1
|
Álvarez ÁL, Arboleya A, Abade dos Santos FA, García-Manso A, Nicieza I, Dalton KP, Parra F, Martín-Alonso JM. Highs and Lows in Calicivirus Reverse Genetics. Viruses 2024; 16:866. [PMID: 38932159 PMCID: PMC11209508 DOI: 10.3390/v16060866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
In virology, the term reverse genetics refers to a set of methodologies in which changes are introduced into the viral genome and their effects on the generation of infectious viral progeny and their phenotypic features are assessed. Reverse genetics emerged thanks to advances in recombinant DNA technology, which made the isolation, cloning, and modification of genes through mutagenesis possible. Most virus reverse genetics studies depend on our capacity to rescue an infectious wild-type virus progeny from cell cultures transfected with an "infectious clone". This infectious clone generally consists of a circular DNA plasmid containing a functional copy of the full-length viral genome, under the control of an appropriate polymerase promoter. For most DNA viruses, reverse genetics systems are very straightforward since DNA virus genomes are relatively easy to handle and modify and are also (with few notable exceptions) infectious per se. This is not true for RNA viruses, whose genomes need to be reverse-transcribed into cDNA before any modification can be performed. Establishing reverse genetics systems for members of the Caliciviridae has proven exceptionally challenging due to the low number of members of this family that propagate in cell culture. Despite the early successful rescue of calicivirus from a genome-length cDNA more than two decades ago, reverse genetics methods are not routine procedures that can be easily extrapolated to other members of the family. Reports of calicivirus reverse genetics systems have been few and far between. In this review, we discuss the main pitfalls, failures, and delays behind the generation of several successful calicivirus infectious clones.
Collapse
Affiliation(s)
- Ángel L. Álvarez
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Aroa Arboleya
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Fábio A. Abade dos Santos
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto Nacional de Investigação Agrária e Veterinária, 2780-157 Oeiras, Portugal
| | - Alberto García-Manso
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Inés Nicieza
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Kevin P. Dalton
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Francisco Parra
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - José M. Martín-Alonso
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
2
|
Landa E, Javaid S, Won JS, Vigandt E, Caronia J, Mir P, Thet Z. Septic Shock Secondary to Severe Gastroenteritis Resulting From Sapovirus Infection. Cureus 2022; 14:e24010. [PMID: 35547467 PMCID: PMC9090209 DOI: 10.7759/cureus.24010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2022] [Indexed: 11/09/2022] Open
Abstract
Sapovirus causes acute gastroenteritis (AGE) which manifests as severe diarrhea and vomiting. It is most often seen in, but not limited to, children and toddlers but can occur in people of all ages. It is typically more prevalent in low to middle-income countries but has also been reported in progressive countries such as the United States. Due to the universal use of reverse transcriptase-polymerase chain reaction (RT-PCR) testing, the reported incidence of sapovirus has continued to grow as the culprit agent in both AGE outbreaks and isolated cases. Its symptoms resemble what is seen with rotavirus but with a milder clinical course. This discussion explores the dire implications of a relatively understated pathogen. Here, we present a rare case of a 20-year-old woman who presented with septic shock secondary to severe gastroenteritis as a result of sapovirus infection.
Collapse
Affiliation(s)
- Eric Landa
- Internal Medicine, Unity Health, Searcy, USA
| | - Saad Javaid
- Internal Medicine, Wyckoff Heights Medical Center, New York City, USA
| | - Jung S Won
- Internal Medicine, Wyckoff Heights Medical Center, New York City, USA
| | - Erika Vigandt
- Internal Medicine, The Brooklyn Hospital Center, New York City, USA
| | - Jonathan Caronia
- Pulmonary and Critical Care Medicine, Northwell Health, New York City, USA
| | - Parvez Mir
- Pulmonary and Critical Care/Internal Medicine, Wyckoff Heights Medical Center, New York City, USA
| | - Zeyar Thet
- Internal Medicine and Infectious Diseases, Wyckoff Heights Medical Center, New York City, USA
| |
Collapse
|
3
|
Razizadeh MH, Khatami A, Zarei M. Global molecular prevalence and genotype distribution of Sapovirus in children with gastrointestinal complications: A systematic review and meta-analysis. Rev Med Virol 2021; 32:e2302. [PMID: 34626019 DOI: 10.1002/rmv.2302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/11/2023]
Abstract
Sapovirus (SaV) is an emerging cause of children gastrointestinal complications such as acute gastroenteritis (AGE). The aim of the present systematic review and meta-analysis was to estimate the global prevalence of the SaV in children and association of infection with SaVs and AGE in children based on case-control studies. Four international databases (PubMed, Scopus, Web of Sciences and Google Scholar) were used to retrieve English-language studies published between January 2000 and December 2020. Comprehensive Meta-Analysis software was applied to estimate the overall prevalence, publication bias and heterogeneity index. The pooled prevalence of SaV infection among children with gastroenteritis was 3.4% [95% confidence interval (CI): 2.9%-3.9%] based on a random-effects meta-analysis. Genogroup I was the dominant genogroup of SaV in children with gastroenteritis [2.2% (95% CI: 1.6%-3.0%)], association analysis showed that SaV was associated with gastroenteritis [OR: 1.843 (95% CI: 1.27-2.66)]. Given the significant prevalence of the virus in children, it is necessary to pay more attention to this situation. Therefore, preventive health measures in children should be a priority.
Collapse
Affiliation(s)
| | - Alireza Khatami
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Zarei
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Cioffi B, Ianiro G, Iaccarino D, D'Apice F, Ferraro A, Race M, Spasiano D, Esposito E, Monini M, Serra F, Cozza D, Di Nocera F, De Maio L, Amoroso MG, De Carlo E, Fusco G. A potential risk assessment tool to monitor pathogens circulation in coastal waters. ENVIRONMENTAL RESEARCH 2021; 200:111748. [PMID: 34303676 DOI: 10.1016/j.envres.2021.111748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
The present study reports data on a 20 months campaign monitoring enteric viruses (hepatitis A, norovirus, rotavirus, astrovirus, sapovirus, and aichivirus) and bacteria (Salmonella spp.) in seawater. The aim of this work was to assess the potential correlation among the presence of viruses/bacteria and different environmental factors like seasonality, water discharge sources (treated and untreated wastewater, mixed waters and raw water) as well as influence of the Italian lockdown measure against COVID-19 pandemic. Results showed different prevalence of the investigated viruses with values equal to 16 % for norovirus GI, 15.1 % for norovirus GII, followed by 13.8 % for astrovirus, and 13.3 % for sapovirus. Rotavirus was detected in the 8.4 % of samples and aichivirus was detected with the lowest prevalence of 3.5 %. Hepatitis A virus was never identified in the monitoring campaign. Salmonella spp. was detected with a prevalence of 36.6 %. Statistical analysis displayed a high correlation for the two noroviruses simultaneous detection (NGI and NGII) while a lower correlation was found for co-presence of noroviruses with astrovirus, sapovirus or Salmonella spp. A significant decrease of enteric pathogens in seawater was observed during the restrictions period. Results on seasonality highlighted a higher viral prevalence correlated to the wet season for all the pathogens but rotavirus and aichivirus, which instead showed an opposite trend and a higher incidence in the dry season. With respect to discharge typology, some viruses displayed a higher prevalence in treated waters (astrovirus, rotavirus, sapovirus and aichivirus) while the other investigated pathogens (noroviruses and Salmonella spp.) showed a higher prevalence in mixed waters. The main observations of this work were used to define a potential monitoring strategy that could be useful for sanitary Authorities to implement surveillance plans aimed at preventing possible sanitary outbreaks and/or environmental quality deterioration.
Collapse
Affiliation(s)
- B Cioffi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, NA, Italy
| | - G Ianiro
- Food Safety, Nutrition and Veterinary Public Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - D Iaccarino
- Department of Animal Health, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, NA, Italy
| | - F D'Apice
- Sea Unit, ARPA Campania, Naples, Italy
| | - A Ferraro
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy.
| | - M Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via di Biasio 43, Cassino, 03043, Italy
| | - D Spasiano
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy
| | - E Esposito
- Veterinary Medicine and Animal Production Department, Università Degli Studi di Napoli Federico II, Naples, Italy
| | - M Monini
- Food Safety, Nutrition and Veterinary Public Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - F Serra
- Department of Animal Health, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, NA, Italy
| | - D Cozza
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, NA, Italy
| | - F Di Nocera
- Department of Animal Health, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, NA, Italy
| | - L De Maio
- Sea Unit, ARPA Campania, Naples, Italy
| | - M G Amoroso
- Department of Animal Health, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, NA, Italy.
| | - E De Carlo
- Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, NA, Italy
| | - G Fusco
- Department of Animal Health, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, NA, Italy
| |
Collapse
|
5
|
Sapoviruses detected from acute gastroenteritis outbreaks and hospitalized children in Taiwan. J Formos Med Assoc 2021; 120:1591-1601. [DOI: 10.1016/j.jfma.2020.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/11/2020] [Accepted: 11/25/2020] [Indexed: 12/17/2022] Open
|
6
|
Cho SR, Yun SJ, Chae SJ, Jung S, Kim JH, Yong KC, Cho EH, Choi W, Lee DY. An Outbreak Associated with Sapovirus GI.3 in an Elementary School in Gyeonggi-do, Korea. J Korean Med Sci 2020; 35:e281. [PMID: 32864904 PMCID: PMC7458851 DOI: 10.3346/jkms.2020.35.e281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/26/2020] [Indexed: 11/20/2022] Open
Abstract
On October 4, 2018, an outbreak of gastroenteritis associated with sapovirus occurred among elementary school students in Gyeonggi-do, Korea. Epidemiologic studies were conducted in a retrospective cohort approach. Using self-administered questionnaires, we collected information on symptoms and food items consumed. Of the 999 subjects, 17 developed patients that met the case definition. The main symptom was vomiting (100%), and the symptomatic age was 6-12 years. Positive samples were identified by conventional reverse transcription polymerase chain reaction for sequencing. They were classified into genotype GI.3 by phylogenetic analysis. This is the first report of an outbreak associated with sapovirus GI.3 in Korea.
