation between Eurasian strains, related to a series of reorganization events represented by the European strain ATE2539. We also discovered that the vaccine strains had recombined with the wild virulent strains. Base substitution and recombination were found to be the two main mechanisms of MDV evolution. Our study offers novel insights into the evolution of MDVs that could facilitate predicting the spread of infections, and hence their control.
Collapse
|
8
|
Guo W, Xie J, Liu J, Chen H, Jung YS. The full-genome characterization and phylogenetic analysis of bovine herpesvirus type 1.2 isolated in China. Front Microbiol 2022; 13:1033008. [PMID: 36386697 PMCID: PMC9664903 DOI: 10.3389/fmicb.2022.1033008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 01/25/2023] Open
Abstract
Bovine herpesvirus type 1 (BHV-1) causes bovine respiratory disease that poses a significant threat to the cattle industry. The prevalence of BHV-1 has recently increased in China. However, the lack of information about the prevalent isolates limits the control of the disease. In this study, a novel strain of BHV-1 was isolated from nasal swabs of Holstein cows in 2020 in China, designated as BHV SHJS. The genome of BHV strain SHJS is 135, 102 bp in length and highly similar to strain SP1777 (KM258883.1) with an identity of 99.64%. Mutations, insertions, or deletions mainly occur in UL27, UL44, and US8, etc., relative to the different genomic coordinates. Phylogenetic tree of UL44 (gC) showed that BHV strain SHJS belongs to BHV-1.2b cluster. The result showed that the strain had a different evolutionary origin from those prevalent in China. This study will enrich our knowledge regarding BHV outbreak strains in China and contribute to the prevention and pathogenic studies of BHV-1.2.
Collapse
Affiliation(s)
- Weiqiang Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jia Xie
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jingyi Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yong-Sam Jung
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China,*Correspondence: Yong-Sam Jung,
| |
Collapse
|
9
|
Elshafiee EA, Hassan MSH, Provost C, Gagnon CA, Ojkic D, Abdul-Careem MF. Comparative full genome sequence analysis of wild-type and chicken embryo origin vaccine-like infectious laryngotracheitis virus field isolates from Canada. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 104:105350. [PMID: 35977653 DOI: 10.1016/j.meegid.2022.105350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/30/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Infectious laryngotracheitis (ILT), caused by infectious laryngotracheitis virus (ILTV), occurs sporadically in poultry flocks in Canada. Live attenuated chicken embryo origin (CEO) vaccines are being used routinely to prevent and control ILTV infections. However, ILT outbreaks still occur since vaccine strains could revert to virulence in the field. In this study, 7 Canadian ILTV isolates linked to ILT outbreaks across different time in Eastern Canada (Ontario; ON and Quebec; QC) were whole genome sequenced. Phylogenetic analysis confirmed the close relationship between the ON isolates and the CEO vaccines, whereas the QC isolates clustered with strains previously known as CEO revertant and wild-type ILTVs. Recombination network analysis of ILTV sequences revealed clear evidence of historical recombination between ILTV strains circulating in Canada and other geographical regions. The comparison of ON CEO clustered and QC CEO revertant clustered isolates with the LT Blen® CEO vaccine reference sequence showed amino acid differences in 5 and 12 open reading frames (ORFs), respectively. Similar analysis revealed amino acid differences in 32 ORFs in QC wild-type isolates. Compared to all CEO vaccine strains in the public domain, the QC wild-type isolates showed 15 unique mutational sites leading to amino acid changes in 13 ORFs. Our outcomes add to the knowledge of the molecular mechanisms behind ILTV genetic variance and provide genetic markers between wild-type and vaccine strains.
Collapse
Affiliation(s)
- Esraa A Elshafiee
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mohamed S H Hassan
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Department of Poultry Diseases, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Chantale Provost
- Swine and Poultry Infectious Diseases Research Center (CRIPA - Fonds de Recherche du Québec), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Carl A Gagnon
- Swine and Poultry Infectious Diseases Research Center (CRIPA - Fonds de Recherche du Québec), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Davor Ojkic
- Animal Health Laboratory, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mohamed Faizal Abdul-Careem
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
10
|
Onasanya AE, El-Hage C, Diaz-Méndez A, Vaz PK, Legione AR, Browning GF, Devlin JM, Hartley CA. Whole genome sequence analysis of equid gammaherpesvirus -2 field isolates reveals high levels of genomic diversity and recombination. BMC Genomics 2022; 23:622. [PMID: 36042397 PMCID: PMC9426266 DOI: 10.1186/s12864-022-08789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Equid gammaherpesvirus 2 (EHV2) is a gammaherpesvirus with a widespread distribution in horse populations globally. Although its pathogenic significance can be unclear in most cases of infection, EHV2 infection can cause upper respiratory tract disease in foals. Co-infection of different strains of EHV2 in an individual horse is common. Small regions of the EHV2 genome have shown considerable genetic heterogeneity. This could suggest genomic recombination between different strains of EHV2, similar to the extensive recombination networks that have been demonstrated for some alphaherpesviruses. This study examined natural recombination and genome diversity of EHV2 field isolates. Results Whole genome sequencing analysis of 18 EHV2 isolates, along with analysis of two publicly available EHV2 genomes, revealed variation in genomes sizes (from 173.7 to 184.8 kbp), guanine plus cytosine content (from 56.7 to 57.8%) and the size of the terminal repeat regions (from 17,196 to 17,551 bp). The nucleotide sequence identity between the genomes ranged from 86.2 to 99.7%. The estimated average inter-strain nucleotide diversity between the 20 EHV2 genomes was 2.9%. Individual gene sequences showed varying levels of nucleotide diversity and ranged between 0 and 38.1%. The ratio of nonsynonymous substitutions, Ka, to synonymous substitutions, Ks, (Ka/Ks) suggests that over 50% of EHV2 genes are undergoing diversifying selection. Recombination analyses of the 20 EHV2 genome sequences using the recombination detection program (RDP4) and SplitsTree revealed evidence of viral recombination. Conclusions Analysis of the 18 new EHV2 genomes alongside the 2 previously sequenced genomes revealed a high degree of genetic diversity and extensive recombination networks. Herpesvirus genome diversification and virus evolution can be driven by recombination, and our findings are consistent with recombination being a key mechanism by which EHV2 genomes may vary and evolve.
Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08789-x.
Collapse
Affiliation(s)
- Adepeju E Onasanya
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Charles El-Hage
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia.,Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andrés Diaz-Méndez
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paola K Vaz
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alistair R Legione
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Glenn F Browning
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joanne M Devlin
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Carol A Hartley
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The Asia-Pacific Centre for Animal Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
11
|
Petrini S, Martucciello A, Righi C, Cappelli G, Torresi C, Grassi C, Scoccia E, Costantino G, Casciari C, Sabato R, Giammarioli M, De Carlo E, Feliziani F. Assessment of Different Infectious Bovine Rhinotracheitis Marker Vaccines in Calves. Vaccines (Basel) 2022; 10:vaccines10081204. [PMID: 36016092 PMCID: PMC9412430 DOI: 10.3390/vaccines10081204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Three commercially available infectious bovine rhinotracheitis (IBR) live marker vaccines were evaluated for their ability to provide clinical protection to vaccinated calves against wild-type (wt) Bovine alphaherpesvirus-1 (BoHV-1) challenge and their possible effect on wt BoHV-1 latency reactivation following the challenge. On 35 post-vaccination days (PVDs), all animals were challenged with wt BoHV-1. Only the calves in the control group developed severe forms of IBR. The reactivation of latent BoHV-1 was induced by dexamethasone (DMS) treatment on 28 post-challenge days (PCDs). All animals showed IBR clinical signs on three post-DMS treatment days (PDTDs). On PVD 14, all vaccinated animals developed neutralizing antibodies (NAs), whereas in control animals, the NAs appeared post-challenge. The positivity for glycoprotein-B (gB) was detected using real-time polymerase chain reactions in all animals from PCDs 1 to 7. In contrast, the gB-positivity was observed in the immunized calves from PDTDs 3 to 10. Positive expression of gD and gE was observed in nasal swabs of all calves on PDTD 7. These findings suggested that the IBR marker vaccines evaluated in this study protected against wt BoHV-1-induced disease but not against wt BoHV-1-induced latency reactivation, indicating the necessity of developing new products to protect animals from wt BoHV-1-induced latency.
Collapse
Affiliation(s)
- Stefano Petrini
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche, “Togo Rosati,” 06126 Perugia, Italy; (C.R.); (C.T.); (E.S.); (G.C.); (C.C.); (R.S.); (M.G.); (F.F.)
- Correspondence: ; Tel.: +39-075-343-3069
| | - Alessandra Martucciello
- National Reference Centre for Hygiene and Technology of Breeding and Buffalo Production, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 84131 Salerno, Italy; (A.M.); (G.C.); (C.G.); (E.D.C.)
| | - Cecilia Righi
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche, “Togo Rosati,” 06126 Perugia, Italy; (C.R.); (C.T.); (E.S.); (G.C.); (C.C.); (R.S.); (M.G.); (F.F.)
| | - Giovanna Cappelli
- National Reference Centre for Hygiene and Technology of Breeding and Buffalo Production, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 84131 Salerno, Italy; (A.M.); (G.C.); (C.G.); (E.D.C.)
| | - Claudia Torresi
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche, “Togo Rosati,” 06126 Perugia, Italy; (C.R.); (C.T.); (E.S.); (G.C.); (C.C.); (R.S.); (M.G.); (F.F.)
| | - Carlo Grassi
- National Reference Centre for Hygiene and Technology of Breeding and Buffalo Production, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 84131 Salerno, Italy; (A.M.); (G.C.); (C.G.); (E.D.C.)
| | - Eleonora Scoccia
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche, “Togo Rosati,” 06126 Perugia, Italy; (C.R.); (C.T.); (E.S.); (G.C.); (C.C.); (R.S.); (M.G.); (F.F.)
| | - Giulia Costantino
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche, “Togo Rosati,” 06126 Perugia, Italy; (C.R.); (C.T.); (E.S.); (G.C.); (C.C.); (R.S.); (M.G.); (F.F.)
