1
|
Gantseva AR, Gantseva ER, Sveshnikova AN, Panteleev MA, Kovalenko TA. Kinetic analysis of prothrombinase assembly and substrate delivery mechanisms. J Theor Biol 2024; 594:111925. [PMID: 39142600 DOI: 10.1016/j.jtbi.2024.111925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Prothrombinase complex, composed of coagulation factors Xa (FXa) and Va (FVa) is a major enzyme of the blood coagulation network that produces thrombin via activation of its inactive precursor prothrombin (FII) on the surface of phospholipid membranes. However, pathways and mechanisms of prothrombinase formation and substrate delivery are still discussed. Here we designed a novel mathematical model that considered different potential pathways of FXa or FII binding (from the membrane or from solution) and analyzed the kinetics of thrombin formation in the presence of a wide range of reactants concentrations. We observed the inhibitory effect of large FVa concentrations and this effect was phospholipid concentration-dependent. We predicted that efficient FII activation occurred via formation of the ternary complex, in which FVa, FXa and FII were in the membrane-bound state. Prothrombin delivery was mostly membrane-dependent, but delivery from solution was predominant under conditions of phospholipid deficiency or FXa/FVa excess. Likewise, FXa delivery from solution was predominant in the case of FVa excess, but high FII did not switch the FXa delivery to the solution-dependent one. Additionally, the FXa delivery pathway did not depend on the phospholipid concentration, being the membrane-dependent one even in case of the phospholipid deficiency. These results suggest a flexible mechanism of prothrombinase functioning which utilizes different complex formation and even inhibitory mechanisms depending on conditions.
Collapse
Affiliation(s)
- A R Gantseva
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, Moscow Oblast 141701, Russia
| | - E R Gantseva
- Faculty of Physics, Lomonosov Moscow State University, 1/2 Leninskie gory, Moscow 119991, Russia
| | - A N Sveshnikova
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya str., Moscow 109029, Russia; National Medical Research Centre of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, 1 Samory Mashela St, 117198 Moscow, Russia; Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, 1 Leninskiye Gory, Moscow 119991, Russia
| | - M A Panteleev
- Faculty of Physics, Lomonosov Moscow State University, 1/2 Leninskie gory, Moscow 119991, Russia; Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya str., Moscow 109029, Russia; National Medical Research Centre of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, 1 Samory Mashela St, 117198 Moscow, Russia
| | - T A Kovalenko
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya str., Moscow 109029, Russia; National Medical Research Centre of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, 1 Samory Mashela St, 117198 Moscow, Russia.
| |
Collapse
|
2
|
Gendre B, Martinez-Perez A, Kleber ME, van Hylckama Vlieg A, Boland A, Olaso R, Germain M, Munsch G, Moissl AP, Suchon P, Souto JC, Soria JM, Deleuze JF, März W, Rosendaal FR, Sabater-Lleal M, Morange PE, Trégouët DA. Genome-Wide Search for Nonadditive Allele Effects Identifies PSKH2 as Involved in the Variability of Factor V Activity. J Am Heart Assoc 2024; 13:e034943. [PMID: 39424413 DOI: 10.1161/jaha.124.034943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/23/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Factor V (FV) is a key molecular player in the coagulation cascade. FV plasma levels have been associated with several human diseases, including thrombosis, bleeding, and diabetic complications. So far, 2 genes have been robustly found through genome-wide association analyses to contribute to the inter-individual variability of plasma FV levels: structural F5 gene and PLXDC2. METHODS AND RESULTS The authors used the underestimated Brown-Forsythe methodology implemented in the QuickTest software to search for non-additive genetic effects that could contribute to the inter-individual variability of FV plasma activity. QUICKTEST was applied to 4 independent genome-wide association studies studies (LURIC [Ludwigshafen RIsk and Cardiovascular Health Study], MARTHA [Marseille Thrombosis Association], MEGA [Multiple Environmental and Genetic Assessment], and RETROVE [Riesgo de Enfermedad Tromboembolica Venosa]) totaling 4505 participants of European ancestry with measured FV plasma levels. Results obtained in the 4 cohorts were meta-analyzed using a fixed-effect model. Additional analyses involved exploring haplotype and gene×gene interactions in downstream investigations. A genome-wide significant signal at the PSKH2 locus on chr8q21.3 with lead variant rs75463553 with no evidence for heterogeneity across cohorts was observed (P=0.518). Although rs75463553 did not show an association with mean FV levels (P=0.49), it demonstrated a robust significant (P=3.38x10-9) association with the variance of FV plasma levels. Further analyses confirmed the reported association of PSKH2 with neutrophil biology and revealed that rs75463553 likely interacts with two loci, GRIN2A and POM121L12, known for their involvement in smoking biology. CONCLUSIONS This comprehensive approach identifies the role of PSKH2 as a novel molecular player in the genetic regulation of FV, shedding light on the contribution of neutrophils to FV biology.