Collapse
Affiliation(s)
- Seung Rye Cho
- Division of Viral Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Osong, Korea
| | - Su Jung Yun
- Division of Infectious Disease Research, Gyeonggi-do Institute of Health and Environment, Suwon, Korea
| | - Su Jin Chae
- Division of Viral Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Osong, Korea
| | - Sunyoung Jung
- Division of Viral Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Osong, Korea
| | - Jong Hwa Kim
- Division of Infectious Disease Research, Gyeonggi-do Institute of Health and Environment, Suwon, Korea
| | - Kum Chan Yong
- Division of Infectious Disease Research, Gyeonggi-do Institute of Health and Environment, Suwon, Korea
| | - Eul Ho Cho
- Bundang-gu Health Center Infectious Disease Response Team, Seongnam, Korea
| | - Wooyoung Choi
- Division of Viral Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Osong, Korea
| | - Deog Yong Lee
- Division of Viral Diseases, Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control and Prevention, Osong, Korea.
| |
Collapse
|
7
|
Abrantes J, Lopes AM, Lemaitre E, Ahola H, Banihashem F, Droillard C, Marchandeau S, Esteves PJ, Neimanis A, Le Gall-Reculé G. Retrospective Analysis Shows That Most RHDV GI.1 Strains Circulating Since the Late 1990s in France and Sweden Were Recombinant GI.3P-GI.1d Strains. Genes (Basel) 2020; 11:E910. [PMID: 32784857 PMCID: PMC7464634 DOI: 10.3390/genes11080910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 12/27/2022] Open
Abstract
Recombination is one of the major sources of genetic variation in viruses. RNA viruses, such as rabbit hemorrhagic disease virus (RHDV), are among the viruses with the highest recombination rates. Several recombination events have been described for RHDV, mostly as a consequence of their genomic architecture. Here, we undertook phylogenetic and recombination analyses of French and Swedish RHDV strains from 1994 to 2016 and uncovered a new intergenotypic recombination event. This event occurred in the late 1990s/early 2000s and involved nonpathogenic GI.3 strains as donors for the nonstructural part of the genome of these recombinants, while pathogenic GI.1d strains contributed to the structural part. These GI.3P-GI.1d recombinant strains did not entirely replace GI.1d (nonrecombinant) strains, but became the dominant strains in France and Sweden, likely due to a fitness advantage associated with this genomic architecture. GI.3P-GI.1d (P stands for polymerase) strains persisted until 2013 and 2016 in Sweden and France, respectively, and cocirculated with the new genotype GI.2 in France. Since strains from the first GI.2 outbreaks were GI.3P-GI.2, we hypothesize that GI.3P-GI.1d could be the parental strain. Our results confirm the outstanding recombination ability of RHDV and its importance in the evolution of lagoviruses, which was only revealed by studying complete genomic sequences.
Collapse
Affiliation(s)
- Joana Abrantes
- CIBIO/InBio-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal; (J.A.); (A.M.L.); (P.J.E.)
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Ana M. Lopes
- CIBIO/InBio-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal; (J.A.); (A.M.L.); (P.J.E.)
- Instituto de Ciências Biomédicas Abel Salazar/Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, 4050-313 Porto, Portugal
| | - Evelyne Lemaitre
- Unité de Virologie, Immunologie, Parasitologie, Aviaires et Cunicoles, Laboratoire de Ploufragan-Plouzané-Niort, Agence nationale de sécurité sanitaire, de l’alimentation, de l’environnement et du travail (Anses), 22440 Ploufragan, France; (E.L.); (C.D.)
| | - Harri Ahola
- Department of Microbiology, National Veterinary Institute (SVA), Ulls väg 2B, SE75189 Uppsala, Sweden; (H.A.); (F.B.)
| | - Fereshteh Banihashem
- Department of Microbiology, National Veterinary Institute (SVA), Ulls väg 2B, SE75189 Uppsala, Sweden; (H.A.); (F.B.)
| | - Clément Droillard
- Unité de Virologie, Immunologie, Parasitologie, Aviaires et Cunicoles, Laboratoire de Ploufragan-Plouzané-Niort, Agence nationale de sécurité sanitaire, de l’alimentation, de l’environnement et du travail (Anses), 22440 Ploufragan, France; (E.L.); (C.D.)
| | - Stéphane Marchandeau
- Unité Petite Faune Sédentaire et Espèces Outre-Mer, Direction de la Recherche et de l’Appui Scientifique, Office Français de la Biodiversité (OFB), 44300 Nantes, France;
| | - Pedro J. Esteves
- CIBIO/InBio-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal; (J.A.); (A.M.L.); (P.J.E.)
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Aleksija Neimanis
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Ulls väg 2B, SE75189 Uppsala, Sweden
| | - Ghislaine Le Gall-Reculé
- Unité de Virologie, Immunologie, Parasitologie, Aviaires et Cunicoles, Laboratoire de Ploufragan-Plouzané-Niort, Agence nationale de sécurité sanitaire, de l’alimentation, de l’environnement et du travail (Anses), 22440 Ploufragan, France; (E.L.); (C.D.)
| |
Collapse
|
8
|
Bouseettine R, Hassou N, Bessi H, Ennaji MM. Waterborne Transmission of Enteric Viruses and Their Impact on Public Health. EMERGING AND REEMERGING VIRAL PATHOGENS 2020. [PMCID: PMC7148740 DOI: 10.1016/b978-0-12-819400-3.00040-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Viruses of human or animal origin can spread in the environment and infect people via water and food. These viruses are released into the environment by various routes including water runoffs and aerosols. Furthermore, zoonotic viruses may infect humans exposed to contaminated surface waters. Viruses are emerging pathogens and are able to adapt by mutation, recombination, and reassortment and can thus become able to infect new hosts and to adjust to new environments. Enteric viruses are among the commonest and most hazardous waterborne pathogens, causing both sporadic and outbreak-related illness. While considerable research has documented the risk of enteric viruses to human health from contact with contaminated water, the current bacterial indicator-based methods for the evaluation of water quality are often ineffectual proxies for pathogenic viruses, but no correlation was established between the enteric bacteria and viruses studied. The present chapter will focus on viral pathogens shown to be transmitted through water. It will also provide an overview of viruses that had not been a concern for waterborne transmission in the past, but that may represent potentially emerging waterborne pathogens due to their occurrence and persistence in water environments. Monitoring effluents from wastewater treatment plants is important to preventing both environmental contamination and the spread of disease.
Collapse
|
9
|
Seroprevalence of sapovirus in dogs using baculovirus-expressed virus-like particles. Virus Res 2018; 251:1-5. [PMID: 29698676 DOI: 10.1016/j.virusres.2018.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 11/23/2022]
Abstract
Caliciviruses of the Sapovirus genus have been recently detected in dogs. Canine sapoviruses (SaVs) have been identified in the stools of young or juvenile animals with gastro-enteric disease at low prevalence (2.0-2.2%), but whether they may have a role as enteric pathogens and to which extent dogs are exposed to SaVs remains unclear. Here, we report the expression in a baculovirus system of virus like-particles (VLPs) of a canine SaV strain, the prototype virus Bari/4076/2007/ITA. The recombinant antigen was used to develop an enzyme-linked immunosorbent assay (ELISA). By screening an age-stratified collection of serum samples from 516 dogs in Italy, IgG antibodies specific for the canine SaV VLPs were detected in 40.3% (208/516) of the sera. Also, as observed for SaV infection in humans, we observed a positive association between seropositivity and age, with the highest prevalence rates in dogs older than 4 years of age.
Collapse
|
10
|
Sapovirus in Wastewater Treatment Plants in Tunisia: Prevalence, Removal, and Genetic Characterization. Appl Environ Microbiol 2018; 84:AEM.02093-17. [PMID: 29305515 DOI: 10.1128/aem.02093-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/28/2017] [Indexed: 01/04/2023] Open
Abstract
Sapovirus (SaV), from the Caliciviridae family, is a genus of enteric viruses that cause acute gastroenteritis. SaV is shed at high concentrations with feces into wastewater, which is usually discharged into aquatic environments or reused for irrigation without efficient treatments. This study analyzed the incidence of human SaV in four wastewater treatment plants from Tunisia during a period of 13 months (December 2009 to December 2010). Detection and quantification were carried out using reverse transcription-quantitative PCR (RT-qPCR) methods, obtaining a prevalence of 39.9% (87/218). Sixty-one positive samples were detected in untreated water and 26 positive samples in processed water. The Dekhila plant presented the highest contamination levels, with a 63.0% prevalence. A dominance of genotype I.2 was observed on 15 of the 24 positive samples that were genetically characterized. By a Bayesian estimation algorithm, the SaV density in wastewater was estimated using left-censored data sets. The mean value of log SaV concentration in untreated wastewater ranged between 2.7 and 4.5 logs. A virus removal efficiency of 0.2 log was calculated for the Dekhila plant as the log ratio posterior distributions between untreated and treated wastewater. Multiple quantitative values obtained in this study must be available in quantitative microbial risk assessment in Tunisia as parameter values reflecting local conditions.IMPORTANCE Human sapovirus (SaV) is becoming more prevalent worldwide and organisms in this genus are recognized as emerging pathogens associated with human gastroenteritis. The present study describes novel findings on the prevalence, seasonality, and genotype distribution of SaV in Tunisia and Northern Africa. In addition, a statistical approximation using Bayesian estimation of the posterior predictive distribution ("left-censored" data) was employed to solve methodological problems related with the limit of quantification of the quantitative PCR (qPCR). This approach would be helpful for the future development of quantitative microbial risk assessment procedures for wastewater.
Collapse
|
11
|
Yang B, Yang B, Shan X, Li B, Ma X, Yin X, Zhang Y, Liu Y, Lan X. Short communication: Immune responses in sows induced by porcine sapovirus virus-like particles reduce viral shedding in suckled piglets. Res Vet Sci 2017; 117:196-199. [PMID: 29294432 DOI: 10.1016/j.rvsc.2017.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 12/14/2017] [Accepted: 12/26/2017] [Indexed: 11/16/2022]
Abstract
Porcine sapovirus (PoSaV) is a potential threat to public health owing to its capacity for reassortment with human sapovirus strains. However, there is still no vaccine available for the prevention and control of this infectious disease. In this study, we developed PoSaV virus-like particles (VLPs) using a baculovirus expression system. Immunization with PoSaV VLPs induced high titers of serum antibody specific for VP1 in sows. The results of our challenge study demonstrated that maternally-derived antibodies (MDA) induced by VLP immunization dramatically reduced viral shedding of PoSaV in the feces of next generation piglets. Therefore, the results of this study indicate that the immune responses of sows elicited by PoSaV VLPs can inhibit in vivo viral replication in their offspring and represent a promising strategy for developing vaccines against PoSaV.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Bin Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Xingna Shan
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Baoyu Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xiaojun Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiangping Yin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Yun Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | - Xi Lan
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| |
Collapse
|
12
|
Neo FJX, Loh JJP, Ting P, Yeo WX, Gao CQH, Lee VJM, Tan BH, Ng CG. Outbreak of caliciviruses in the Singapore military, 2015. BMC Infect Dis 2017; 17:719. [PMID: 29137606 PMCID: PMC5686888 DOI: 10.1186/s12879-017-2821-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 11/06/2017] [Indexed: 12/23/2022] Open
Abstract
Background From 31 August to 9 September 2015, a total of 150 military personnel at a military institution in Singapore were infected with acute gastroenteritis (AGE) with an attack rate of approximately 3%. This study aimed to determine the epidemiology of the outbreak, investigate its origins, and discuss measures to prevent future occurrences. Methods After the AGE outbreak was declared on 31 August 2015, symptom surveys, hygiene inspections, and the testing of water, food, and stool samples were initiated. We collected 86 stool samples from AGE cases and 58 samples from food-handlers during the course of the outbreak and these stool samples were tested for 8 bacterial pathogens and 2 viral pathogens (i.e., norovirus and sapovirus). Results We detected Sapovirus (SaV), group I Norovirus (NoV GI) and group II Norovirus (NoV GII) from the stool samples of AGE cases. Further sequence analyses showed that the AGE outbreak in August was caused mainly by three rarely reported calicivirus novel genotypes: NoV GI.7, NoV GII.17 and SaV GII.3. Control measures implemented focused on the escalation of personal and environmental hygiene, which included the separation of affected and unaffected soldiers, enforcement of rigorous hand-washing and hygiene, raising awareness of food and water safety, and disinfection of communal areas with bleach. Conclusions This study identified both NoV and SaV as the causative agents for an AGE outbreak at a Singapore military camp in August 2015. This study is also the first to report SaV as one of the main causative agents, highlighting the importance of caliciviruses as causative agents of AGE outbreaks in the Singapore military. As there are no commercially available vaccines against caliciviruses, strict personal hygiene and proper disinfection of environmental surfaces remain crucial to prevent calicivirus outbreak and transmission.