| | - Cristina Casciari
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche, “Togo Rosati,” 06126 Perugia, Italy; (C.R.); (C.T.); (E.S.); (G.C.); (C.C.); (R.S.); (M.G.); (F.F.)
| | - Roberto Sabato
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche, “Togo Rosati,” 06126 Perugia, Italy; (C.R.); (C.T.); (E.S.); (G.C.); (C.C.); (R.S.); (M.G.); (F.F.)
| | - Monica Giammarioli
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche, “Togo Rosati,” 06126 Perugia, Italy; (C.R.); (C.T.); (E.S.); (G.C.); (C.C.); (R.S.); (M.G.); (F.F.)
| | - Esterina De Carlo
- National Reference Centre for Hygiene and Technology of Breeding and Buffalo Production, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 84131 Salerno, Italy; (A.M.); (G.C.); (C.G.); (E.D.C.)
| | - Francesco Feliziani
- National Reference Centre for Infectious Bovine Rhinotracheitis (IBR), Istituto Zooprofilattico Sperimentale Umbria-Marche, “Togo Rosati,” 06126 Perugia, Italy; (C.R.); (C.T.); (E.S.); (G.C.); (C.C.); (R.S.); (M.G.); (F.F.)
| |
Collapse
|
12
|
Liu Q, Kuang Y, Li Y, Guo H, Zhou C, Guo S, Tan C, Wu B, Chen H, Wang X. The Epidemiology and Variation in Pseudorabies Virus: A Continuing Challenge to Pigs and Humans. Viruses 2022; 14:v14071463. [PMID: 35891443 PMCID: PMC9325097 DOI: 10.3390/v14071463] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
Pseudorabies virus (PRV) can infect most mammals and is well known for causing substantial economic losses in the pig industry. In addition to pigs, PRV infection usually leads to severe itching, central nervous system dysfunction, and 100% mortality in its non-natural hosts. It should be noted that increasing human cases of PRV infection have been reported in China since 2017, and these patients have generally suffered from nervous system damage and even death. Here, we reviewed the current prevalence and variation in PRV worldwide as well as the PRV-caused infections in animals and humans, and briefly summarized the vaccines and diagnostic methods used for pseudorabies control. Most countries, including China, have control programs in place for pseudorabies in domestic pigs, and thus, the disease is on the decline; however, PRV is still globally epizootic and an important pathogen for pigs. In countries where pseudorabies in domestic pigs have already been eliminated, the risk of PRV transmission by infected wild animals should be estimated and prevented. As a member of the alphaherpesviruses, PRV showed protein-coding variation that was relatively higher than that of herpes simplex virus-1 (HSV-1) and varicella-zoster virus (VZV), and its evolution was mainly contributed to by the frequent recombination observed between different genotypes or within the clade. Recombination events have promoted the generation of new variants, such as the variant strains resulting in the outbreak of pseudorabies in pigs in China, 2011. There have been 25 cases of PRV infections in humans reported in China since 2017, and they were considered to be infected by PRV variant strains. Although PRV infections have been sporadically reported in humans, their causal association remains to be determined. This review provided the latest epidemiological information on PRV for the better understanding, prevention, and treatment of pseudorabies.
Collapse
Affiliation(s)
- Qingyun Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yan Kuang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yafei Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huihui Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chuyue Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shibang Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
- Correspondence: (H.C.); (X.W.)
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.L.); (Y.K.); (Y.L.); (H.G.); (C.Z.); (S.G.); (C.T.); (B.W.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430070, China
- Correspondence: (H.C.); (X.W.)
| |
Collapse
|
13
|
Deng J, Wu Z, Liu J, Ji Q, Ju C. The Role of Latency-Associated Transcripts in the Latent Infection of Pseudorabies Virus. Viruses 2022; 14:v14071379. [PMID: 35891360 PMCID: PMC9320458 DOI: 10.3390/v14071379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudorabies virus (PRV) can cause neurological, respiratory, and reproductive diseases in pigs and establish lifelong latent infection in the peripheral nervous system (PNS). Latent infection is a typical feature of PRV, which brings great difficulties to the prevention, control, and eradication of pseudorabies. The integral mechanism of latent infection is still unclear. Latency-associated transcripts (LAT) gene is the only transcriptional region during latent infection of PRV which plays the key role in regulating viral latent infection and inhibiting apoptosis. Here, we review the characteristics of PRV latent infection and the transcriptional characteristics of the LAT gene. We also analyzed the function of non-coding RNA (ncRNA) produced by the LAT gene and its importance in latent infection. Furthermore, we provided possible strategies to solve the problem of latent infection of virulent PRV strains in the host. In short, the detailed mechanism of PRV latent infection needs to be further studied and elucidated.
Collapse
|
14
|
Chaturvedi S, Pablo M, Wolf M, Rosas-Rivera D, Calia G, Kumar AJ, Vardi N, Du K, Glazier J, Ke R, Chan MF, Perelson AS, Weinberger LS. Disrupting autorepression circuitry generates "open-loop lethality" to yield escape-resistant antiviral agents. Cell 2022; 185:2086-2102.e22. [PMID: 35561685 PMCID: PMC9097017 DOI: 10.1016/j.cell.2022.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 03/01/2022] [Accepted: 04/14/2022] [Indexed: 12/27/2022]
Abstract
Across biological scales, gene-regulatory networks employ autorepression (negative feedback) to maintain homeostasis and minimize failure from aberrant expression. Here, we present a proof of concept that disrupting transcriptional negative feedback dysregulates viral gene expression to therapeutically inhibit replication and confers a high evolutionary barrier to resistance. We find that nucleic-acid decoys mimicking cis-regulatory sites act as "feedback disruptors," break homeostasis, and increase viral transcription factors to cytotoxic levels (termed "open-loop lethality"). Feedback disruptors against herpesviruses reduced viral replication >2-logs without activating innate immunity, showed sub-nM IC50, synergized with standard-of-care antivirals, and inhibited virus replication in mice. In contrast to approved antivirals where resistance rapidly emerged, no feedback-disruptor escape mutants evolved in long-term cultures. For SARS-CoV-2, disruption of a putative feedback circuit also generated open-loop lethality, reducing viral titers by >1-log. These results demonstrate that generating open-loop lethality, via negative-feedback disruption, may yield a class of antimicrobials with a high genetic barrier to resistance.
Collapse
Affiliation(s)
- Sonali Chaturvedi
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA.
| | - Michael Pablo
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Marie Wolf
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Daniel Rosas-Rivera
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Giuliana Calia
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Arjun J Kumar
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Noam Vardi
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Kelvin Du
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Joshua Glazier
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ruian Ke
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Matilda F Chan
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Leor S Weinberger
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
15
|
Xu L, Wang Z, Chen Z, Cui L, Liu Z, Liang Y, Li X, Zhang Y, Liu S, Li H. PFT-α Inhibits Gallid Alpha Herpesvirus 1 Replication by Repressing Host Nucleotide Metabolism and ATP Synthesis. Vet Microbiol 2022; 269:109435. [DOI: 10.1016/j.vetmic.2022.109435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 12/24/2022]
|
16
|
Zhang Y, Lan X, Wang Y, Lin Y, Yu Z, Guo R, Li K, Cui H, Qi X, Wang Y, Gao L, Pan Q, Liu A, Gao Y, Wang X, Liu C. Emerging natural recombinant Marek's disease virus between vaccine and virulence strains and their pathogenicity. Transbound Emerg Dis 2022; 69:e1702-e1709. [PMID: 35266322 DOI: 10.1111/tbed.14506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/17/2022] [Accepted: 03/05/2022] [Indexed: 11/29/2022]
Abstract
Marek's disease virus (MDV), an oncogenic virus belonging to the subfamily Alphaherpesvirinae, causes Marek's disease (MD). Vaccines can control MD, but cannot block the viral infection; they are considered imperfect vaccines, which carry the risk of recombination. In this study, six natural recombinant MDV strains were isolated from infected chickens in commercial flocks in China. We sequenced and analyzed the genetic characteristics of the isolates (HC/0803, CH/10, SY/1219, DH/1307, DH/1504, and Hrb/1504). We found that the six strains resulted from recombination between the vaccine CVI988/Rispens (CVI988) strain skeleton and the virulence strain's partial unique short region. Additionally, a pathogenicity study was performed on recombinant strains (HC/0803 and DH/1307) and reference strains (CVI988 and LHC2) to evaluate their virulence. LHC2 induced 84.6% mortality in infected chickens; however, no mortality was recorded in chickens inoculated with HC/0803, DH/1307, or CVI988. However, HC/0803 and DH/1307 induced a notable spleen enlargement, and mild thymus and bursa atrophy at 11-17 days post-challenge (dpc). The viral genome load in the HC/0803- and DH/1307-challenged chickens peaked at approximately 107 viral copies per million host cells at 17 dpc and was similar to that in LHC2-challenged chickens, but significantly higher than that of CVI988-challenged chickens. In summary, HC/0803 and DH/1307 displayed mild virulence with temporal damage to the immune organs of chicken and a higher reproduction capability than the vaccine strain CVI988. Our study provides direct evidence of the emergence of recombinant MDV strains between vaccine and virulence strains in nature. The emergence of natural recombinant strains suggests that live vaccines can act as genetic donors for genomic recombination, and recombination may be a safety concern when administering live vaccines. These findings demonstrate that recombination promotes genetic diversity and increases the complexity of disease diagnosis, prevention, and control. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xingge Lan
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yanan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yumeng Lin
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhenghao Yu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Rongrong Guo
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yongqiang Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Qing Pan
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Aijing Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| |
Collapse
|
17
|
First Genomic Evidence of Dual African Swine Fever Virus Infection: Case Report from Recent and Historical Outbreaks in Sardinia. Viruses 2021; 13:v13112145. [PMID: 34834952 PMCID: PMC8618892 DOI: 10.3390/v13112145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
African swine fever virus (ASFV) is one of the pathogens of highest concern worldwide. Despite different virus lineages co-circulating in several areas, dual infections in the same animal have been rarely observed, suggesting that ASF superinfections are infrequent events. Here we present the first genome-wide detection and analysis of two intragenotype dual ASFV infections. The dual infections have been detected in a hunted wild boar and in a pig carcass, both infected by ASFV genotype I in Sardinia in 1984 and 2018, respectively. We characterize the genetic differences between the two sequences, their intra-host frequency, and their phylogenetic relationship among fully sequenced ASFV strains from Sardinia. Both dual infections involve pairs of closely related but different viruses that were circulating in Sardinia in the same period. The results imply that dual ASFV infections or similar ASFV strains are more common than expected, especially in ASF endemic areas, albeit difficult to detect.