Collapse
Affiliation(s)
- Blandine Gendre
- INSERM, Bordeaux Population Health Research Center, UMR 1219, ELEANOR, University of Bordeaux Bordeaux France
| | - Angel Martinez-Perez
- Unit of Genomics of Complex Diseases, Institut de Recerca Sant Pau (IR SANT PAU) Barcelona Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III Madrid Spain
| | - Marcus E Kleber
- Department of Medicine V, Medical Faculty Mannheim University of Heidelberg Mannheim Germany
- SYNLAB Center of Human Genetics Mannheim Manheim Germany
| | | | - Anne Boland
- CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay Evry France
- Laboratory of Excellence GENMED (Medical Genomics) Evry France
| | - Robert Olaso
- CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay Evry France
- Laboratory of Excellence GENMED (Medical Genomics) Evry France
| | - Marine Germain
- INSERM, Bordeaux Population Health Research Center, UMR 1219, ELEANOR, University of Bordeaux Bordeaux France
| | - Gaëlle Munsch
- INSERM, Bordeaux Population Health Research Center, UMR 1219, ELEANOR, University of Bordeaux Bordeaux France
| | - Angela Patricia Moissl
- Department of Medicine V, Medical Faculty Mannheim University of Heidelberg Mannheim Germany
| | - Pierre Suchon
- Cardiovascular and Nutrition Research Center (C2VN), INSERM, INRAE, Aix-Marseille University Marseille France
| | - Juan Carlos Souto
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III Madrid Spain
- Thrombosis and Haemostasis Unit Hospital de la Santa Creu i Sant Pau and Institut d'Investigació Biomèdica Sant Pau (IIB-Sant Pau) Barcelona Spain
| | - José Manuel Soria
- Unit of Genomics of Complex Diseases, Institut de Recerca Sant Pau (IR SANT PAU) Barcelona Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III Madrid Spain
| | - Jean-François Deleuze
- CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay Evry France
- Laboratory of Excellence GENMED (Medical Genomics) Evry France
| | - Winfried März
- Department of Medicine V, Medical Faculty Mannheim University of Heidelberg Mannheim Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics Medical University of Graz Graz Austria
- SYNLAB Academy, SYNLAB Holding Germany Mannheim and Augsburg Germany
| | - Frits R Rosendaal
- Department of Clinical Epidemiology Leiden University Medical Center Leiden Netherlands
| | - Maria Sabater-Lleal
- Unit of Genomics of Complex Diseases, Institut de Recerca Sant Pau (IR SANT PAU) Barcelona Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III Madrid Spain
- Cardiovascular Medicine Unit, Department of Medicine Karolinska Institutet Stockholm Sweden
| | - Pierre-Emmanuel Morange
- Cardiovascular and Nutrition Research Center (C2VN), INSERM, INRAE, Aix-Marseille University Marseille France
| | - David-Alexandre Trégouët
- INSERM, Bordeaux Population Health Research Center, UMR 1219, ELEANOR, University of Bordeaux Bordeaux France
| |
Collapse
|
3
|
Ahnström J, Petri A, Crawley JTB. Tissue factor pathway inhibitor - cofactor-dependent regulation of the initiation of coagulation. Curr Opin Hematol 2024; 31:315-320. [PMID: 39259668 PMCID: PMC11426987 DOI: 10.1097/moh.0000000000000838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW In humans, tissue factor pathway inhibitor (TFPI) exists in two alternatively spliced isoforms, TFPIα and TFPIβ. TFPIα consists of three Kunitz domains (K1, K2 and K3) and a highly basic C-terminal tail. K1 inhibits the tissue factor-activated factor VII complex, K2 specifically inhibits activated factor X, K3 is essential for interaction with its cofactor, protein S, and the basic C-terminus is binds factor V-short (FV-short) with high affinity. TFPIβ consists of K1 and K2 that is glycosylphosphatidylinositol anchored directly to cell surfaces. This review explores the structure/function of TFPI and its cofactors (protein S and FV-short), and the relative contributions that different TFPI isoforms may play in haemostatic control. RECENT FINDINGS Recent data have underscored the importance of TFPIα function and its reliance on its cofactors, protein S and FV-short, in influencing haemostatic control as well as bleeding and thrombotic risk. SUMMARY TFPIα is likely the most important pool of TFPI in modifying the risk of thrombosis and bleeding. TFPIα forms a trimolecular complex with FV-short and protein S in plasma. FV-short expression levels control the circulating levels of TFPIα, whereas protein S exerts essential cofactor mediated augmentation of it anticoagulant function.