Collapse
Affiliation(s)
- Freddy Jun Xian Neo
- DSO National Laboratories, 27, Medical Drive, #09-01, Singapore, 117510, Singapore
| | - Jimmy Jin Phang Loh
- DSO National Laboratories, 27, Medical Drive, #09-01, Singapore, 117510, Singapore
| | - Peijun Ting
- DSO National Laboratories, 27, Medical Drive, #09-01, Singapore, 117510, Singapore
| | - Wei Xin Yeo
- HQ Medical Corps, Singapore Armed Forces, HQ Medical Corps, 701 Transit Road #04-01, Singapore, 778910, Singapore
| | - Christine Qiu Han Gao
- HQ Medical Corps, Singapore Armed Forces, HQ Medical Corps, 701 Transit Road #04-01, Singapore, 778910, Singapore
| | - Vernon Jian Ming Lee
- HQ Medical Corps, Singapore Armed Forces, HQ Medical Corps, 701 Transit Road #04-01, Singapore, 778910, Singapore
| | - Boon Huan Tan
- DSO National Laboratories, 27, Medical Drive, #09-01, Singapore, 117510, Singapore
| | - Ching Ging Ng
- DSO National Laboratories, 27, Medical Drive, #09-01, Singapore, 117510, Singapore.
| |
Collapse
|
13
|
Lopes AM, Silvério D, Magalhães MJ, Areal H, Alves PC, Esteves PJ, Abrantes J. Characterization of old RHDV strains by complete genome sequencing identifies a novel genetic group. Sci Rep 2017; 7:13599. [PMID: 29051566 PMCID: PMC5648873 DOI: 10.1038/s41598-017-13902-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/04/2017] [Indexed: 11/11/2022] Open
Abstract
Rabbit hemorrhagic disease (RHD) is a veterinary disease that affects the European rabbit and has a significant economic and ecological negative impact. In Portugal, rabbit hemorrhagic disease virus (RHDV) was reported in 1989 and still causes enzootic outbreaks. Several recombination events have been detected in RHDV strains, including in the first reported outbreak. Here we describe the occurrence of recombination in RHDV strains recovered from rabbit and Iberian hare samples collected in the mid-1990s in Portugal. Characterization of full genomic sequences revealed the existence of a single recombination breakpoint at the boundary of the non-structural and the structural encoding regions, further supporting the importance of this region as a recombination hotspot in lagoviruses. Phylogenetic analysis showed that in the structural region, the recombinant strains were similar to pathogenic G1 strains, but in the non-structural region they formed a new group that diverged ~13% from known strains. No further reports of such group exist, but this recombination event was also detected in an Iberian hare that was associated with the earliest species jump in RHDV. Our results highlight the importance of the characterization of full genomes to disclose RHDV evolution and show that lagoviruses’ diversity has been significantly undersampled.
Collapse
Affiliation(s)
- Ana M Lopes
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Diogo Silvério
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Maria J Magalhães
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Helena Areal
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Paulo C Alves
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.,Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, 59812, Montana, USA
| | - Pedro J Esteves
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (CESPU), Gandra, Portugal
| | - Joana Abrantes
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.
| |
Collapse
|
14
|
Kowada K, Takeuchi K, Hirano E, Toho M, Sada K. Development of a multiplex real-time PCR assay for detection of human enteric viruses other than norovirus using samples collected from gastroenteritis patients in Fukui Prefecture, Japan. J Med Virol 2017; 90:67-75. [PMID: 28845896 DOI: 10.1002/jmv.24926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/27/2017] [Indexed: 11/09/2022]
Abstract
There are many varieties of gastroenteritis viruses, of which norovirus (NoV) accounts for over 90% of the viral food poisoning incidents in Japan. However, protocols for rapidly identifying other gastroenteritis viruses need to be established to investigate NoV-negative cases intensively. In this study, a multiplex real-time PCR assay targeting rotavirus A, rotavirus C, sapovirus, astrovirus, adenovirus, and enterovirus was developed using stool samples collected from gastroenteritis patients between 2010 and 2013 in Fukui Prefecture, Japan. Of the 126 samples collected sporadically from pediatric patients with suspected infectious gastroenteritis, 51 were positive for non-NoV target viruses, whereas 27 were positive for NoV, showing a high prevalence of non-NoV viruses in pediatric patients. In contrast, testing in 382 samples of 58 gastroenteritis outbreaks showed that non-NoV viruses were detected in 13 samples, with NoV in 267. Of the 267 NoV-positive patients, only two were co-infected with non-NoV target viruses, suggesting that testing for non-NoV gastroenteritis viruses in NoV-positive samples was mostly unnecessary in outbreak investigations. Given these results, multiplex real-time PCR testing for non-NoV gastroenteritis viruses, conducted separately from NoV testing, may be helpful to deal with two types of epidemiological investigations, regular surveillance of infectious gastroenteritis and urgent testing when gastroenteritis outbreaks occur.
Collapse
Affiliation(s)
- Kazuaki Kowada
- Fukui Prefectural Institute of Public Health and Environmental Science, Fukui, Japan.,University of Fukui, Fukui, Japan
| | | | - Eiko Hirano
- Fukui Prefectural Institute of Public Health and Environmental Science, Fukui, Japan
| | - Miho Toho
- Fukui Prefectural Institute of Public Health and Environmental Science, Fukui, Japan
| | | |
Collapse
|
15
|
Mor SK, Phelps NBD, Ng TFF, Subramaniam K, Primus A, Armien AG, McCann R, Puzach C, Waltzek TB, Goyal SM. Genomic characterization of a novel calicivirus, FHMCV-2012, from baitfish in the USA. Arch Virol 2017; 162:3619-3627. [PMID: 28815386 DOI: 10.1007/s00705-017-3519-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/20/2017] [Indexed: 11/25/2022]
Abstract
During regulatory sampling of fathead minnows (Pimephales promelas), a novel calicivirus was isolated from homogenates of kidney and spleen inoculated into bluegill fry (BF-2) cells. Infected cell cultures exhibiting cytopathic effects were screened by PCR-based methods for selected fish viral pathogens. Illumina HiSeq next generation sequencing of the total RNA revealed a novel calicivirus genome that showed limited protein sequence similarity to known homologs in a BLASTp search. The complete genome of this fathead minnow calicivirus (FHMCV) is 6564 nt long, encoding a polyprotein of 2114 aa in length. The complete polyprotein shared only 21% identity with Atlantic salmon calicivirus,followed by 11% to 14% identity with mammalian caliciviruses. A molecular detection assay (RT-PCR) was designed from this sequence for screening of field samples for FHMCV in the future. This virus likely represents a prototype species of a novel genus in the family Caliciviridae, tentatively named "Minovirus".
Collapse
Affiliation(s)
- Sunil Kumar Mor
- Minnesota Veterinary Diagnostic Laboratory, Department of Veterinary Population Medicine, University of Minnesota, 1333 Gortner Avenue, St. Paul, MN, 55108, USA.
| | - Nicholas B D Phelps
- Minnesota Aquatic Invasive Species Research Center, Department of Fisheries, Wildlife, and Conservation Biology, College of Food, Agriculture, and Natural Resource Sciences, University of Minnesota, St. Paul, MN, 55108, USA
| | - Terry Fei Fan Ng
- College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Drive, Athens, GA, 30602, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Alexander Primus
- Minnesota Veterinary Diagnostic Laboratory, Department of Veterinary Population Medicine, University of Minnesota, 1333 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Anibal G Armien
- Minnesota Veterinary Diagnostic Laboratory, Department of Veterinary Population Medicine, University of Minnesota, 1333 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Rebekah McCann
- US Fish and Wildlife Service, La Crosse Fish Health Center, 555 Lester Avenue, Onalaska, WI, 54650, USA
| | - Corey Puzach
- US Fish and Wildlife Service, La Crosse Fish Health Center, 555 Lester Avenue, Onalaska, WI, 54650, USA
| | - Thomas B Waltzek
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Sagar M Goyal
- Minnesota Veterinary Diagnostic Laboratory, Department of Veterinary Population Medicine, University of Minnesota, 1333 Gortner Avenue, St. Paul, MN, 55108, USA
| |
Collapse
|
16
|
Li J, Shen Q, Zhang W, Zhao T, Li Y, Jiang J, Yu X, Guo Z, Cui L, Hua X. Genomic organization and recombination analysis of a porcine sapovirus identified from a piglet with diarrhea in China. Virol J 2017; 14:57. [PMID: 28302145 PMCID: PMC5356244 DOI: 10.1186/s12985-017-0729-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/09/2017] [Indexed: 12/02/2022] Open
Abstract
Background Sapovirus (SaV), a member of the family Caliciviridae, is an etiologic agent of gastroenteritis in humans and pigs. To date, both intra- and inter-genogroup recombinant strains have been reported in many countries except for China. Here, we report an intra-genogroup recombination of porcine SaV identified from a piglet with diarrhea of China. Methods A fecal sample from a 15-day-old piglet with diarrhea was collected from Shanghai, China. Common agents of gastroenteritis including porcine circovirus type 2, porcine rotavirus, porcine transmissible gastroenteritis virus, porcine SaV, porcine norovirus, and porcine epidemic diarrhea virus were detected by RT-PCR or PCR method. The complete genome of porcine SaV was then determined by RT-PCR method. Phylogenetic analyses based on the structural region and nonstructural (NS) region were carried out to group this SaV strain, and it was divided into different genotypes based on these two regions. Recombination analysis based on the genomic sequence was further performed to confirm this recombinant event and locate the breakpoint. Results All of the agents showed negative results except for SaV. Analysis of the complete genome sequence showed that this strain was 7387 nt long with two ORFs and belonged to SaV GIII. Phylogenetic analyses of the structural region (complete VP1 nucleotide sequences) grouped this strain into GIII-3, whereas of the nonstructural region (RdRp nucleotide sequences) grouped this strain into GIII-2. Recombination analysis based on the genomic sequence confirmed this recombinant event and identified two parental strains that were JJ259 (KT922089, GIII-2) and CH430 (KF204570, GIII-3). The breakpoint located at position 5139 nt of the genome (RdRp-capsid junction region). Etiologic analysis showed the fecal sample was negative with the common agents of gastroenteritis, except for porcine SaV, which suggested that this recombinant strain might lead to this piglet diarrhea. Conclusions P2 strain was an intra-genogroup recombinant porcine SaV. To the best of our knowledge, this study would be the first report that intra-genogroup recombination of porcine SaV infection was identified in pig herd in China.