Collapse
|
18
|
Hu R, Wang L, Liu Q, Hua L, Huang X, Zhang Y, Fan J, Chen H, Song W, Liang W, Ding N, Li Z, Ding Z, Tang X, Peng Z, Wu B. Whole-Genome Sequence Analysis of Pseudorabies Virus Clinical Isolates from Pigs in China between 2012 and 2017 in China. Viruses 2021; 13:v13071322. [PMID: 34372529 PMCID: PMC8310123 DOI: 10.3390/v13071322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Pseudorabies virus (PRV) is an economically significant swine infectious agent. A PRV outbreak took place in China in 2011 with novel virulent variants. Although the association of viral genomic variability with pathogenicity is not fully confirmed, the knowledge concerning PRV genomic diversity and evolution is still limited. Here, we sequenced 54 genomes of novel PRV variants isolated in China from 2012 to 2017. Phylogenetic analysis revealed that China strains and US/Europe strains were classified into two separate genotypes. PRV strains isolated from 2012 to 2017 in China are highly related to each other and genetically close to classic China strains such as Ea, Fa, and SC. RDP analysis revealed 23 recombination events within novel PRV variants, indicating that recombination contributes significantly to the viral evolution. The selection pressure analysis indicated that most ORFs were under evolutionary constraint, and 19 amino acid residue sites in 15 ORFs were identified under positive selection. Additionally, 37 unique mutations were identified in 19 ORFs, which distinguish the novel variants from classic strains. Overall, our study suggested that novel PRV variants might evolve from classical PRV strains through point mutation and recombination mechanisms.
Collapse
Affiliation(s)
- Ruiming Hu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (N.D.); (Z.D.)
- Jiangxi Provincial Key Laboratory for Animal Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Leyi Wang
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA;
| | - Qingyun Liu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Lin Hua
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Xi Huang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Yue Zhang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Jie Fan
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Hongjian Chen
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Wenbo Song
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Wan Liang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Animal Husbandry and Veterinary Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| | - Nengshui Ding
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (N.D.); (Z.D.)
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
- State Key Laboratory of Food Safety Technology for Meat Products, Xiamen 360000, China
| | - Zuohua Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China;
| | - Zhen Ding
- Department of Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; (N.D.); (Z.D.)
- Jiangxi Provincial Key Laboratory for Animal Health, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xibiao Tang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
| | - Zhong Peng
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
- Correspondence: (Z.P.); (B.W.)
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (R.H.); (Q.L.); (L.H.); (X.H.); (Y.Z.); (J.F.); (H.C.); (W.S.); (W.L.); (X.T.)
- Correspondence: (Z.P.); (B.W.)
| |
Collapse
|
19
|
Meurens F, Dunoyer C, Fourichon C, Gerdts V, Haddad N, Kortekaas J, Lewandowska M, Monchatre-Leroy E, Summerfield A, Wichgers Schreur PJ, van der Poel WHM, Zhu J. Animal board invited review: Risks of zoonotic disease emergence at the interface of wildlife and livestock systems. Animal 2021; 15:100241. [PMID: 34091225 PMCID: PMC8172357 DOI: 10.1016/j.animal.2021.100241] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
The ongoing coronavirus disease 19s pandemic has yet again demonstrated the importance of the human-animal interface in the emergence of zoonotic diseases, and in particular the role of wildlife and livestock species as potential hosts and virus reservoirs. As most diseases emerge out of the human-animal interface, a better understanding of the specific drivers and mechanisms involved is crucial to prepare for future disease outbreaks. Interactions between wildlife and livestock systems contribute to the emergence of zoonotic diseases, especially in the face of globalization, habitat fragmentation and destruction and climate change. As several groups of viruses and bacteria are more likely to emerge, we focus on pathogenic viruses of the Bunyavirales, Coronaviridae, Flaviviridae, Orthomyxoviridae, and Paramyxoviridae, as well as bacterial species including Mycobacterium sp., Brucella sp., Bacillus anthracis and Coxiella burnetii. Noteworthy, it was difficult to predict the drivers of disease emergence in the past, even for well-known pathogens. Thus, an improved surveillance in hotspot areas and the availability of fast, effective, and adaptable control measures would definitely contribute to preparedness. We here propose strategies to mitigate the risk of emergence and/or re-emergence of prioritized pathogens to prevent future epidemics.
Collapse
Affiliation(s)
- François Meurens
- INRAE, Oniris, BIOEPAR, 44307 Nantes, France; Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon S7N5E3, Canada.
| | - Charlotte Dunoyer
- Direction de l'évaluation des risques, Anses, 94700 Maisons-Alfort, France
| | | | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO)-International Vaccine Centre (InterVac), University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Nadia Haddad
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, BIPAR, 94700 Maisons-Alfort, France
| | - Jeroen Kortekaas
- Wageningen Bioveterinary Research, Wageningen University and Research, Houtribweg 39, 8221 RA Lelystad, the Netherlands
| | - Marta Lewandowska
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Artur Summerfield
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland
| | - Paul J Wichgers Schreur
- Wageningen Bioveterinary Research, Wageningen University and Research, Houtribweg 39, 8221 RA Lelystad, the Netherlands
| | - Wim H M van der Poel
- Wageningen Bioveterinary Research, Wageningen University and Research, Houtribweg 39, 8221 RA Lelystad, the Netherlands
| | - Jianzhong Zhu
- College of Veterinary Medicine, Comparative Medicine Research Institute, Yangzhou University, 225009 Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, 225009 Yangzhou, China
| |
Collapse
|
20
|
Rud Y, Bigarré L, Pallandre L, Briand FX, Buchatsky L. First genetic characterization of sturgeon mimiviruses in Ukraine. JOURNAL OF FISH DISEASES 2020; 43:1391-1400. [PMID: 32882746 DOI: 10.1111/jfd.13239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
A group of pathogenic nucleocytoplasmic large DNA viruses (NCLDVs) related to the Mimiviridae family infect farmed sturgeons across Europe, causing mild-to-severe losses. One of these viruses, Acipenser iridovirus-European (AcIV-E), was identified in six sturgeon species. During the 2018-2019 period, nine sick Siberian (A. baerii) and Russian (A. gueldenstaedtii) sturgeons were sampled in Ukrainian farms and tested for the presence of AcIV-E using real-time PCR. The presence of AcIV-E was confirmed in some samples. High-resolution melting (HRM) assay and Sanger sequencing demonstrated the presence in three farms of two alleles of the major capsid protein (MCP) gene, called var1 and var2. Five samples carried both var1 and var2 at varying ratios, and the sixth sample was infected with only var1. These results constitute the first detection of AcIV-E in Ukraine and the first detection of a sample carrying only var1. The full-length sequences of the MCP genes confirmed the existence of two genetic lineages of AcIV-E, tentatively named V1 and V2, each displaying multiple substitutions in the MCP gene. Some of the MCP sequences showed a genetic relationship to both V1 and V2 lineages, depending on the fragment examined. Most likely, these sequences resulted from recombination events.
Collapse
Affiliation(s)
- Yuriy Rud
- Institute of Fisheries, Kyiv, Ukraine
| | - Laurent Bigarré
- ANSES, laboratory Ploufragan-Plouzané-Niort, Plouzané, France
| | | | | | - Leonid Buchatsky
- Taras Shevchenko National University of Kyiv, Institute of Biology and Medicine, Kyiv, Ukraine
| |
Collapse
|
21
|
Nefedeva M, Titov I, Tsybanov S, Malogolovkin A. Recombination shapes African swine fever virus serotype-specific locus evolution. Sci Rep 2020; 10:18474. [PMID: 33116230 PMCID: PMC7794389 DOI: 10.1038/s41598-020-75377-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/05/2020] [Indexed: 11/08/2022] Open
Abstract
The recombination is one of the most frequently identified drivers of double-stranded DNA viruses evolution. However, the recombination events in African swine fever virus (ASFV) genomes have been poorly annotated. We hypothesize that the genetic determinants of ASFV variability are potential hot-spots for recombination. Here, we analyzed ASFV serotype-specific locus (C-type lectin (EP153R) and CD2v (EP402R)) in order to allocate the recombination breakpoints in these immunologically important proteins and reveal driving forces of virus evolution. The recombinations were found in both proteins, mostly among ASFV strains from East Africa, where multiple virus transmission cycles are notified. The recombination events were essentially associated with the domain organization of proteins. The phylogenetic analysis demonstrated the lack of clonal evolution for African strains which conclusively support the significance of recombinations in the serotype-specific locus. In addition, the signature of adaptive evolution of these two genes, pN/pS > 1, was demonstrated. These results have implications for the interpretation of cross-protection potential between evolutionary distant ASFV strains and strongly suggest that C-type lectin and CD2v may experience substantial selective pressure than previously thought.