Collapse
Affiliation(s)
- Jingjiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Quan Shen
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Tingting Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Jiang
- Shanghai Entry-Exit Inspection and Quarantine Bureau, Shanghai, 200135, China
| | - Xiangqian Yu
- Shanghai Pudong New Area Center for Animal Disease Control and Prevention, Shanghai, 200136, China
| | - Zhibo Guo
- Shanghai Pudong New Area Center for Agriculture Service, Shanghai, 201202, China
| | - Li Cui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiuguo Hua
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
17
|
Gastañaduy AS, Bégué RE. Acute Gastroenteritis Viruses. Infect Dis (Lond) 2017. [PMCID: PMC7173516 DOI: 10.1016/b978-0-7020-6285-8.00162-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Acute diarrhea is the leading cause of morbidity and second commonest cause of mortality in children <5 years old worldwide. Most acute diarrheal illnesses are caused by viruses. Noroviruses are the commonest cause of diarrhea in all age groups combined, and rotaviruses are still the leading cause of diarrhea for children <5 years old. Transmission is mainly by the fecal–oral route through person-to-person contact, contaminated food and water. Most cases of viral diarrhea are mild and self-limiting, but severe cases occur, leading to dehydration and death. Repeated episodes lead to malnutrition. Most cases can be managed at home with oral rehydration solutions and feeding a regular diet. Vaccines will be the best preventive measure. Only rotavirus vaccines are available. Breast-feeding, vitamin A supplementation and zinc significantly reduce the frequency and/or severity of diarrhea.
Collapse
|
18
|
Reymão TKA, Hernandez JDM, Costa STPD, Sousa MSD, Oliveira DDS, Silva LDD, Bandeira RDS, Lima ICGD, Soares LDS, Mascarenhas JDP, Gabbay YB. SAPOVIRUSES IN CHILDREN WITH ACUTE GASTROENTERITIS FROM MANAUS , AMAZON REGION, BRAZIL, 2010-2011. Rev Inst Med Trop Sao Paulo 2016; 58:81. [PMID: 27828622 PMCID: PMC5096635 DOI: 10.1590/s1678-9946201658081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/10/2016] [Indexed: 01/24/2023] Open
Abstract
Sapoviruses (SaVs) are responsible for acute gastroenteritis in humans, especially children and the elderly. In Brazil, data on SaVs infections are very limited, especially in Northern Brazil. Here, we investigated the occurrence of SaVs in samples from hospitalized children under ten years old that presented acute gastroenteritis. Positive samples were genotyped and phylogenetic analysis was performed using prototype strains sequences obtained from GenBank database. In total, 156 fecal samples were screened by RT-PCR for SaVs. A positivity rate of 3.8% (6/156) was found in children under three years of age. Four genotypes were detected: GI.I, GI.2 and GII.2?-GII.4?/GII.4, suggesting a possible inter-genotypes recombination. Most infections (83.3%) occurred between August and September. The positivity was similar to that found in other countries and genotyping demonstrated the presence of distinct genotypes. To our knowledge, this is the first study reporting the circulation of SaVs in Manaus, state of Amazonas, Amazon region, Brazil.
Collapse
Affiliation(s)
| | | | | | - Maísa Silva de Sousa
- Federal University of Pará, Tropical Medicine Center, Postgraduate Program in Tropical Diseases. Belém, Pará, Brazil. E-mail:
| | - Darleise de Souza Oliveira
- Evandro Chagas Institute, Brazilian Ministry of Health, Virology Section. Ananindeua, Pará, Brazil. E-mails: ; ; ; ; ;
| | - Luciana Damascena da Silva
- Evandro Chagas Institute, Brazilian Ministry of Health, Virology Section. Ananindeua, Pará, Brazil. E-mails: ; ; ; ; ;
| | - Renato da Silva Bandeira
- Evandro Chagas Institute, Brazilian Ministry of Health, Virology Section. Ananindeua, Pará, Brazil. E-mails: ; ; ; ; ;
| | - Ian Carlos Gomes de Lima
- Evandro Chagas Institute, Brazilian Ministry of Health, Virology Section. Ananindeua, Pará, Brazil. E-mails: ; ; ; ; ;
| | - Luana da Silva Soares
- Evandro Chagas Institute, Brazilian Ministry of Health, Virology Section. Ananindeua, Pará, Brazil. E-mails: ; ; ; ; ;
| | | | - Yvone Benchimol Gabbay
- Evandro Chagas Institute, Brazilian Ministry of Health, Virology Section. Ananindeua, Pará, Brazil. E-mails: ; ; ; ; ;
| |
Collapse
|
19
|
Olarte-Castillo XA, Hofer H, Goller KV, Martella V, Moehlman PD, East ML. Divergent Sapovirus Strains and Infection Prevalence in Wild Carnivores in the Serengeti Ecosystem: A Long-Term Study. PLoS One 2016; 11:e0163548. [PMID: 27661997 PMCID: PMC5035092 DOI: 10.1371/journal.pone.0163548] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/10/2016] [Indexed: 01/23/2023] Open
Abstract
The genus Sapovirus, in the family Caliciviridae, includes enteric viruses of humans and domestic animals. Information on sapovirus infection of wildlife is limited and is currently lacking for any free-ranging wildlife species in Africa. By screening a large number of predominantly fecal samples (n = 631) obtained from five carnivore species in the Serengeti ecosystem, East Africa, sapovirus RNA was detected in the spotted hyena (Crocuta crocuta, family Hyaenidae), African lion (Panthera leo, family Felidae), and bat-eared fox (Otocyon megalotis, family Canidae), but not in golden or silver-backed jackals (Canis aureus and C. mesomelas, respectively, family Canidae). A phylogenetic analysis based on partial RNA-dependent RNA polymerase (RdRp) gene sequences placed the sapovirus strains from African carnivores in a monophyletic group. Within this monophyletic group, sapovirus strains from spotted hyenas formed one independent sub-group, and those from bat-eared fox and African lion a second sub-group. The percentage nucleotide similarity between sapoviruses from African carnivores and those from other species was low (< 70.4%). Long-term monitoring of sapovirus in a population of individually known spotted hyenas from 2001 to 2012 revealed: i) a relatively high overall infection prevalence (34.8%); ii) the circulation of several genetically diverse variants; iii) large fluctuations in infection prevalence across years, indicative of outbreaks; iv) no significant difference in the likelihood of infection between animals in different age categories. The likelihood of sapovirus infection decreased with increasing hyena group size, suggesting an encounter reduction effect, but was independent of socially mediated ano-genital contact, or the extent of the area over which an individual roamed.
Collapse
Affiliation(s)
- Ximena A. Olarte-Castillo
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315, Berlin, Germany
| | - Heribert Hofer
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315, Berlin, Germany
| | - Katja V. Goller
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315, Berlin, Germany
| | - Vito Martella
- Department of Veterinary Medicine, University of Aldo Moro of Bari, S.p. per Casamassima km 3, 70010 Valenzano, Bari, Italy
| | | | - Marion L. East
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315, Berlin, Germany
- * E-mail:
| |
Collapse
|
20
|
Molecular Diversity of Sapovirus Infection in Outpatients Living in Nanjing, China (2011-2013). Gastroenterol Res Pract 2016; 2016:4210462. [PMID: 27656204 PMCID: PMC5021866 DOI: 10.1155/2016/4210462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/18/2016] [Accepted: 07/28/2016] [Indexed: 11/17/2022] Open
Abstract
Aim. To gain insight into the molecular diversity of sapovirus in outpatients with acute gastroenteritis in Nanjing, China. Methods. The specimens from outpatients clinically diagnosed as acute gastroenteritis were detected by real-time PCR; RT-PCR was then performed to amplify part of VP1 sequences. The PCR products were cloned into pGEM-T Easy vector and bidirectionally sequenced. All sequences were edited and analyzed. A phylogenetic tree was drawn with the MEGA 5.0 software. Results. Between 2011 and 2013, 16 sapovirus positive cases were confirmed by real-time PCR. The infected cases increased from two in 2011 and six in 2012 to eight in 2013. The majority was children and the elderly (15, 93.75%) and single infections (15, 93.75%). Of the 16 real-time positive specimens, 14 specimens had PCR products and the analysis data of the 14 nucleic sequences showed that there was one GI genogroup with four genotypes, two GI.2 in 2011, three GI.2, and one GI.1 in 2012 and one GI.2, three GI.1, two GI.3, and two GI.5 in 2013. Conclusion. Our data confirmed continuous existing of GI genogroup and GI.2 genotype from 2011 to 2013 in Nanjing and the successive appearance of different genotypes from outpatients with gastroenteritis.
Collapse
|
21
|
Goyal SM, Cannon JL. Human and Animal Viruses in Food (Including Taxonomy of Enteric Viruses). VIRUSES IN FOODS 2016. [PMCID: PMC7122939 DOI: 10.1007/978-3-319-30723-7_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In recent years, there has been an increase in the incidence of foodborne diseases worldwide, with viruses now being recognized as a major cause of these illnesses. The most common viruses implicated in foodborne disease are enteric viruses, which are found in the human gastrointestinal tract, excreted in human feces and transmitted by the fecal-oral route. Many different viruses are found in the gastrointestinal tract but not all are recognized as foodborne pathogens. The diseases caused by enteric viruses fall into three main types: gastroenteritis, enterically transmitted hepatitis, and illnesses that can affect other parts of the body such as the eye, the respiratory system and the central nervous system leading to conjunctivitis, poliomyelitis, meningitis and encephalitis. Viral pathogens excreted in human feces include noroviruses, sapoviruses, enteroviruses, adenoviruses, hepatitis A virus (HAV), hepatitis E virus (HEV), rotaviruses, and astroviruses. Most of these viruses have been associated with foodborne disease outbreaks. Noroviruses and HAV are commonly identified as foodborne causes of gastroenteritis and acute hepatitis, respectively.
Collapse
|
22
|
Davies C, Ward VK. Expression of the NS5 (VPg) Protein of Murine Norovirus Induces a G1/S Phase Arrest. PLoS One 2016; 11:e0161582. [PMID: 27556406 PMCID: PMC4996510 DOI: 10.1371/journal.pone.0161582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/08/2016] [Indexed: 11/21/2022] Open
Abstract
Murine norovirus-1 (MNV-1) is known to subvert host cell division inducing an accumulation of cells in the G0/G1 phase, creating conditions where viral replication is favored. This study identified that NS5 (VPg), is capable of inducing cell cycle arrest in the absence of viral replication or other viral proteins in an analogous manner to MNV-1 infection. NS5 expression induced an accumulation of cells in the G0/G1 phase in an asynchronous population by inhibiting progression at the G1/S restriction point. Furthermore, NS5 expression resulted in a down-regulation of cyclin A expression in asynchronous cells and inhibited cyclin A expression in cells progressing from G1 to S phase. The activity of NS5 on the host cell cycle occurs through an uncharacterized function. Amino acid substitutions of NS5(Y26A) and NS5(F123A) that inhibit the ability for NS5 to attach to RNA and recruit host eukaryotic translation initiation factors, respectively, retained the ability to induce an accumulation of cells in the G0/G1 phase as identified for wild-type NS5. To the best of our knowledge, this is the first report of a VPg protein manipulating the host cell cycle.