Collapse
Affiliation(s)
- Mariia Nefedeva
- Federal Research Center for Virology and Microbiology, Volginsky, Russia
| | - Ilya Titov
- Federal Research Center for Virology and Microbiology, Volginsky, Russia
| | - Sodnom Tsybanov
- Federal Research Center for Virology and Microbiology, Volginsky, Russia
| | | |
Collapse
|
22
|
Song C, Yang Y, Hu J, Yu S, Sun Y, Qiu X, Tan L, Meng C, Liao Y, Liu W, Ding C. Safety and Efficacy Evaluation of Recombinant Marek's Disease Virus with REV-LTR. Vaccines (Basel) 2020; 8:vaccines8030399. [PMID: 32698460 PMCID: PMC7564749 DOI: 10.3390/vaccines8030399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
Recently, chickens vaccinated with the CVI988/Rispens vaccine showed increased tumor incidence. Moreover, many strains of Marek's disease virus (MDV) that were naturally integrated with the long terminal repeat (LTR) of the avian reticuloendotheliosis virus (REV) have been isolated, which means it is necessary to develop a new vaccine. In this study, two LTR sequences were inserted into Rispens to construct a recombinant MDV (rMDV). Then, the safety and efficacy of rMDV were evaluated separately in chickens. The growth rate curves showed that the insertion of REV-LTR into MDV enabled a faster replication in vitro than Rispens. Chickens immunized with high or repeated dose rMDV had no MD clinical signs. Further, no tumor, tissue lesions, or evident pathological changes were observed in the chicken organs. Polymerase chain reaction (PCR) and virus isolation revealed that rMDV had the ability to spread horizontally to non-immunized chickens and had no impact on the environment. After five passages in chickens, there were no obvious lesions, and the LTR insertion was stable. There were also no deletions or mutations, which indicates that rMDV is safe in chickens. In addition, rMDV has an advantage over Rispens against vvMDV Md5 at low doses. All results demonstrate that the transgenic strain of rMDV with REV-LTR can be used as a live attenuated vaccine candidate.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Chan Ding
- Correspondence: ; Tel.: +86-21-34293441; Fax: +86-21-34293461
| |
Collapse
|
23
|
Genomic recombination between infectious laryngotracheitis vaccine strains occurs under a broad range of infection conditions in vitro and in ovo. PLoS One 2020; 15:e0229082. [PMID: 32119681 PMCID: PMC7051062 DOI: 10.1371/journal.pone.0229082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Gallid alphaherpesvirus 1 causes infectious laryngotracheitis (ILT) in farmed poultry worldwide. Intertypic recombination between vaccine strains of this virus has generated novel and virulent isolates in field conditions. In this study, in vitro and in ovo systems were co-infected and superinfected under different conditions with two genomically distinct and commonly used ILTV vaccines. The progeny virus populations were examined for the frequency and pattern of recombination events using multi-locus high-resolution melting curve analysis of polymerase chain reaction products. A varied level of recombination (0 to 58.9%) was detected, depending on the infection system (in ovo or in vitro), viral load, the composition of the inoculum mixture, and the timing and order of infection. Full genome analysis of selected recombinants with different in vitro phenotypes identified alterations in coding and non-coding regions. The ability of ILTV vaccines to maintain their capacity to recombine under such varied conditions highlights the significance of recombination in the evolution of this virus and demonstrates the capacity of ILTV vaccines to play a role in the emergence of recombinant viruses.
Collapse
|
24
|
Yu Z, Zhang Y, Lan X, Wang Y, Zhang F, Gao Y, Li K, Gao L, Pan Q, Qi X, Cui H, Zhou L, Sun G, Wang X, Liu C. Natural co-infection with two virulent wild strains of Marek's disease virus in a commercial layer flock. Vet Microbiol 2019; 240:108501. [PMID: 31902513 DOI: 10.1016/j.vetmic.2019.108501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 01/13/2023]
Abstract
Marek's disease (MD) is a highly contagious lymphoproliferative poultry disease caused by the oncogenic herpesvirus, Marek's disease virus (MDV). MDV strains have shown a continued evolution of virulence leading to immune failure, and MD cases continue to occur. Co-infection of virulent MDV strains is an important factor leading to viral evolution and host immune failure. This study conducted a laboratory diagnosis and analysis of a MDV infected flock. Testing showed that all samples were MDV positive. PCR detection identified a variable 132-base pair repeat (132-bpr) sequence copy number. This indicated that two virulent strains of MDV were co-infecting the flock. Therefore, we performed homology, sequence alignment, and phylogenetic tree analysis of MDV variant genes including meq, pp38, and RLORF4. Two MDV strains had co-infected the flock; one was the 132bpr two-copy characteristic strain (AH2C) and the other was a 132bpr three-copy characteristic strain (AH3C). Specific mutations in AH3C were found, suggesting that it is a new variant strain. Furthermore, the viral load of the two strains in vivo indicated that both strains had high and similar replication ability. There was no significant difference in the proportion of positive samples of the two strains causing disease. In the whole flock, neither strain displayed an obvious advantage. However, there was a dominant strain in individual chickens, with the exception of one sample. This study reported the co-infection regularity of two virulent MDV strains in the same flock, and even in the same chicken in field conditions. In the context of overall epidemiology, this study is a useful reference.
Collapse
Affiliation(s)
- Zhenghao Yu
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yanping Zhang
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xingge Lan
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yanan Wang
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Feng Zhang
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Yulong Gao
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Kai Li
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Li Gao
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Qing Pan
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xiaole Qi
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Hongyu Cui
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Linyi Zhou
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Guorong Sun
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xiaomei Wang
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Changjun Liu
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|
25
|
Genomic analysis of a Chinese MDV strain derived from vaccine strain CVI988 through recombination. INFECTION GENETICS AND EVOLUTION 2019; 78:104045. [PMID: 31698116 DOI: 10.1016/j.meegid.2019.104045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 11/20/2022]
Abstract
Disease caused by Marek's disease virus (MDV), a highly oncogenic alpha-herpesvirus, is controlled mainly by vaccination. Since 1990s, CVI988 has been widely used as vaccine strain. However, as an attenuated live vaccine, CVI988 has the potential of virulence enhancement and the risk of recombination that should be considered. In this study, we sequenced the whole genome of a Chinese strain HNLC503 and found the close relationship between HNLC503 and CVI988. Further study indicated that HNLC503 had undergone recombination in US region, the same position as that previously occurred in Eurasian strains isolated from 2010 to 2014. By comparing ORFs, it was found that non-synonymous mutations were introduced in US2, US3, SORF4 and gD genes by recombination, while natural mutations occurred in RLORF1, vIL-8, UL36, VP22 and gE, in HNLC503. In summary, our study revealed the phenomenon of MDV vaccine strain recombination, warning that vaccine strains have the potential to enhance virulence through recombination.
Collapse
|
26
|
d'Offay JM, Fulton RW, Fishbein M, Eberle R, Dubovi EJ. Isolation of a naturally occurring vaccine/wild-type recombinant bovine herpesvirus type 1 (BoHV-1) from an aborted bovine fetus. Vaccine 2019; 37:4518-4524. [PMID: 31266667 DOI: 10.1016/j.vaccine.2019.06.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/17/2023]
Abstract
Bovine herpesvirus type 1 (BoHV-1) causes various disease syndromes in cattle including respiratory disease and abortions. During an investigation into the potential role of BoHV-1 modified-live vaccines (MLV) causing diseases in cattle, we performed whole genome sequencing on six BoHV-1 field strains isolated at Cornell Animal Health Diagnostic Center in the late 1970s. Three isolates (two respiratory and a fetal) were identified as vaccine-derived isolates, having SNP patterns identical to that of a previously sequenced MLV virus that exhibited a deleted US2 and truncated US1.67 genes. Two other isolates (a respiratory and a fetal) were categorized as wild-type (WT) viruses based on their unique SNP pattern that is distinct from MLV viruses. The sixth isolate from an aborted fetus was a recombinant virus with 62% of its genome exhibiting SNPs identical to one of the above-mentioned WT viruses also recovered from an aborted fetus. The remaining 38% consisted of two blocks of sequences derived from the MLV virus. The first block replaced the UL9-UL19 region, and the second vaccine-derived sequence block encompassed all the genes within the unique short region and the internal/terminal repeats containing the regulatory genes BICP4 and BICP22. This is confirmatory evidence that recombination between BoHV-1 MLV and WT viruses can occur under natural conditions and cause disease. It is important in that it underscores the potential for the glycoprotein E negative (gE-) marker vaccine used to eradicate BoHV-1 in some countries, to recombine with virulent field strains allowing them to capture the gE- marker, thereby endangering the control and eradication programs.
Collapse
Affiliation(s)
- Jean M d'Offay
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Robert W Fulton
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Mark Fishbein
- Department of Plant Biology, Ecology & Evolution, Oklahoma State University, 301 Physical Sciences, Stillwater, OK 74078, USA
| | - R Eberle
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Edward J Dubovi
- Animal Health Diagnostic Center, Cornell University, Ithaca, NY 14852, USA
| |
Collapse
|
27
|
Lima LRP, Araújo NAD, Guterres A, Pilotto JH, Niel C, Paula VSD. Novel variants of human herpesvirus 2 from Brazilian HIV-1 coinfected subjects. Mem Inst Oswaldo Cruz 2018; 113:e180328. [PMID: 30517210 PMCID: PMC6276022 DOI: 10.1590/0074-02760180328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/07/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Human herpesvirus 2 (HHV-2) have DNA genome with a limited genetic variability and have been classified into two clades. OBJECTIVES To identify and characterise six HHV-2 isolates derived from Brazilian women. METHODS HHV-2 isolates were performed polymerase chain reaction (PCR) and sequencing of 2250 pb of the glycoprotein B (gB) coding regions. FINDINGS Four HHV-2 isolates were classified into clade B, while the remaining two, derived from HIV-1 co-infected women, showed a notable genetic divergence (> 1%). MAIN CONCLUSION The results reveal novel HHV-2 variants. The impact of these novel variants on HHV-2 pathogenesis and HIV/HHV-2 coinfection need to be investigated.
Collapse
Affiliation(s)
- Lyana Rodrigues Pinto Lima
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia Molecular, Rio de Janeiro, RJ, Brasil
| | - Nathália Alves de Araújo
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia Molecular, Rio de Janeiro, RJ, Brasil
| | - Alexandro Guterres
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Hantaviroses e Rickettsioses, Rio de Janeiro, RJ, Brasil
| | - José Henrique Pilotto
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de AIDS e Imunologia Molecular, Rio de Janeiro, RJ, Brasil.,Hospital Geral, Nova Iguaçu, RJ, Brasil
| | - Christian Niel
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia Molecular, Rio de Janeiro, RJ, Brasil
| | - Vanessa Salete de Paula
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia Molecular, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
28
|
Single Nucleotide Polymorphism Genotyping Analysis Shows That Vaccination Can Limit the Number and Diversity of Recombinant Progeny of Infectious Laryngotracheitis Viruses from the United States. Appl Environ Microbiol 2018; 84:AEM.01822-18. [PMID: 30242009 DOI: 10.1128/aem.01822-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/12/2018] [Indexed: 11/20/2022] Open
Abstract
Infectious laryngotracheitis (ILTV; Gallid alphaherpesvirus 1) causes mild to severe respiratory disease in poultry worldwide. Recombination in this virus under natural (field) conditions was first described in 2012 and more recently has been studied under laboratory conditions. Previous studies have revealed that natural recombination is widespread in ILTV and have also demonstrated that recombination between two attenuated ILTV vaccine strains generated highly virulent viruses that produced widespread disease within poultry flocks in Australia. In the United States, natural ILTV recombination has also been detected, but not as frequently as in Australia. To better understand recombination in ILTV strains originating from the United States, we developed a TaqMan single nucleotide polymorphism (SNP) genotyping assay to detect recombination between two virulent U.S. field strains of ILTV (63140 and 1874c5) under experimental in vivo conditions. We also tested the capacity of the Innovax-ILT vaccine (a recombinant vaccine using herpesvirus of turkeys as a vector) and the Trachivax vaccine (a conventionally attenuated chicken embryo origin vaccine) to reduce recombination. The Trachivax vaccine prevented ILTV replication, and therefore recombination, in the trachea after challenge. The Innovax-ILT vaccine allowed the challenge viruses to replicate and to recombine, but at a significantly lower rate than in an unvaccinated group of birds. Our results demonstrate that the TaqMan SNP genotyping assay is a useful tool to study recombination between these ILTV strains and also show that vaccination can limit the number and diversity of recombinant progeny viruses.IMPORTANCE Recombination allows alphaherpesviruses to evolve over time and become more virulent. Historically, characterization of viral vaccines in poultry have mainly focused on limiting clinical disease, rather than limiting virus replication, but such approaches can allow field viruses to persist and evolve in vaccinated populations. In this study, we vaccinated chickens with Gallid alphaherpesvirus 1 vaccines that are commercially available in the United States and then performed coinoculations with two field strains of virus to measure the ability of the vaccines to prevent field strains from replicating and recombining. We found that vaccination reduced viral replication, recombination, and diversity compared to those in unvaccinated chickens, although the extent to which this occurred differed between vaccines. We suggest that characterization of vaccines could include studies to examine the ability of vaccines to reduce viral recombination in order to limit the rise of new virulent field strains due to recombination, especially for those vaccines that are known not to prevent viral replication following challenge.
Collapse
|
29
|
Fakhri O, Hartley CA, Devlin JM, Browning GF, Noormohammadi AH, Lee SW. Development and application of high-resolution melting analysis for the classification of infectious laryngotracheitis virus strains and detection of recombinant progeny. Arch Virol 2018; 164:427-438. [PMID: 30421085 PMCID: PMC6373279 DOI: 10.1007/s00705-018-4086-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Abstract
Live attenuated vaccines against infectious laryngotracheitis virus (ILTV) are widely used in the poultry industry to control disease and help prevent economic losses. Molecular epidemiological studies of currently circulating strains of ILTV within poultry flocks in Australia have demonstrated the presence of highly virulent viruses generated by genomic recombination events between vaccine strains. In this study, high-resolution melting (HRM) analysis was used to develop a tool to classify ILTV isolates and to investigate ILTV recombination. The assay was applied to plaque-purified progeny viruses generated after co-infection of chicken embryo kidney (CEK) monolayers with the A20 and Serva ILT vaccine strains and also to viruses isolated from field samples. The results showed that the HRM analysis is a suitable tool for the classification of ILTV isolates and can be used to detect recombination between ILTV vaccine strains in vitro. This method can be used to classify a broad range of ILTV strains to facilitate the classification and genotyping of ILTV and help to further understand recombination in these viruses.
Collapse
Affiliation(s)
- Omid Fakhri
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Carol A Hartley
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Joanne M Devlin
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Amir H Noormohammadi
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Sang-Won Lee
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.,College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
30
|
Muscat KE, Padalino B, Hartley CA, Ficorilli N, Celi P, Knight P, Raidal S, Gilkerson JR, Muscatello G. Equine Transport and Changes in Equid Herpesvirus' Status. Front Vet Sci 2018; 5:224. [PMID: 30320126 PMCID: PMC6167981 DOI: 10.3389/fvets.2018.00224] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/29/2018] [Indexed: 12/15/2022] Open
Abstract
The risk of respiratory disease in the transported horse can increase as a consequence of immunosuppression and stress associated primarily with opportunistic bacterial proliferation and viral reactivation. This study examines the ecology of equid herpesviruses (EHV) in these horses, exploring reactivation and changes in infection and shedding associated with transport, and any potential contributions to transport-related respiratory disease. Twelve horses were subjected to an 8-h road-transport event. Antibodies to EHV-1 and EHV-4 were detected by ELISA in serum collected prior to, immediately after and 2 weeks post transport. Respiratory tract endoscopy and tracheal washes were collected prior to and 5 days after transportation. Nasal swabs collected prior to, immediately after, 1 and 5 days following transport were screened for EHV-1,-2,-4,-5 using qPCR. Six horses had persistent neutrophilic airway infiltrates post transportation, indicative of subclinical respiratory disease. No horses were qPCR positive for either of the alphaherpesviruses (i.e., EHV-1/-4) nor did any seroconvert to either virus. Four out of nine horses positive for either EHV-2 or EHV-5 on qPCR prior to transport developed neutrophilic airway inflammation. Five horses showed increasingly positive readings on qPCR (i.e., reduced Cq) for EHV-2 after transportation and seven out of eleven horses positive for EHV-2 after transport shared strains of high sequence similarity with other horses in the study. One EHV-2 virus detected in one horse after transport was genetically different which may be due to reactivation. The clinical significance of EHV-2 and EHV-5 remains in question. However these results indicate that transportation may lead to increased shedding, transmission and reactivation of EHV-2 and EHV-5 but not EHV-1/-4. Unlike previous work focusing on the role of alphaherpesviruses, this research suggests that investigation of the gammaherpesviruses (i.e., EHV-2/-5) in transport-related disease should not be dismissed, particularly given that these viruses can encode suppressive immunomodulators that may affect host health.
Collapse
Affiliation(s)
- Katharine E Muscat
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Barbara Padalino
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia.,Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong.,HKSAR- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Carol A Hartley
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Nino Ficorilli
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Pietro Celi
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia.,DSM, Parsippany, NJ, United States
| | - Peter Knight
- Discipline of Biomedical Science, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Sharanne Raidal
- School of Animal and Veterinary Sciences, Charles Stuart University, Wagga Wagga, NSW, Australia
| | - James R Gilkerson
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Gary Muscatello
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
31
|
Loncoman CA, Hartley CA, Coppo MJC, Browning GF, Quinteros JA, Diaz-Méndez A, Thilakarathne D, Fakhri O, Vaz PK, Devlin JM. Replication-independent reduction in the number and diversity of recombinant progeny viruses in chickens vaccinated with an attenuated infectious laryngotracheitis vaccine. Vaccine 2018; 36:5709-5716. [PMID: 30104116 DOI: 10.1016/j.vaccine.2018.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/28/2018] [Accepted: 08/05/2018] [Indexed: 01/10/2023]
Abstract
Recombination is closely linked with virus replication and is an important mechanism that contributes to genome diversification and evolution in alphaherpesviruses. Infectious laryngotracheitis (ILTV; Gallid alphaherpesvirus 1) is an alphaherpesvirus that causes respiratory disease in poultry. In the past, natural (field) recombination events between different strains of ILTV generated virulent recombinant viruses that have caused severe disease and economic loss in poultry industries. In this study, chickens were vaccinated with attenuated ILTV vaccines to examine the effect of vaccination on viral recombination and diversity following subsequent co-inoculation with two field strains of ILTV. Two of the vaccines (SA2 and A20) prevented ILTV replication in the trachea after challenge, but the level of viral replication after co-infection in birds that received the Serva ILTV vaccine strain did not differ from that of the mock-vaccinated (control) birds. Even though the levels of viral replication were similar in the two groups, the number of recombinant progeny viruses and the level of viral diversity were significantly lower in the Serva-vaccinated birds than in mock-vaccinated birds. In both the mock-vaccinated and Serva-vaccinated groups, a high proportion of recombinant viruses were detected in naïve in-contact chickens that were housed with the co-inoculated birds. Our results indicate that vaccination can limit the number and diversity of recombinant progeny viruses in a manner that is independent of the level of virus replication. It is possible that immune responses induced by vaccination can select for virus genotypes that replicate well under the pressure of the host immune response.
Collapse
Affiliation(s)
- Carlos A Loncoman
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Carol A Hartley
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mauricio J C Coppo
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - José A Quinteros
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrés Diaz-Méndez
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dulari Thilakarathne
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Omid Fakhri
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paola K Vaz
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joanne M Devlin
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
32
|
Chothe SK, Sebastian A, Thomas A, Nissly RH, Wolfgang D, Byukusenge M, Mor SK, Goyal SM, Albert I, Tewari D, Jayarao BM, Kuchipudi SV. Whole-genome sequence analysis reveals unique SNP profiles to distinguish vaccine and wild-type strains of bovine herpesvirus-1 (BoHV-1). Virology 2018; 522:27-36. [PMID: 30014855 DOI: 10.1016/j.virol.2018.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/03/2018] [Accepted: 06/26/2018] [Indexed: 01/02/2023]
Abstract
Bovine herpesvirus-1 (BoHV-1) is a major pathogen affecting cattle worldwide causing primarily respiratory illness referred to as infectious bovine rhinotracheitis (IBR), along with reproductive disorders including abortion and infertility in cattle. While modified live vaccines (MLVs) effectively induce immune response against BoHV-1, they are implicated in disease outbreaks in cattle. Current diagnostic methods cannot distinguish between MLVs and field strains of BoHV-1. We performed whole genome sequencing of 18 BoHV-1 isolates from Pennsylvania and Minnesota along with five BoHV-1 vaccine strains using the Illumina Miseq platform. Based on nucleotide polymorphisms (SNPs) the sequences were clustered into three groups with two different vaccine groups and one distinct cluster of field isolates. Using this information, we developed a novel SNP-based PCR assay that can allow differentiation of vaccine and clinical strains and help accurately determine the incidence of BoHV-1 and the association of MLVs with clinical disease in cattle.