Collapse
Affiliation(s)
- Colin Davies
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, P. O. Box 56, Dunedin, 9054, New Zealand
| | - Vernon K. Ward
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, P. O. Box 56, Dunedin, 9054, New Zealand
- * E-mail:
| |
Collapse
|
23
|
Sisay Z, Djikeng A, Berhe N, Belay G, Gebreyes W, Abegaz WE, Njahira MN, Wang QH, Saif LJ. Prevalence and molecular characterization of human noroviruses and sapoviruses in Ethiopia. Arch Virol 2016; 161:2169-82. [PMID: 27193022 DOI: 10.1007/s00705-016-2887-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/03/2016] [Indexed: 01/02/2023]
Abstract
Viral gastroenteritis is a major public health problem worldwide. In Ethiopia, very limited studies have been done on the epidemiology of enteropathogenic viruses. The aim of this study was to detect and characterize noroviruses (NoVs) and sapoviruses (SaVs) from acute gastroenteritis patients of all ages. Fecal samples were collected from diarrheic patients (n = 213) in five different health centers in Addis Ababa during June-September 2013. The samples were screened for caliciviruses by reverse transcription polymerase chain reaction (RT-PCR) using universal and genogroup-specific primer pairs. Phylogenetic analyses were conducted using the sequences of the PCR products. Of the clinical samples, 25.3 % and 4.2 % were positive for NoV and SaV RNA, respectively. Among the norovirus positives, 22 were sequenced further, and diverse norovirus strains were identified: GI (n = 4), GII (n = 17) and GIV (n = 1). Most strains were GII (n = 17/22: 77.2 %), which were further divided into three different genotypes (GII.4, GII.12/GII.g recombinant-like and GII.17), with GII.17 being the dominant (7/17) strain detected. GI noroviruses, in particular GI.4 (n = 1), GI.5 (n = 2) and GI.8 (n = 1), were also detected and characterized. The GIV strain detected is the first from East Africa. The sapoviruses sequenced were also the first reported from Ethiopia. Collectively, this study showed the high burden and diversity of noroviruses and circulation of sapoviruses in diarrheic patients in Ethiopia. Continued surveillance to assess their association with diarrhea is needed to define their epidemiology, disease burden, and impact on public health.
Collapse
Affiliation(s)
- Zufan Sisay
- Department of Microbiology and Immunology, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O.Box 1176, Addis Ababa, Ethiopia. .,Microbial, Cellular and Molecular Biology, Addis Ababa University, P.O.Box 1176, Addis Ababa, Ethiopia.
| | - Appolinaire Djikeng
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O.Box 30709, Nairobi, 00100, Kenya
| | - Nega Berhe
- Department of Microbiology and Immunology, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O.Box 1176, Addis Ababa, Ethiopia
| | - Gurja Belay
- Microbial, Cellular and Molecular Biology, Addis Ababa University, P.O.Box 1176, Addis Ababa, Ethiopia
| | - Wondwossen Gebreyes
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Woldaregay Erku Abegaz
- Department of Microbiology and Immunology, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O.Box 1176, Addis Ababa, Ethiopia
| | - Moses N Njahira
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O.Box 30709, Nairobi, 00100, Kenya
| | - Q H Wang
- Food Animal Health Research Program, Ohio Agricultural Research Development Center, The Ohio State University, Wooster, OH, 44691, USA
| | - Linda J Saif
- Food Animal Health Research Program, Ohio Agricultural Research Development Center, The Ohio State University, Wooster, OH, 44691, USA.
| |
Collapse
|
24
|
Jun Q, Lulu T, Qingling M, Xingxing Z, Haiting L, Shasha G, Zibing C, Xuepeng C, Jinsheng Z, Zaichao Z, Kuojun C, Chuangfu C. Serological and molecular investigation of porcine sapovirus infection in piglets in Xinjiang, China. Trop Anim Health Prod 2016; 48:863-9. [PMID: 26898687 DOI: 10.1007/s11250-016-1023-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/14/2016] [Indexed: 01/26/2023]
Abstract
Porcine sapovirus (PoSaV) is one of the important pathogens that cause acute gastroenteritis in piglets. A survey on the infection and epidemic status of PoSaV in Xinjiang Province, Northwest China, was conducted in this study. We applied indirect viral protein 1 (VP1)-ELISA method to detect specific antibodies in 1218 serum samples of 3-month-old piglets collected from eight regions in Xinjiang during 2013-2014 and also detected PoSaV in 146 diarrhea stools of piglets in these eight regions using RT-PCR technology. The results showed that the PoSaV-serological positive rates in piglets in eight different regions in Xinjiang were between 32.82 and 47.06% with a mean rate of 37.68%. The average positive rate of PCR in stools of piglets was 3.42%. Sequencing and comparative analysis of five PCR-amplified DNA fragments revealed that four epidemic strains of PoSaV (swine/XJ-KO1, swine/XJ-AK2, swine/XJ-KS1, and swine/XJ-SHZ1) shared high nucleotide and amino acid identities with Cowden strain, while strain swine/XJ-AK1 shared higher high identities with Po/OH-JJ681/2000/US isolate. Phylogenetic clustering further verified that the epidemic strains of PoSaVs, i.e., swine/XJ-KO1, swine/XJ-AK2, swine/XJ-KS1, and swine/XJ-SHZ1, belong to genogroup (GIII) while swine/XJ-AK1 belongs to GVI. This survey confirmed for the first time that PoSaV infection was common in piglets in Xinjiang, China, and that the epidemic strains exist at least in both GIII and GVI clusters. This study provided the useful epidemiological data for scientific control and prevention of this disease.
Collapse
Affiliation(s)
- Qiao Jun
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Tian Lulu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Meng Qingling
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Zhang Xingxing
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Lu Haiting
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Gong Shasha
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Cheng Zibing
- Center for Animal Disease Prevention and Control, Tacheng, Xinjiang, 834700, China
| | - Cai Xuepeng
- State Key Lab of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| | - Zhang Jinsheng
- Center for Animal Disease Prevention and Control, Tacheng, Xinjiang, 834700, China
| | - Zhang Zaichao
- Center for Animal Disease Prevention and Control, Changji, Xinjiang, 831100, China
| | - Cai Kuojun
- Center for Animal Disease Prevention and Control, Xinjiang, 830000, China
| | - Chen Chuangfu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China
| |
Collapse
|
25
|
Iritani N, Yamamoto SP, Abe N, Kubo H, Oka T, Kaida A. Epidemics of GI.2 sapovirus in gastroenteritis outbreaks during 2012-2013 in Osaka City, Japan. J Med Virol 2016; 88:1187-93. [PMID: 26684081 DOI: 10.1002/jmv.24451] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2015] [Indexed: 12/20/2022]
Abstract
Sapovirus (SaV) is a causative agent of gastroenteritis in humans in both sporadic cases and outbreaks. During the period from January 2005 to August 2014, SaV was detected in 30 (5.9%) of 510 gastroenteritis outbreaks in Osaka City, Japan using real-time RT-PCR. Seasonal distribution of SaV-associated outbreaks revealed an increase during the 2011-2012 season and the highest frequency of outbreaks during the 2012-2013 season. Genotyping analysis based on the capsid region demonstrated that the most common genotype was GI.2 (36.7%), in which the strains were closely related. The comparison of complete capsid gene sequences with 18 GI.2 strains (7 strains in this study and 11 from GenBank) between 1990 and 2013 showed that GI.2 strains were classified into at least three genetic clusters (1990-2000, 2004-2007, and 2008-2013) with chronologically unique amino acid residues and accumulation of mutations in the predicted P domain, suggesting the one of the causes of emergence and spread of GI.2 strains. This study will also be helpful for understanding the evolutionary mechanism of the SaV genome.
Collapse
Affiliation(s)
- Nobuhiro Iritani
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Osaka, Japan
| | - Seiji P Yamamoto
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Osaka, Japan
| | - Niichiro Abe
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Osaka, Japan
| | - Hideyuki Kubo
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Osaka, Japan
| | - Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo, Japan
| | - Atsushi Kaida
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Osaka, Japan
| |
Collapse
|
26
|
Molecular Diagnosis of Gastrointestinal Infections. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Antigenic and Cryo-Electron Microscopy Structure Analysis of a Chimeric Sapovirus Capsid. J Virol 2015; 90:2664-75. [PMID: 26699644 DOI: 10.1128/jvi.02916-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/18/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The capsid protein (VP1) of all caliciviruses forms an icosahedral particle with two principal domains, shell (S) and protruding (P) domains, which are connected via a flexible hinge region. The S domain forms a scaffold surrounding the nucleic acid, while the P domains form a homodimer that interacts with receptors. The P domain is further subdivided into two subdomains, termed P1 and P2. The P2 subdomain is likely an insertion in the P1 subdomain; consequently, the P domain is divided into the P1-1, P2, and P1-2 subdomains. In order to investigate capsid antigenicity, N-terminal (N-term)/S/P1-1 and P2/P1-2 were switched between two sapovirus genotypes GI.1 and GI.5. The chimeric VP1 constructs were expressed in insect cells and were shown to self-assemble into virus-like particles (VLPs) morphologically similar to the parental VLPs. Interestingly, the chimeric VLPs had higher levels of cross-reactivities to heterogeneous antisera than the parental VLPs. In order to better understand the antigenicity from a structural perspective, we determined an intermediate-resolution (8.5-Å) cryo-electron microscopy (cryo-EM) structure of a chimeric VLP and developed a VP1 homology model. The cryo-EM structure revealed that the P domain dimers were raised slightly (∼5 Å) above the S domain. The VP1 homology model allowed us predict the S domain (67-229) and P1-1 (229-280), P2 (281-447), and P1-2 (448-567) subdomains. Our results suggested that the raised P dimers might expose immunoreactive S/P1-1 subdomain epitopes. Consequently, the higher levels of cross-reactivities with the chimeric VLPs resulted from a combination of GI.1 and GI.5 epitopes. IMPORTANCE We developed sapovirus chimeric VP1 constructs and produced the chimeric VLPs in insect cells. We found that both chimeric VLPs had a higher level of cross-reactivity against heterogeneous VLP antisera than the parental VLPs. The cryo-EM structure of one chimeric VLP (Yokote/Mc114) was solved to 8.5-Å resolution. A homology model of the VP1 indicated for the first time the putative S and P (P1-1, P2, and P1-2) domains. The overall structure of Yokote/Mc114 contained features common among other caliciviruses. We showed that the P2 subdomain was mainly involved in the homodimeric interface, whereas a large gap between the P1 subdomains had fewer interactions.
Collapse
|
28
|
Prevalence and Genetic Diversity of Human Sapoviruses in Shellfish from Commercial Production Areas in Galicia, Spain. Appl Environ Microbiol 2015; 82:1167-1172. [PMID: 26655761 DOI: 10.1128/aem.02578-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/21/2015] [Indexed: 11/20/2022] Open
Abstract
The prevalence of human forms of Sapovirus, an emerging pathogen of human gastroenteritis, was investigated in an 18-month survey from class B mollusc-harvesting areas in two Galician rias (northwest Spain). The detection and quantification of Sapovirus was performed by reverse transcription-real-time PCR, according to the recently developed standard method ISO/TS 15216-1:2013, and genotyping by reverse transcription-nested PCR. The bivalve species studied were wild and cultured mussels (Mytilus galloprovincialis), clams (Venerupis philippinarum and Venerupis decussata), and cockles (Cerastoderma edule). Sapovirus was detected in 30 out of 168 samples (17.9%), with cockles being the species with the highest prevalence of positives (28.1%), followed by clams (22.6%), wild mussels (14.3%), and cultured mussels (12.9%). The estuary in the south of the region demonstrated a higher percentage of positive samples (21.8%) than the one in the north (14.4%). Viral contamination levels for the positive samples ranged between 1.9 × 10(3) and 1.4 × 10(5) RNA copies/g of digestive tissue. Thirteen Sapovirus sequences could be obtained based on partial capsid gene sequence and were classified into four genotypes: GI.1 (2 samples), GI.2 (8 samples), GIV.1 (2 samples), and GV.1 (1 sample).