Collapse
Affiliation(s)
- Shubhada K Chothe
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Aswathy Sebastian
- Dept of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Asha Thomas
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Ruth H Nissly
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - David Wolfgang
- Pennsylvania Department of Agriculture, Bureau of Animal Health and Diagnostic Services, Harrisburg, PA, United States
| | - Maurice Byukusenge
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Sunil Kumar Mor
- Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - Sagar M Goyal
- Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - Istvan Albert
- Dept of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Deepanker Tewari
- Pennsylvania Department of Agriculture, Bureau of Animal Health and Diagnostic Services, Harrisburg, PA, United States
| | - Bhushan M Jayarao
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Suresh V Kuchipudi
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
33
|
He L, Li J, Zhang Y, Luo J, Cao Y, Xue C. Phylogenetic and molecular epidemiological studies reveal evidence of recombination among Marek's disease viruses. Virology 2018; 516:202-209. [PMID: 29407378 DOI: 10.1016/j.virol.2018.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 01/09/2023]
Abstract
Marek's disease has brought enormous loss in chicken production worldwide and the increasing virulence of Marek's disease virus (MDV) became a severe problem. To better understand the genetic basis underlying, a Chinese MDV strain HNGS101 isolated from immunized chickens was sequenced. Phylogenetic analysis implied that HNGS101 showed more relatedness to Eurasian strains than GaHV-2 circulating in North America. Recombination networks analysis showed the evidence of recombination among MDV strains, and several recombination events in the UL and US region were found. Further analysis indicated that the HNGS101 strain seemed to be generated by the recombination of the earliest Eurasian strains and North American strains in the US region, which may be responsible for the MD outbreaks in China. In summary, this study demonstrates recombination events among MDV strains [corrected], which may shed light on the mechanism of virulence enhancement.
Collapse
Affiliation(s)
- Liangliang He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jie Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Luo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
34
|
Law GA, Herr AE, Cwick JP, Taylor MP. A New Approach to Assessing HSV-1 Recombination during Intercellular Spread. Viruses 2018; 10:E220. [PMID: 29693602 PMCID: PMC5977213 DOI: 10.3390/v10050220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
The neuroinvasive Herpes simplex virus type 1 (HSV-1) utilizes intergenomic recombination in order to diversify viral populations. Research efforts to assess HSV-1 recombination are often complicated by the use of attenuating mutations, which differentiate viral progeny but unduly influence the replication and spread. In this work, we generated viruses with markers that allowed for classification of viral progeny with limited attenuation of viral replication. We isolated viruses, harboring either a cyan (C) or yellow (Y) fluorescent protein (FP) expression cassette inserted in two different locations within the viral genome, in order to visually quantify the recombinant progeny based on plaque fluorescence. We found that the FP marked genomes had a limited negative affect on the viral replication and production of progeny virions. A co-infection of the two viruses resulted in recombinant progeny that was dependent on the multiplicity of infection and independent of the time post infection, at a rate that was similar to previous reports. The sequential passage of mixed viral populations revealed a limited change in the distribution of the parental and recombinant progeny. Interestingly, the neuroinvasive spread within neuronal cultures and an in vivo mouse model, revealed large, random shifts in the parental and recombinant distributions in viral populations. In conclusion, our approach highlights the utility of FP expressing viruses in order to provide new insights into mechanisms of HSV-1 recombination.
Collapse
Affiliation(s)
- Gabrielle A Law
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA.
| | - Alix E Herr
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA.
| | - James P Cwick
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA.
| | - Matthew P Taylor
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
35
|
Telford M, Navarro A, Santpere G. Whole genome diversity of inherited chromosomally integrated HHV-6 derived from healthy individuals of diverse geographic origin. Sci Rep 2018; 8:3472. [PMID: 29472617 PMCID: PMC5823862 DOI: 10.1038/s41598-018-21645-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/31/2018] [Indexed: 12/13/2022] Open
Abstract
Human herpesviruses 6-A and -B (HHV-6A, HHV-6B) are ubiquitous in human populations worldwide. These viruses have been associated with several diseases such as multiple sclerosis, Hodgkin's lymphoma or encephalitis. Despite of the need to understand the genetic diversity and geographic stratification of these viruses, the availability of complete viral sequences from different populations is still limited. Here, we present nine new inherited chromosomally integrated HHV-6 sequences from diverse geographical origin which were generated through target DNA enrichment on lymphoblastoid cell lines derived from healthy individuals. Integration with available HHV-6 sequences allowed the assessment of HHV-6A and -6B phylogeny, patterns of recombination and signatures of natural selection. Analysis of the intra-species variability showed differences between A and B diversity levels and revealed that the HHV-6B reference (Z29) is an uncommon sequence, suggesting the need for an alternative reference sequence. Signs of geographical variation are present and more defined in HHV-6A, while they appear partly masked by recombination in HHV-6B. Finally, we conducted a scan for signatures of selection in protein coding genes that yielded at least 6 genes (4 and 2 respectively for the A and B species) showing significant evidence for accelerated evolution, and 1 gene showing evidence of positive selection in HHV-6A.
Collapse
Affiliation(s)
- Marco Telford
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Catalonia, Spain
| | - Arcadi Navarro
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Catalonia, Spain.
- National Institute for Bioinformatics (INB), PRBB, Barcelona, Catalonia, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), PRBB, Barcelona, Catalonia, Spain.
- Center for Genomic Regulation (CRG), PRBB, Barcelona, Catalonia, Spain.
| | - Gabriel Santpere
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Catalonia, Spain.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
36
|
Morrison CL, Iwanowicz L, Work TM, Fahsbender E, Breitbart M, Adams C, Iwanowicz D, Sanders L, Ackermann M, Cornman RS. Genomic evolution, recombination, and inter-strain diversity of chelonid alphaherpesvirus 5 from Florida and Hawaii green sea turtles with fibropapillomatosis. PeerJ 2018; 6:e4386. [PMID: 29479497 PMCID: PMC5824677 DOI: 10.7717/peerj.4386] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/29/2018] [Indexed: 12/18/2022] Open
Abstract
Chelonid alphaherpesvirus 5 (ChHV5) is a herpesvirus associated with fibropapillomatosis (FP) in sea turtles worldwide. Single-locus typing has previously shown differentiation between Atlantic and Pacific strains of this virus, with low variation within each geographic clade. However, a lack of multi-locus genomic sequence data hinders understanding of the rate and mechanisms of ChHV5 evolutionary divergence, as well as how these genomic changes may contribute to differences in disease manifestation. To assess genomic variation in ChHV5 among five Hawaii and three Florida green sea turtles, we used high-throughput short-read sequencing of long-range PCR products amplified from tumor tissue using primers designed from the single available ChHV5 reference genome from a Hawaii green sea turtle. This strategy recovered sequence data from both geographic regions for approximately 75% of the predicted ChHV5 coding sequences. The average nucleotide divergence between geographic populations was 1.5%; most of the substitutions were fixed differences between regions. Protein divergence was generally low (average 0.08%), and ranged between 0 and 5.3%. Several atypical genes originally identified and annotated in the reference genome were confirmed in ChHV5 genomes from both geographic locations. Unambiguous recombination events between geographic regions were identified, and clustering of private alleles suggests the prevalence of recombination in the evolutionary history of ChHV5. This study significantly increased the amount of sequence data available from ChHV5 strains, enabling informed selection of loci for future population genetic and natural history studies, and suggesting the (possibly latent) co-infection of individuals by well-differentiated geographic variants.
Collapse
Affiliation(s)
- Cheryl L Morrison
- National Fish Health Research Laboratory, Leetown Science Center, US Geological Survey, Kearneysville, WV, United States of America
| | - Luke Iwanowicz
- National Fish Health Research Laboratory, Leetown Science Center, US Geological Survey, Kearneysville, WV, United States of America
| | - Thierry M Work
- National Wildlife Health Center, Honolulu Field Station, US Geological Survey, Honolulu, HI, United States of America
| | - Elizabeth Fahsbender
- College of Marine Science, University of South Florida, St. Petersburg, FL, United States of America
| | - Mya Breitbart
- College of Marine Science, University of South Florida, St. Petersburg, FL, United States of America
| | - Cynthia Adams
- National Fish Health Research Laboratory, Leetown Science Center, US Geological Survey, Kearneysville, WV, United States of America
| | - Deb Iwanowicz
- National Fish Health Research Laboratory, Leetown Science Center, US Geological Survey, Kearneysville, WV, United States of America
| | - Lakyn Sanders
- National Fish Health Research Laboratory, Leetown Science Center, US Geological Survey, Kearneysville, WV, United States of America
| | | | - Robert S Cornman
- Fort Collins Science Center, US Geological Survey, Fort Collins, CO, United States of America
| |
Collapse
|
37
|
Genetic Diversity of Infectious Laryngotracheitis Virus during In Vivo Coinfection Parallels Viral Replication and Arises from Recombination Hot Spots within the Genome. Appl Environ Microbiol 2017; 83:AEM.01532-17. [PMID: 28939604 DOI: 10.1128/aem.01532-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/12/2017] [Indexed: 02/07/2023] Open
Abstract
Recombination is a feature of many alphaherpesviruses that infect people and animals. Infectious laryngotracheitis virus (ILTV; Gallid alphaherpesvirus 1) causes respiratory disease in chickens, resulting in significant production losses in poultry industries worldwide. Natural (field) ILTV recombination is widespread, particularly recombination between attenuated ILTV vaccine strains to create virulent viruses. These virulent recombinants have had a major impact on animal health. Recently, the development of a single nucleotide polymorphism (SNP) genotyping assay for ILTV has helped to understand ILTV recombination in laboratory settings. In this study, we applied this SNP genotyping assay to further examine ILTV recombination in the natural host. Following coinoculation of specific-pathogen-free chickens, we examined the resultant progeny for evidence of viral recombination and characterized the diversity of the recombinants over time. The results showed that ILTV replication and recombination are closely related and that the recombinant viral progeny are most diverse 4 days after coinoculation, which is the peak of viral replication. Further, the locations of recombination breakpoints in a selection of the recombinant progeny, and in field isolates of ILTV from different geographical regions, were examined following full-genome sequencing and used to identify recombination hot spots in the ILTV genome.IMPORTANCE Alphaherpesviruses are common causes of disease in people and animals. Recombination enables genome diversification in many different species of alphaherpesviruses, which can lead to the evolution of higher levels of viral virulence. Using the alphaherpesvirus infectious laryngotracheitis virus (ILTV), we performed coinfections in the natural host (chickens) to demonstrate high levels of virus recombination. Higher levels of diversity in the recombinant progeny coincided with the highest levels of virus replication. In the recombinant progeny, and in field isolates, recombination occurred at greater frequency in recombination hot spot regions of the virus genome. Our results suggest that control measures that aim to limit viral replication could offer the potential to limit virus recombination and thus the evolution of virulence. The development and use of vaccines that are focused on limiting virus replication, rather than vaccines that are focused more on limiting clinical disease, may be indicated in order to better control disease.
Collapse
|
38
|
Maidana SS, Craig PO, Craig MI, Ludwig L, Mauroy A, Thiry E, Romera SA. Evidence of natural interspecific recombinant viruses between bovine alphaherpesviruses 1 and 5. Virus Res 2017; 242:122-130. [DOI: 10.1016/j.virusres.2017.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
|
39
|
Herr AE, Hain KS, Taylor MP. Limitations on the Multiplicity of Cellular Infection During Human Alphaherpesvirus Disease. CURRENT CLINICAL MICROBIOLOGY REPORTS 2017. [DOI: 10.1007/s40588-017-0071-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
40
|
Burrel S, Boutolleau D, Ryu D, Agut H, Merkel K, Leendertz FH, Calvignac-Spencer S. Ancient Recombination Events between Human Herpes Simplex Viruses. Mol Biol Evol 2017; 34:1713-1721. [PMID: 28369565 PMCID: PMC5455963 DOI: 10.1093/molbev/msx113] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are seen as close relatives but also unambiguously considered as evolutionary independent units. Here, we sequenced the genomes of 18 HSV-2 isolates characterized by divergent UL30 gene sequences to further elucidate the evolutionary history of this virus. Surprisingly, genome-wide recombination analyses showed that all HSV-2 genomes sequenced to date contain HSV-1 fragments. Using phylogenomic analyses, we could also show that two main HSV-2 lineages exist. One lineage is mostly restricted to subSaharan Africa whereas the other has reached a global distribution. Interestingly, only the worldwide lineage is characterized by ancient recombination events with HSV-1. Our findings highlight the complexity of HSV-2 evolution, a virus of putative zoonotic origin which later recombined with its human-adapted relative. They also suggest that coinfections with HSV-1 and 2 may have genomic and potentially functional consequences and should therefore be monitored more closely.
Collapse
Affiliation(s)
- Sonia Burrel
- National Reference Centre for Herpesviruses, Paris, France
- AP-HP, University Hospital La Pitié-Salpêtrière – Charles Foix, Virology Department and Sorbonne Universités, UPMC Univ Paris 06, CR7, CIMI, INSERM U1135, Paris, France
| | - David Boutolleau
- National Reference Centre for Herpesviruses, Paris, France
- AP-HP, University Hospital La Pitié-Salpêtrière – Charles Foix, Virology Department and Sorbonne Universités, UPMC Univ Paris 06, CR7, CIMI, INSERM U1135, Paris, France
| | - Diane Ryu
- Robert Koch Institut, Berlin, Germany
| | - Henri Agut
- AP-HP, University Hospital La Pitié-Salpêtrière – Charles Foix, Virology Department and Sorbonne Universités, UPMC Univ Paris 06, CR7, CIMI, INSERM U1135, Paris, France
| | | | | | | |
Collapse
|
41
|
Natural recombination in alphaherpesviruses: Insights into viral evolution through full genome sequencing and sequence analysis. INFECTION GENETICS AND EVOLUTION 2017; 49:174-185. [DOI: 10.1016/j.meegid.2016.12.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 01/05/2023]
|
42
|
Development and application of a TaqMan single nucleotide polymorphism genotyping assay to study infectious laryngotracheitis virus recombination in the natural host. PLoS One 2017; 12:e0174590. [PMID: 28350819 PMCID: PMC5370143 DOI: 10.1371/journal.pone.0174590] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/10/2017] [Indexed: 12/25/2022] Open
Abstract
To date, recombination between different strains of the avian alphaherpesvirus infectious laryngotracheitis virus (ILTV) has only been detected in field samples using full genome sequencing and sequence analysis. These previous studies have revealed that natural recombination is widespread in ILTV and have demonstrated that recombination between two attenuated ILTV vaccine strains generated highly virulent viruses that produced widespread disease within poultry flocks in Australia. In order to better understand ILTV recombination, this study developed a TaqMan single nucleotide polymorphism (SNP) genotyping assay to detect recombination between two field strains of ILTV (CSW-1 and V1-99 ILTV) under experimental conditions. Following in vivo co-inoculation of these two ILTV strains in specific pathogen free (SPF) chickens, recovered viruses were plaque purified and subjected to the SNP genotyping assay. This assay revealed ILTV recombinants in all co-inoculated chickens. In total 64/87 (74%) of the recovered viruses were recombinants and 23 different recombination patterns were detected, with some of them occurring more frequently than others. The results from this study demonstrate that the TaqMan SNP genotyping assay is a useful tool to study recombination in ILTV and also show that recombination occurs frequently during experimental co-infection with ILTV in SPF chickens. This tool, when used to assess ILTV recombination in the natural host, has the potential to greatly contribute to our understanding of alphaherpesvirus recombination.
Collapse
|
43
|
Dennehy JJ. Evolutionary ecology of virus emergence. Ann N Y Acad Sci 2016; 1389:124-146. [PMID: 28036113 PMCID: PMC7167663 DOI: 10.1111/nyas.13304] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/24/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022]
Abstract
The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment.
Collapse
Affiliation(s)
- John J Dennehy
- Biology Department, Queens College of the City University of New York, Queens, New York and The Graduate Center of the City University of New York, New York, New York
| |
Collapse
|
44
|
Abdelgawad A, Damiani A, Ho SYW, Strauss G, Szentiks CA, East ML, Osterrieder N, Greenwood AD. Zebra Alphaherpesviruses (EHV-1 and EHV-9): Genetic Diversity, Latency and Co-Infections. Viruses 2016; 8:v8090262. [PMID: 27657113 PMCID: PMC5035975 DOI: 10.3390/v8090262] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/18/2022] Open
Abstract
Alphaherpesviruses are highly prevalent in equine populations and co-infections with more than one of these viruses’ strains frequently diagnosed. Lytic replication and latency with subsequent reactivation, along with new episodes of disease, can be influenced by genetic diversity generated by spontaneous mutation and recombination. Latency enhances virus survival by providing an epidemiological strategy for long-term maintenance of divergent strains in animal populations. The alphaherpesviruses equine herpesvirus 1 (EHV-1) and 9 (EHV-9) have recently been shown to cross species barriers, including a recombinant EHV-1 observed in fatal infections of a polar bear and Asian rhinoceros. Little is known about the latency and genetic diversity of EHV-1 and EHV-9, especially among zoo and wild equids. Here, we report evidence of limited genetic diversity in EHV-9 in zebras, whereas there is substantial genetic variability in EHV-1. We demonstrate that zebras can be lytically and latently infected with both viruses concurrently. Such a co-occurrence of infection in zebras suggests that even relatively slow-evolving viruses such as equine herpesviruses have the potential to diversify rapidly by recombination. This has potential consequences for the diagnosis of these viruses and their management in wild and captive equid populations.
Collapse
Affiliation(s)
- Azza Abdelgawad
- Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, Berlin 10315, Germany.
| | - Armando Damiani
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, Berlin 14163, Germany.
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Günter Strauss
- Tierpark Berlin-Friedrichsfelde, Am Tierpark 125, Berlin 10307, Germany.
| | - Claudia A Szentiks
- Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, Berlin 10315, Germany.
| | - Marion L East
- Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, Berlin 10315, Germany.
| | - Nikolaus Osterrieder
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, Berlin 14163, Germany.
| | - Alex D Greenwood
- Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, Berlin 10315, Germany.
- Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19, Berlin 14163, Germany.