Collapse
|
29
|
Bodnar L, Di Martino B, Di Profio F, Melegari I, Lanave G, Lorusso E, Cavalli A, Elia G, Bányai K, Marsilio F, Buonavoglia C, Martella V. Detection and molecular characterization of sapoviruses in dogs. INFECTION GENETICS AND EVOLUTION 2015; 38:8-12. [PMID: 26658065 PMCID: PMC7106069 DOI: 10.1016/j.meegid.2015.11.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/22/2015] [Accepted: 11/30/2015] [Indexed: 11/16/2022]
Abstract
Caliciviruses are important human and animal pathogens. Novel caliciviruses have been identified recently in dogs, raising questions about their pathogenic role and concerns regarding their zoonotic potential. By screening stool samples of young or juvenile dogs using RT-PCR assays, sapoviruses (SaVs) were found in 7/320 (2.2%) samples of animals with acute gastroenteritis while they were not detected in healthy animals (0/119). The sequence of a nearly 3 kb portion at the 3′ end of the genome, encompassing the RNA-dependent RNA polymerase (RdRp), the capsid region (ORF1) and the ORF2 were determined for three strains. A distinctive genetic feature in canine SaVs was a 4-nucleotide (nt) interval between the ORF1 and ORF2. Two strains (Bari/4076/07/ITA and Bari/253/07/ITA) were very closely related in the RdRp and capsid regions to the strain AN210D/09/USA (90.4–93.9% nt), while strain Bari/5020/07/ITA displayed only 71.0–72.0% nt identity to this group of canine SaVs and 76.0% to strain AN196/09/USA. Overall, these findings indicate that the canine SaVs detected in Italy may represent distinct capsid types, although all currently known SaVs segregate into the novel proposed genogroup, tentatively named as GXIII. Sapoviruses (SaVs), Caliciviridae family, have been recently discovered in dogs. Canine SaVs were detected in 2.2% of diarrheic dogs but not in asymptomatic dogs. The viruses were genetically related to canine SaV prototypes detected in USA.
Collapse
Affiliation(s)
- Livia Bodnar
- Department of Veterinary Medicine, Università degli Studi di Bari Aldo Moro, Valenzano, Italy
| | - Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Federica Di Profio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Irene Melegari
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Gianvito Lanave
- Department of Veterinary Medicine, Università degli Studi di Bari Aldo Moro, Valenzano, Italy
| | - Eleonora Lorusso
- Department of Veterinary Medicine, Università degli Studi di Bari Aldo Moro, Valenzano, Italy
| | - Alessandra Cavalli
- Department of Veterinary Medicine, Università degli Studi di Bari Aldo Moro, Valenzano, Italy
| | - Gabriella Elia
- Department of Veterinary Medicine, Università degli Studi di Bari Aldo Moro, Valenzano, Italy
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Canio Buonavoglia
- Department of Veterinary Medicine, Università degli Studi di Bari Aldo Moro, Valenzano, Italy; Experimental Zooprophylactic Institute of Puglia and Basilicata, Foggia, Italy
| | - Vito Martella
- Department of Veterinary Medicine, Università degli Studi di Bari Aldo Moro, Valenzano, Italy.
| |
Collapse
|
30
|
Choi HL, Suh CI, Park SW, Jin JY, Cho HG, Paik SY. Whole-Genome Sequencing Analysis of Sapovirus Detected in South Korea. PLoS One 2015; 10:e0132328. [PMID: 26161646 PMCID: PMC4498750 DOI: 10.1371/journal.pone.0132328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/14/2015] [Indexed: 11/18/2022] Open
Abstract
Sapovirus (SaV), a virus residing in the intestines, is one of the important causes of gastroenteritis in human beings. Human SaV genomes are classified into various genogroups and genotypes. Whole-genome analysis and phylogenetic analysis of ROK62, the SaV isolated in South Korea, were carried out. The ROK62 genome of 7429 nucleotides contains 3 open-reading frames (ORF). The genotype of ROK62 is SaV GI-1, and 94% of its nucleotide sequence is identical with other SaVs, namely Manchester and Mc114. Recently, SaV infection has been on the rise throughout the world, particularly in countries neighboring South Korea; however, very few academic studies have been done nationally. As the first whole-genome sequence analysis of SaV in South Korea, this research will help provide reference for the detection of recombination, tracking of epidemic spread, and development of diagnosis methods for SaV.
Collapse
Affiliation(s)
- Hye Lim Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137–701, Republic of Korea
| | - Chang-Il Suh
- Department of Medical Consilience, 152, Dankook University, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, 448–701, Republic of Korea
| | - Seung-Won Park
- Division of Biotechnology, Catholic University of Daegu, Daegu, 712–702, Republic of Korea
| | - Ji-Young Jin
- Department of Microbiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137–701, Republic of Korea
| | - Han-Gil Cho
- Division of Public Health Research, Gyeonggi Province Institute of Health and Environment, Suwon, Republic of Korea
| | - Soon-Young Paik
- Department of Microbiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 137–701, Republic of Korea
- * E-mail:
| |
Collapse
|
31
|
Abstract
Sapoviruses cause acute gastroenteritis in humans and animals. They belong to the genus Sapovirus within the family Caliciviridae. They infect and cause disease in humans of all ages, in both sporadic cases and outbreaks. The clinical symptoms of sapovirus gastroenteritis are indistinguishable from those caused by noroviruses, so laboratory diagnosis is essential to identify the pathogen. Sapoviruses are highly diverse genetically and antigenically. Currently, reverse transcription-PCR (RT-PCR) assays are widely used for sapovirus detection from clinical specimens due to their high sensitivity and broad reactivity as well as the lack of sensitive assays for antigen detection or cell culture systems for the detection of infectious viruses. Sapoviruses were first discovered in 1976 by electron microscopy in diarrheic samples of humans. To date, sapoviruses have also been detected from several animals: pigs, mink, dogs, sea lions, and bats. In this review, we focus on genomic and antigenic features, molecular typing/classification, detection methods, and clinical and epidemiological profiles of human sapoviruses.
Collapse
|
32
|
Gao Z, Li X, Yan H, Li W, Jia L, Hu L, Hu H, Liu B, Li J, Wang Q. Human calicivirus occurrence among outpatients with diarrhea in Beijing, China, between April 2011 and March 2013. J Med Virol 2015; 87:2040-7. [PMID: 25982899 DOI: 10.1002/jmv.24265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2015] [Indexed: 12/28/2022]
Abstract
Human caliciviruses (HuCVs), including noroviruses (NoVs) and sapoviruses (SaVs), are the most common cause of diarrhea in adults and the second most common cause of diarrhea in children. Between April 2011 and March 2013, 3,832 fecal specimens were collected from outpatients with diarrhea from 17 hospitals in Beijing, China, and 669 specimens (17.5%) were positive for HuCV. Of the 287 HuCV-positive specimens, 263 (91.6%) were identified to be NoV, 23 (8.0%) were identified to be SaV, and one (0.3%) was identified to be a mixed infection of NoV and SaV. Of the 263 NoV-positive specimens, 237 (90.1%) were NoV GII, 21 (8.0%) were NoV GI, and 5 (1.9%) were a combination of NoV GI and GII. Among the 216 sequenced GII-positive samples, GII.4 was the most common genotype (70.4%, 152/216), followed by GII.13 (9.3%, 20/216). GII.4 Sydney_2012 was first detected in August 2012 and replaced GII.4 Den Haag_2006b as the predominant variant between September 2012 and March 2013. With the emergence of the GII.4 Sydney_2012 variant, 44.6% more patients with diarrhea visited the 17 hospitals (9,931 cases) than in the previous year (6,866 cases) between October and December 2012.
Collapse
Affiliation(s)
- Zhiyong Gao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Xitai Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Hanqiu Yan
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Weihong Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Lei Jia
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Li Hu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Hong Hu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Baiwei Liu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Jie Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Quanyi Wang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| |
Collapse
|
33
|
Bufavirus in fecal specimens of patients with and without diarrhea in Thailand. Arch Virol 2015; 160:1781-4. [PMID: 25951971 DOI: 10.1007/s00705-015-2441-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/25/2015] [Indexed: 10/23/2022]
Abstract
Bufavirus (BuV) was initially discovered in fecal samples from children with acute diarrhea. In this study, we determined the prevalence, distribution, and genotype(s) of BuV in Thailand. A total of 1,495 diarrheal and 741 non-diarrheal stool specimens were collected and analyzed. A portion of the NS1 gene of BuV was amplified by nested RT-PCR. Phylogenetic analysis was performed to classify the BuV strains found. We detected bufavirus (BuV) in diarrheal (4/1495; 0.27%) but not in non-diarrheal specimens (0/726). All four strains belonged to BuV genotype 1. BuV could be detected in adults and children, but its role in causing acute diarrhea remains unclear.
Collapse
|
34
|
Symes SJ, Job N, Ficorilli N, Hartley CA, Browning GF, Gilkerson JR. Novel assay to quantify recombination in a calicivirus. Vet Microbiol 2015; 177:25-31. [PMID: 25801938 DOI: 10.1016/j.vetmic.2015.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
Abstract
Recombination is an important contributor to genomic evolution in many viral families, including the Caliciviridae. While it is known that genomic recombination in caliciviruses contributes to their rapid evolution, the precise molecular mechanisms are poorly understood. The majority of reported recombination events in feline calicivirus (FCV) occur at a "hot spot" between the non-structural protein coding region (open reading frame 1) and structural protein coding region (open reading frame 2). To gain a better understanding of the rate of recombination at this point, we developed a quantitative reverse transcription-polymerase chain reaction (RT-qPCR) assay to quantify the rate of recombination between two divergent strains of FCV during co-infection in cell culture. The assay utilised virus-specific primers upstream and downstream of the recombinational "hot spot" that hybridise with only one of the strains in the co-infection. Recombinant progeny that shared ORF1 sequence identity with one parental virus and ORF2 sequence identity with the other parental virus, and the site of recombination, was confirmed by sequencing the amplicon generated by the assay. Recombinants were detected in co-infected cells using this assay, but not in cells infected with single strains that were mixed together following infection, thus confirming its specificity. Recombination between two FCVs in co-infected cell cultures was estimated to occur at a rate of at least 6.8×10(-6) single direction recombinant genomes per parental virus genome. Further application of this assay will enable factors influencing recombination in caliciviruses to be explored in greater detail, both in vitro and in vivo.
Collapse
Affiliation(s)
- Sally J Symes
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Natalie Job
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Nino Ficorilli
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Carol A Hartley
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Glenn F Browning
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - James R Gilkerson
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
35
|
Nausea, Vomiting, and Noninflammatory Diarrhea. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015. [PMCID: PMC7173487 DOI: 10.1016/b978-1-4557-4801-3.00100-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
36
|
Ramani S, Atmar RL. Acute Gastroenteritis Viruses. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Franck KT, Lisby M, Fonager J, Schultz AC, Böttiger B, Villif A, Absalonsen H, Ethelberg S. Sources of Calicivirus contamination in foodborne outbreaks in Denmark, 2005-2011--the role of the asymptomatic food handler. J Infect Dis 2014; 211:563-70. [PMID: 25156563 DOI: 10.1093/infdis/jiu479] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Norovirus (NoV) is the predominant cause of foodborne disease outbreaks. Virus contamination may occur during all steps of food processing, from production to preparation and serving. The relative importance of these different routes of contamination is unknown. METHODS The purpose of this study was to estimate the proportions of outbreaks caused by asymptomatic and symptomatic food handlers (FHs). Reports of foodborne NoV and sapovirus outbreaks (n=191) that occurred over a 7-year period were extracted, reviewed, and categorized according to the available evidence for source of contamination. RESULTS In 64 (34%) of the outbreaks, contamination from FHs took place during preparation or serving of food. In the majority of these outbreaks (n=41; 64%), the FHs were asymptomatic during food handling. Some had been in contact with ill household members before handling the food and remained asymptomatic; others developed symptoms shortly after or were post-symptomatic. In 51 (27%) of the outbreaks, contamination occurred during production of the food, and in 55 (29%) of the outbreaks, contamination had supposedly occurred after serving a guest at a self-serve buffet. CONCLUSIONS Guidelines regarding exclusion of FHs where household members suffer from gastroenteritis could limit the number of outbreaks.
Collapse
Affiliation(s)
- Kristina T Franck
- Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen Research Unit for Clinical Microbiology, University of Southern Denmark, Odense
| | - Morten Lisby
- Danish Veterinary and Food Administration, Glostrup
| | - Jannik Fonager
- Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen
| | - Anna C Schultz
- National Food Institute, Technical University of Denmark, Søborg, Denmark
| | - Blenda Böttiger
- Microbiological Diagnostics and Virology, Statens Serum Institut, Copenhagen Medical Microbiology, Lund University, Malmö, Sweden
| | | | | | - Steen Ethelberg
- Infectious Diseases Epidemiology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
38
|
Abstract
Sapoviruses of the Caliciviridae family of small RNA viruses are emerging pathogens that cause gastroenteritis in humans and animals. Molecular studies on human sapovirus have been hampered due to the lack of a cell culture system. In contrast, porcine sapovirus (PSaV) can be grown in cell culture, making it a suitable model for understanding the infectious cycle of sapoviruses and the related enteric caliciviruses. Caliciviruses are known to use a novel mechanism of protein synthesis that relies on the interaction of cellular translation initiation factors with the virus genome-encoded viral protein genome (VPg) protein, which is covalently linked to the 5′ end of the viral genome. Using PSaV as a representative member of the Sapovirus genus, we characterized the role of the viral VPg protein in sapovirus translation. As observed for other caliciviruses, the PSaV genome was found to be covalently linked to VPg, and this linkage was required for the translation and the infectivity of viral RNA. The PSaV VPg protein was associated with the 4F subunit of the eukaryotic translation initiation factor (eIF4F) complex in infected cells and bound directly to the eIF4E protein. As has been previously demonstrated for feline calicivirus, a member of the Vesivirus genus, PSaV translation required eIF4E and the interaction between eIF4E and eIF4G. Overall, our study provides new insights into the novel mechanism of sapovirus translation, suggesting that sapovirus VPg can hijack the cellular translation initiation mechanism by recruiting the eIF4F complex through a direct eIF4E interaction. IMPORTANCE Sapoviruses, which are members of the Caliciviridae family, are one of the causative agents of viral gastroenteritis in humans. However, human sapovirus remains noncultivable in cell culture, hampering the ability to characterize the virus infectious cycle. Here, we show that the VPg protein from porcine sapovirus, the only cultivatable sapovirus, is essential for viral translation and functions via a direct interaction with the cellular translation initiation factor eIF4E. This work provides new insights into the novel protein-primed mechanism of calicivirus VPg-dependent translation initiation.
Collapse
|
39
|
Sachsenröder J, Braun A, Machnowska P, Ng TFF, Deng X, Guenther S, Bernstein S, Ulrich RG, Delwart E, Johne R. Metagenomic identification of novel enteric viruses in urban wild rats and genome characterization of a group A rotavirus. J Gen Virol 2014; 95:2734-2747. [PMID: 25121550 DOI: 10.1099/vir.0.070029-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rats are known as reservoirs and vectors for several zoonotic pathogens. However, information on the viruses shed by urban wild rats that could pose a zoonotic risk to human health is scare. Here, intestinal contents from 20 wild Norway rats (Rattus norvegicus) collected in the city of Berlin, Germany, were subjected to metagenomic analysis of viral nucleic acids. The determined faecal viromes of rats consisted of a variety of known and unknown viruses, and were highly variable among the individuals. Members of the families Parvoviridae and Picobirnaviridae represented the most abundant species. Novel picornaviruses, bocaviruses, sapoviruses and stool-associated circular ssDNA viruses were identified, which showed only low sequence identity to known representatives of the corresponding taxa. In addition, noroviruses and rotaviruses were detected as potential zoonotic gastroenteritis viruses. However, partial-genome sequence analyses indicated that the norovirus was closely related to the recently identified rat norovirus and the rotavirus B was closely related to the rat rotavirus strain IDIR; both viruses clustered separately from respective human virus strains in phylogenetic trees. In contrast, the rotavirus A sequences showed high identity to human and animal strains. Analysis of the nearly complete genome of this virus revealed the known genotypes G3, P[3] and N2 for three of the genome segments, whereas the remaining eight genome segments represented the novel genotypes I20-R11-C11-M10-A22-T14-E18-H13. Our results indicated a high heterogeneity of enteric viruses present in urban wild rats; their ability to be transmitted to humans remains to be assessed in the future.
Collapse
Affiliation(s)
- Jana Sachsenröder
- Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Anne Braun
- Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Patrycja Machnowska
- Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Terry Fei Fan Ng
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA 94118, USA
| | - Xutao Deng
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA 94118, USA
| | - Sebastian Guenther
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Strasse 7-13, 14163 Berlin, Germany
| | - Samuel Bernstein
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Eric Delwart
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA 94118, USA
| | - Reimar Johne
- Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
40
|
Kitajima M, Iker BC, Pepper IL, Gerba CP. Relative abundance and treatment reduction of viruses during wastewater treatment processes--identification of potential viral indicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 488-489:290-6. [PMID: 24836386 DOI: 10.1016/j.scitotenv.2014.04.087] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 04/14/2023]
Abstract
Waterborne pathogenic viruses discharged from wastewater treatment plants (WWTPs) pose potential public health risks. In the present study, we investigated the relative abundance, occurrence, and reduction of eleven different viruses at two WWTPs in southern Arizona over a 12-month period, from August 2011 to July 2012. Influent and effluent samples from the two WWTPs were collected monthly. Viruses were concentrated using an electronegative filter method and quantified using TaqMan-based quantitative PCR (qPCR) assays for each of the virus types (i.e., genogroup I, II and IV noroviruses, sapovirus, enterovirus, group A rotavirus, Aichi virus, pepper mild mottle virus, adenovirus, and JC and BK polyomaviruses), with murine norovirus internal control for the monitoring of extraction-RT-qPCR efficiencies. The pepper mild mottle virus, a plant virus, was found to be the most prevalent virus in both influent and effluent wastewater (annual mean concentration of 3.7-4.4×10(6) copies/L and 4.6-6.3×10(5) copies/L in influent and effluent wastewater, respectively), showing a low reduction by the treatment processes (0.76-0.99 annual mean log10 reduction), and no significant seasonal change in concentration. Aichi virus, a human enteric virus, was also found in greater abundance, and showed lower reduction during wastewater treatment than other human enteric viruses. Our results suggest that these viruses could be used as potential indicators of wastewater reclamation system performance, with respect to virus occurrence and removal.
Collapse
Affiliation(s)
- Masaaki Kitajima
- Department of Soil, Water and Environmental Science, The University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA.
| | - Brandon C Iker
- Department of Soil, Water and Environmental Science, The University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA.
| | - Ian L Pepper
- Department of Soil, Water and Environmental Science, The University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA.
| | - Charles P Gerba
- Department of Soil, Water and Environmental Science, The University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA.
| |
Collapse
|
41
|
Kim DS, Hosmillo M, Alfajaro MM, Kim JY, Park JG, Son KY, Ryu EH, Sorgeloos F, Kwon HJ, Park SJ, Lee WS, Cho D, Kwon J, Choi JS, Kang MI, Goodfellow I, Cho KO. Both α2,3- and α2,6-linked sialic acids on O-linked glycoproteins act as functional receptors for porcine Sapovirus. PLoS Pathog 2014; 10:e1004172. [PMID: 24901849 PMCID: PMC4047124 DOI: 10.1371/journal.ppat.1004172] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/21/2014] [Indexed: 12/23/2022] Open
Abstract
Sapovirus, a member of the Caliciviridae family, is an important cause of acute gastroenteritis in humans and pigs. Currently, the porcine sapovirus (PSaV) Cowden strain remains the only cultivable member of the Sapovirus genus. While some caliciviruses are known to utilize carbohydrate receptors for entry and infection, a functional receptor for sapovirus is unknown. To characterize the functional receptor of the Cowden strain of PSaV, we undertook a comprehensive series of protein-ligand biochemical assays in mock and PSaV-infected cell culture and/or piglet intestinal tissue sections. PSaV revealed neither hemagglutination activity with red blood cells from any species nor binding activity to synthetic histo-blood group antigens, indicating that PSaV does not use histo-blood group antigens as receptors. Attachment and infection of PSaV were markedly blocked by sialic acid and Vibrio cholerae neuraminidase (NA), suggesting a role for α2,3-linked, α2,6-linked or α2,8-linked sialic acid in virus attachment. However, viral attachment and infection were only partially inhibited by treatment of cells with sialidase S (SS) or Maackia amurensis lectin (MAL), both specific for α2,3-linked sialic acid, or Sambucus nigra lectin (SNL), specific for α2,6-linked sialic acid. These results indicated that PSaV recognizes both α2,3- and α2,6-linked sialic acids for viral attachment and infection. Treatment of cells with proteases or with benzyl 4-O-β-D-galactopyranosyl-β-D-glucopyranoside (benzylGalNAc), which inhibits O-linked glycosylation, also reduced virus binding and infection, whereas inhibition of glycolipd synthesis or N-linked glycosylation had no such effect on virus binding or infection. These data suggest PSaV binds to cellular receptors that consist of α2,3- and α2,6-linked sialic acids on glycoproteins attached via O-linked glycosylation.