| |
Collapse
|
45
|
Vaz PK, Job N, Horsington J, Ficorilli N, Studdert MJ, Hartley CA, Gilkerson JR, Browning GF, Devlin JM. Low genetic diversity among historical and contemporary clinical isolates of felid herpesvirus 1. BMC Genomics 2016; 17:704. [PMID: 27589862 PMCID: PMC5010698 DOI: 10.1186/s12864-016-3050-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/27/2016] [Indexed: 01/11/2023] Open
Abstract
Background Felid herpesvirus 1 (FHV-1) causes upper respiratory tract diseases in cats worldwide, including nasal and ocular discharge, conjunctivitis and oral ulceration. The nature and severity of disease can vary between clinical cases. Genetic determinants of virulence are likely to contribute to differences in the in vivo phenotype of FHV-1 isolates, but to date there have been limited studies investigating FHV-1 genetic diversity. This study used next generation sequencing to compare the genomes of contemporary Australian clinical isolates of FHV-1, vaccine isolates and historical clinical isolates, including isolates that predated the introduction of live attenuated vaccines into Australia. Analysis of the genome sequences aimed to assess the level of genetic diversity, identify potential genetic markers that could influence the in vivo phenotype of the isolates and examine the sequences for evidence of recombination. Results The full genome sequences of 26 isolates of FHV-1 were determined, including two vaccine isolates and 24 clinical isolates that were collected over a period of approximately 40 years. Analysis of the genome sequences revealed a remarkably low level of diversity (0.0–0.01 %) between the isolates. No potential genetic determinants of virulence were identified, but unique single nucleotide polymorphisms (SNPs) in the UL28 and UL44 genes were detected in the vaccine isolates that were not present in the clinical isolates. No evidence of FHV-1 recombination was detected using multiple methods of recombination detection, even though many of the isolates originated from cats housed in a shelter environment where high infective pressures were likely to exist. Evidence of displacement of dominant FHV-1 isolates with other (genetically distinct) FHV-1 isolates over time was observed amongst the isolates obtained from the shelter-housed animals. Conclusions The results show that FHV-1 genomes are highly conserved. The lack of recombination detected in the FHV-1 genomes suggests that the risk of attenuated vaccines recombining to generate virulent field viruses is lower than has been suggested for some other herpesviruses. The SNPs detected only in the vaccine isolates offer the potential to develop PCR-based methods of differentiating vaccine and clinical isolates of FHV-1 in order to facilitate future epidemiological studies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3050-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paola K Vaz
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Natalie Job
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jacquelyn Horsington
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.,Present address: Australian Animal Health Laboratory, CSIRO, 5 Portarlington Rd, East Geelong, VIC, 3220, Australia
| | - Nino Ficorilli
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michael J Studdert
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Carol A Hartley
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - James R Gilkerson
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Glenn F Browning
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joanne M Devlin
- Asia Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
46
|
Burrel S, Boutolleau D, Ryu D, Agut H, Merkel K, Leendertz F, Calvignac-Spencer S. Evolutionary studies of herpes simplex viruses (HSV) genomes provide evidences of HSV-2/HSV-1 interspecies recombination. J Clin Virol 2016. [DOI: 10.1016/j.jcv.2016.08.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Coverdill CC, Barnes JA, Garner MM, Hinton KL, Childress AL, Wellehan JFX. Phylogenetic characterization of a novel herpesvirus found in the liver and lungs of a Chilean flamingo (Phoenicopterus chilensis). J Vet Diagn Invest 2016; 28:219-24. [PMID: 27026105 DOI: 10.1177/1040638716641157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A novel herpesvirus was detected in a 17-day-old Chilean flamingo (Phoenicopterus chilensis) with pneumonia, hepatopathy, and severe anemia that was housed in California. Postmortem examination identified a pale, enlarged liver, mildly increased fluid in the lungs, and red foci in the spleen. Histologic examination revealed marked hepatic necrosis with syncytia, splenic necrosis, and interstitial pneumonia with eosinophilic intranuclear inclusions within hepatocytes and in unidentified cells of the lung. Transmission electron microscopy identified virions consistent with a herpesvirus in the nucleus and cytoplasm of degenerative hepatocytes. Nested consensus PCR, sequencing, and phylogenetic analysis identified a novel herpesvirus within the genus Iltovirus in the subfamily Alphaherpesvirinae.
Collapse
Affiliation(s)
- Christopher C Coverdill
- College of Veterinary Medicine, University of Florida, Gainesville, FL (Coverdill, Childress, Wellehan)Santa Barbara Zoo, Santa Barbara, CA (Barnes)Northwest ZooPath, Monroe WA (Garner)Joint Pathology Center, Silver Spring, MD (Hinton)
| | - Julie A Barnes
- College of Veterinary Medicine, University of Florida, Gainesville, FL (Coverdill, Childress, Wellehan)Santa Barbara Zoo, Santa Barbara, CA (Barnes)Northwest ZooPath, Monroe WA (Garner)Joint Pathology Center, Silver Spring, MD (Hinton)
| | - Michael M Garner
- College of Veterinary Medicine, University of Florida, Gainesville, FL (Coverdill, Childress, Wellehan)Santa Barbara Zoo, Santa Barbara, CA (Barnes)Northwest ZooPath, Monroe WA (Garner)Joint Pathology Center, Silver Spring, MD (Hinton)
| | - Kevin L Hinton
- College of Veterinary Medicine, University of Florida, Gainesville, FL (Coverdill, Childress, Wellehan)Santa Barbara Zoo, Santa Barbara, CA (Barnes)Northwest ZooPath, Monroe WA (Garner)Joint Pathology Center, Silver Spring, MD (Hinton)
| | - April L Childress
- College of Veterinary Medicine, University of Florida, Gainesville, FL (Coverdill, Childress, Wellehan)Santa Barbara Zoo, Santa Barbara, CA (Barnes)Northwest ZooPath, Monroe WA (Garner)Joint Pathology Center, Silver Spring, MD (Hinton)
| | - James F X Wellehan
- College of Veterinary Medicine, University of Florida, Gainesville, FL (Coverdill, Childress, Wellehan)Santa Barbara Zoo, Santa Barbara, CA (Barnes)Northwest ZooPath, Monroe WA (Garner)Joint Pathology Center, Silver Spring, MD (Hinton)
| |
Collapse
|
48
|
Viral forensic genomics reveals the relatedness of classic herpes simplex virus strains KOS, KOS63, and KOS79. Virology 2016; 492:179-86. [PMID: 26950505 DOI: 10.1016/j.virol.2016.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 12/22/2022]
Abstract
Herpes simplex virus 1 (HSV-1) is a widespread global pathogen, of which the strain KOS is one of the most extensively studied. Previous sequence studies revealed that KOS does not cluster with other strains of North American geographic origin, but instead clustered with Asian strains. We sequenced a historical isolate of the original KOS strain, called KOS63, along with a separately isolated strain attributed to the same source individual, termed KOS79. Genomic analyses revealed that KOS63 closely resembled other recently sequenced isolates of KOS and was of Asian origin, but that KOS79 was a genetically unrelated strain that clustered in genetic distance analyses with HSV-1 strains of North American/European origin. These data suggest that the human source of KOS63 and KOS79 could have been infected with two genetically unrelated strains of disparate geographic origins. A PCR RFLP test was developed for rapid identification of these strains.
Collapse
|
49
|
Piccirillo A, Lavezzo E, Niero G, Moreno A, Massi P, Franchin E, Toppo S, Salata C, Palù G. Full Genome Sequence-Based Comparative Study of Wild-Type and Vaccine Strains of Infectious Laryngotracheitis Virus from Italy. PLoS One 2016; 11:e0149529. [PMID: 26890525 PMCID: PMC4758665 DOI: 10.1371/journal.pone.0149529] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/02/2016] [Indexed: 02/07/2023] Open
Abstract
Infectious laryngotracheitis (ILT) is an acute and highly contagious respiratory disease of chickens caused by an alphaherpesvirus, infectious laryngotracheitis virus (ILTV). Recently, full genome sequences of wild-type and vaccine strains have been determined worldwide, but none was from Europe. The aim of this study was to determine and analyse the complete genome sequences of five ILTV strains. Sequences were also compared to reveal the similarity of strains across time and to discriminate between wild-type and vaccine strains. Genomes of three ILTV field isolates from outbreaks occurred in Italy in 1980, 2007 and 2011, and two commercial chicken embryo origin (CEO) vaccines were sequenced using the 454 Life Sciences technology. The comparison with the Serva genome showed that 35 open reading frames (ORFs) differed across the five genomes. Overall, 54 single nucleotide polymorphisms (SNPs) and 27 amino acid differences in 19 ORFs and two insertions in the UL52 and ORFC genes were identified. Similarity among the field strains and between the field and the vaccine strains ranged from 99.96% to 99.99%. Phylogenetic analysis revealed a close relationship among them, as well. This study generated data on genomic variation among Italian ILTV strains revealing that, even though the genetic variability of the genome is well conserved across time and between wild-type and vaccine strains, some mutations may help in differentiating among them and may be involved in ILTV virulence/attenuation. The results of this study can contribute to the understanding of the molecular bases of ILTV pathogenicity and provide genetic markers to differentiate between wild-type and vaccine strains.
Collapse
Affiliation(s)
- Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science (BCA), University of Padua, Legnaro (Padua), Italy
- * E-mail:
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padua (DMM), Padua, Italy
| | - Giulia Niero
- Department of Comparative Biomedicine and Food Science (BCA), University of Padua, Legnaro (Padua), Italy
| | - Ana Moreno
- Department of Virology, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Brescia, Italy
| | - Paola Massi
- Department of Diagnostics, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Forlì, Italy
| | - Elisa Franchin
- Department of Molecular Medicine, University of Padua (DMM), Padua, Italy
| | - Stefano Toppo
- Department of Molecular Medicine, University of Padua (DMM), Padua, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua (DMM), Padua, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua (DMM), Padua, Italy
| |
Collapse
|
50
|
Vaz PK, Horsington J, Hartley CA, Browning GF, Ficorilli NP, Studdert MJ, Gilkerson JR, Devlin JM. Evidence of widespread natural recombination among field isolates of equine herpesvirus 4 but not among field isolates of equine herpesvirus 1. J Gen Virol 2015; 97:747-755. [PMID: 26691326 DOI: 10.1099/jgv.0.000378] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recombination in alphaherpesviruses allows evolution to occur in viruses that have an otherwise stable DNA genome with a low rate of nucleotide substitution. High-throughput sequencing of complete viral genomes has recently allowed natural (field) recombination to be studied in a number of different alphaherpesviruses, however, such studies have not been applied to equine herpesvirus 1 (EHV-1) or equine herpesvirus 4 (EHV-4). These two equine alphaherpesviruses are genetically similar, but differ in their pathogenesis and epidemiology. Both cause economically significant disease in horse populations worldwide. This study used high-throughput sequencing to determine the full genome sequences of EHV-1 and EHV-4 isolates (11 and 14 isolates, respectively) from Australian or New Zealand horses. These sequences were then analysed and examined for evidence of recombination. Evidence of widespread recombination was detected in the genomes of the EHV-4 isolates. Only one potential recombination event was detected in the genomes of the EHV-1 isolates, even when the genomes from an additional 11 international EHV-1 isolates were analysed. The results from this study reveal another fundamental difference between the biology of EHV-1 and EHV-4. The results may also be used to help inform the future safe use of attenuated equine herpesvirus vaccines.
Collapse
Affiliation(s)
- P K Vaz
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - J Horsington
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - C A Hartley
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - G F Browning
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - N P Ficorilli
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - M J Studdert
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - J R Gilkerson
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - J M Devlin
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|