Collapse
Affiliation(s)
- Deok-Song Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Myra Hosmillo
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Mia Madel Alfajaro
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Yun Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Jun-Gyu Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Kyu-Yeol Son
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Eun-Hye Ryu
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Frederic Sorgeloos
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Hyung-Jun Kwon
- Bioindustry Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Su-Jin Park
- Bioindustry Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Woo Song Lee
- Bioindustry Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Duck Cho
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Jeollanam-do, Republic of Korea
| | - Joseph Kwon
- Division of Life Science, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Jong-Soon Choi
- Division of Life Science, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Mun-Il Kang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (IG); (KOC)
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
- * E-mail: (IG); (KOC)
| |
Collapse
|
42
|
Liu W, Yang B, Wang E, Liu J, Lan X. Complete sequence and phylogenetic analysis of a porcine sapovirus strain isolated from western China. Virus Genes 2014; 49:100-5. [PMID: 24792514 DOI: 10.1007/s11262-014-1078-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
Abstract
Sapovirus (SaV) is a type of calicivirus that can cause acute viral gastroenteritis in humans and animals. SaVs have been found in several mammalian species, including humans, pigs, minks, dogs, and bats. Porcine sapovirus (PoSaV) was first identified in 1980 in the United States and has been found to be circulating throughout China in recent years. In this study, the complete genomic characterization of PoSaV CH430, first found in west China, was reported and analyzed. The genome was 7,342 bp excluding the 30 nt poly(A) tail at the 3' terminus and comprised two major open reading frames. Comprehensive evolutionary and phylogenetic analyses indicated that the CH430 strain belongs to genotype III SaVs. However, this particular isolate and DG24 strain occupied an independent branch of the phylogenetic tree we generated, indicating that they could form a separate subgenotype in the near future. We predicted the cleavage sites for the ORF1 polyprotein located at Q56/G57, Q310/A311, E649/A650, E934/A935, E1047/G1048, and E1712/A1713, separately. This is the first PoSaV strain isolated from western China to be fully sequenced and characterized. It provided a reliable experimental basis for studying the genetic nature of emerging PoSaVs.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Grazing Animal Diseases, Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | | | | | | | | |
Collapse
|
43
|
Wang G, Shen Z, Qian F, Li Y, Yuan Z, Zhang J. Genetic diversity of sapovirus in non-hospitalized adults with sporadic cases of acute gastroenteritis in Shanghai, China. J Clin Virol 2014; 59:250-4. [PMID: 24507803 DOI: 10.1016/j.jcv.2014.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 12/18/2013] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Sapovirus has been accepted as a major cause of acute gastroenteritis worldwide. It can affect all age groups, ranging from young adults to the elderly, while little is known about the epidemiological patterns and genetic characteristics of sapovirus infections in China. OBJECTIVES To investigate the prevalence of sapovirus infections among adult outpatients suffering from acute gastroenteritis in Shanghai, China. STUDY DESIGN From April 2011 to March 2013, fecal specimens from 1125 adult outpatients (≥16 years of age) with acute gastroenteritis were collected. Reverse transcription polymerase chain reaction (RT-PCR) was employed for detection of sapovirus, and 5' end of capsid gene were sequenced for genotyping and phylogenetic analysis. RESULTS The overall occurrence of sapovirus infection in adult outpatients was 3.73% (42 in 1125) through the two-year surveillance period, and sapovirus diarrhea is more common in spring and winter. The highest sapovirus positive rate was observed in adults of ≥56 years old, and statistically significant relationship was observed when compared with other age groups (p<0.05). Only three genotypes were detected, whereas GI.2 was proved to be the predominant strain, occupying 78.57% (33 in 42) of all strains, followed by GIV, GI.1 and GII.3. CONCLUSIONS Sapovirus was commonly found in adults with acute gastroenteritis in Shanghai, China, while no specific seasonal variation of sapovirus diarrhea could be distinguished. GI.2 strains established themselves in a short time span as the predominant genotype in Shanghai, China.
Collapse
Affiliation(s)
- Gang Wang
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Shanghai 201508, China
| | - Zhen Shen
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Shanghai 201508, China
| | - Fangxing Qian
- Department of Infectious Disease, Shanghai Changning Center Hospital, Shanghai 200336, China
| | - Yang Li
- Department of Infectious Disease, Shanghai Dongfang Hospital, Shanghai 200120, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College of Fudan University, Shanghai 200030, China
| | - Jun Zhang
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Shanghai 201508, China.
| |
Collapse
|
44
|
Molecular epidemiology of human calicivirus infections in children with acute diarrhea in Shanghai: a retrospective comparison between inpatients and outpatients treated between 2006 and 2011. Arch Virol 2014; 159:1613-21. [DOI: 10.1007/s00705-013-1881-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 09/28/2013] [Indexed: 01/24/2023]
|
45
|
Iritani N, Kaida A, Abe N, Kubo H, Sekiguchi JI, Yamamoto SP, Goto K, Tanaka T, Noda M. Detection and genetic characterization of human enteric viruses in oyster-associated gastroenteritis outbreaks between 2001 and 2012 in Osaka City, Japan. J Med Virol 2014; 86:2019-25. [DOI: 10.1002/jmv.23883] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Nobuhiro Iritani
- Department of Microbiology; Osaka City Institute of Public Health and Environmental Sciences; Tennoji-ku Osaka Japan
| | - Atsushi Kaida
- Department of Microbiology; Osaka City Institute of Public Health and Environmental Sciences; Tennoji-ku Osaka Japan
| | - Niichiro Abe
- Department of Microbiology; Osaka City Institute of Public Health and Environmental Sciences; Tennoji-ku Osaka Japan
| | - Hideyuki Kubo
- Department of Microbiology; Osaka City Institute of Public Health and Environmental Sciences; Tennoji-ku Osaka Japan
| | - Jun-Ichiro Sekiguchi
- Department of Microbiology; Osaka City Institute of Public Health and Environmental Sciences; Tennoji-ku Osaka Japan
| | - Seiji P. Yamamoto
- Department of Microbiology; Osaka City Institute of Public Health and Environmental Sciences; Tennoji-ku Osaka Japan
| | - Kaoru Goto
- Department of Microbiology; Osaka City Institute of Public Health and Environmental Sciences; Tennoji-ku Osaka Japan
| | | | - Mamoru Noda
- Division of Biomedical Food Research; National Institute of Health Sciences; Setagaya-ku Tokyo Japan
| |
Collapse
|
46
|
Bishop R, Kirkwood C. Enteric Viruses☆. REFERENCE MODULE IN BIOMEDICAL SCIENCES 2014. [PMCID: PMC7157472 DOI: 10.1016/b978-0-12-801238-3.02566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many viruses use the enteric tract as a route of entry to the human, animal or avian host. The onset of acute enteritis is associated with infection by viruses that replicate at or near the site of entry into the intestinal mucosa, including caliciviruses, rotaviruses, adenoviruses, astroviruses, and coronaviruses. These ‘enteric’ viruses occur globally and share similar features. Most are RNA viruses that replicate in the cytoplasm of mature absorptive epithelial cells lining the villi of the small intestine, leading to inflammation and villus atrophy. Vomiting and diarrhea can result in dehydration and death if untreated. Despite abundant growth in vivo, they initially proved difficult or impossible to grow in vitro. Most are genetically diverse, species specific, highly infectious within species and transmitted by the fecal-oral route. Severe symptoms are most commonly associated with primary infections of young animals, and are followed by short-lived immunity. Reinfections are common throughout life, but are often only mildly symptomatic. Safe and effective vaccines have been developed to prevent severe rotavirus disease in young children. In addition to these enterotropic viruses, enteric disease can also result from spread to the intestine of HIV or cytomegaloviruses during the later stages of systemic disease in immunocompromised hosts.
Collapse
|
47
|
Di Bartolo I, Ponterio E, Battistone A, Bonomo P, Cicala A, Mercurio P, Triassi M, Pennino F, Fiore L, Ruggeri FM. Identification and Genotyping of Human Sapoviruses Collected from Sewage Water in Naples and Palermo, Italy, in 2011. FOOD AND ENVIRONMENTAL VIROLOGY 2013; 5:236-240. [PMID: 23982672 DOI: 10.1007/s12560-013-9124-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/08/2013] [Indexed: 06/02/2023]
Abstract
Human sapoviruses were identified in 15 (12.4 %) of 121 inlet sewage samples collected from wastewater treatment plants in Naples and Palermo, Italy, in 2011. All strains, except one GI.1, were genotyped as GI.2 by sequencing a capsid gene fragment. This is the first detection of sapovirus in wastewaters in Italy.
Collapse
Affiliation(s)
- Ilaria Di Bartolo
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hassan-Ríos E, Torres P, Muñoz E, Matos C, Hall AJ, Gregoricus N, Vinjé J. Sapovirus gastroenteritis in preschool center, Puerto Rico, 2011. Emerg Infect Dis 2013; 19:174-5. [PMID: 23260219 PMCID: PMC3557989 DOI: 10.3201/eid1901.120690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
49
|
Murray TY, Mans J, van Zyl WB, Taylor MB. Application of a competitive internal amplification control for the detection of sapoviruses in wastewater. FOOD AND ENVIRONMENTAL VIROLOGY 2013; 5:61-8. [PMID: 23412723 DOI: 10.1007/s12560-012-9101-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/22/2012] [Indexed: 05/18/2023]
Abstract
In this study, a competitive internal amplification control (IAC) was constructed for application in the real-time reverse transcription-polymerase chain reaction detection of sapoviruses (SaVs). A SaV RNA standard was also created for quantification of the virus. The IAC was included in the screening of environmental samples for SaVs. From August 2010 to December 2011, 51 wastewater samples were collected from five provinces in South Africa. SaVs were found in 72.5 % (37/51) of samples, including four samples where detection was initially inhibited. SaV concentrations ranged from 4.24 × 10(3) to 1.31 × 10(6) copies/ml. The IAC successfully identified samples which contained inhibitors and inclusion of an IAC is necessary to ensure the prevalence of SaVs is accurately determined. SaVs are present at high concentrations in wastewater in several provinces of South Africa. This widespread occurrence indicates that SaV circulation in the South African population may be underestimated.
Collapse
Affiliation(s)
- Tanya Y Murray
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007, South Africa.
| | | | | | | |
Collapse
|
50
|
Lee LE, Cebelinski EA, Fuller C, Keene WE, Smith K, Vinjé J, Besser JM. Sapovirus outbreaks in long-term care facilities, Oregon and Minnesota, USA, 2002-2009. Emerg Infect Dis 2013; 18:873-6. [PMID: 22516204 PMCID: PMC3358050 DOI: 10.3201/eid1805.111843] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sapovirus gives new meaning to the phrase “cradle to grave.” Historically, sapovirus has been associated with gastrointestinal illness in children living in group settings such as hospitals, shelters, or refugee camps. But now, sapovirus outbreaks are occurring among elderly residents of long-term care and similar facilities. These elderly residents are especially vulnerable to rapidly transmitted gastrointestinal viruses and serious complications. This virus has been making the rounds in long-term care facilities since 2002, and outbreaks started increasing in 2007. Sapovirus testing should be added to routine diagnostic workups for gastrointestinal infections, regardless of patient age group. Results can be used to develop prevention, control, and treatment guidelines, especially for vulnerable elderly populations. We tested fecal samples from 93 norovirus-negative gastroenteritis outbreaks; 21 outbreaks were caused by sapovirus. Of these, 71% were caused by sapovirus genogroup IV and 66% occurred in long-term care facilities. Future investigation of gastroenteritis outbreaks should include multi-organism testing.
Collapse
Affiliation(s)
- Lore E Lee
- Oregon Public Health Division, Portland, Oregon 97232, USA.
| | | | | | | | | | | | | |
Collapse
|