Collapse
Affiliation(s)
- Josefin Ahnström
- Centre for Haematology, Department of Immunology and Inflammation, Hammersmith Hospital Campus, Imperial College London, London, UK
| | | | | |
Collapse
|
4
|
Ohkubo YZ, Radulovic PW, Kahira AN, Madsen JJ. Membrane binding and lipid-protein interaction of the C2 domain from coagulation factor V. Curr Res Struct Biol 2024; 7:100149. [PMID: 38766652 PMCID: PMC11098723 DOI: 10.1016/j.crstbi.2024.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/28/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Anchoring of coagulation factors to anionic regions of the membrane involves the C2 domain as a key player. The rate of enzymatic reactions of the coagulation factors is increased by several orders of magnitude upon membrane binding. However, the precise mechanisms behind the rate acceleration remain unclear, primarily because of a lack of understanding of the conformational dynamics of the C2-containing factors and corresponding complexes. We elucidate the membrane-bound form of the C2 domain from human coagulation factor V (FV-C2) by characterizing its membrane binding the specific lipid-protein interactions. Employing all-atom molecular dynamics simulations and leveraging the highly mobile membrane-mimetic (HMMM) model, we observed spontaneous binding of FV-C2 to a phosphatidylserine (PS)-containing membrane within 2-25 ns across twelve independent simulations. FV-C2 interacted with the membrane through three loops (spikes 1-3), achieving a converged, stable orientation. Multiple HMMM trajectories of the spontaneous membrane binding provided extensive sampling and ample data to examine the membrane-induced effects on the conformational dynamics of C2 as well as specific lipid-protein interactions. Despite existing crystal structures representing presumed "open" and "closed" states of FV-C2, our results revealed a continuous distribution of structures between these states, with the most populated structures differing from both "open" and "closed" states observed in crystal environments. Lastly, we characterized a putative PS-specific binding site formed by K23, Q48, and S78 located in the groove enclosed by spikes 1-3 (PS-specificity pocket), suggesting a different orientation of a bound headgroup moiety compared to previous proposals based upon analysis of static crystal structures.
Collapse
Affiliation(s)
- Y. Zenmei Ohkubo
- Department of Bioinformatics, School of Life and Natural Sciences, Abdullah Gül University, Kayseri, Turkey
| | - Peter W. Radulovic
- Graduate Programs, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Albert N. Kahira
- Graduate Programs, School of Engineering, Abdullah Gül University, Kayseri, Turkey
| | - Jesper J. Madsen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Center for Global Health and Infectious Diseases Research, Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Mohapatra AK, Todaro AM, Castoldi E. Factor V variants in bleeding and thrombosis. Res Pract Thromb Haemost 2024; 8:102330. [PMID: 38404937 PMCID: PMC10883835 DOI: 10.1016/j.rpth.2024.102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024] Open
Abstract
A state-of-the-art lecture titled "Factor V variants in bleeding and thrombosis" was presented at the International Society on Thrombosis and Haemostasis (ISTH) congress in 2023. Blood coagulation is a finely regulated cascade of enzymatic reactions culminating in thrombin formation and fibrin deposition at the site of injury. Factor V (FV) plays a central role in this process, as its activated form is an essential procoagulant cofactor in prothrombin activation. However, other molecular forms of FV act as anticoagulant cofactors of activated protein C and tissue factor pathway inhibitor α, respectively, thereby contributing to the regulation of coagulation. This dual procoagulant and anticoagulant character makes FV a central regulator of the hemostatic balance, and quantitative and qualitative alterations of FV may be associated with an increased risk of bleeding or venous thrombosis. Here, we review the procoagulant and anticoagulant functions of FV and the manifold mechanisms by which F5 gene mutations may affect the balance between these opposite functions and thereby predispose individuals to bleeding or venous thrombosis. In particular, we discuss our current understanding of the 3 main pathological conditions related to FV, namely FV deficiency, activated protein C resistance, and the overexpression of FV-short, a minor splicing isoform of FV with tissue factor pathway inhibitor α-dependent anticoagulant properties and an emerging role as a key regulator of the initiation of coagulation. Finally, we summarize relevant new data on this topic presented during the 2023 ISTH Congress.
Collapse
Affiliation(s)
- Adarsh K. Mohapatra
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, the Netherlands
| | - Alice M. Todaro
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, the Netherlands
| | - Elisabetta Castoldi
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
6
|
A multicentre observational study of the prevalence, management, and outcomes of subsegmental pulmonary embolism. J Thromb Thrombolysis 2023; 55:126-133. [PMID: 36342637 PMCID: PMC9925472 DOI: 10.1007/s11239-022-02714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND The incidence of subsegmental pulmonary embolism (SSPE) has increased with improvements in imaging technology. There is clinical equipoise for SSPE treatment, with conflicting evidence of improved mortality or reduced venous thromboembolism recurrence with anticoagulation. SSPE studies have significant heterogeneity and often lack adequately matched disease comparator groups. OBJECTIVES To determine the prevalence, management, and outcomes of SSPE and compare them to patients with main, lobar, segmental, and no pulmonary embolism (PE). PATIENTS/METHODS All adult patients undergoing CT pulmonary angiography (CTPA) between 2013 and 2019, at 3 UK hospitals were included in the study. CTPA reports were text mined for language relating to PE, and then further manually screened for the presence and anatomical location of PE. Patient groups were propensity matched by age, sex, and year of CTPA prior to analysis. 3-month outcomes of major bleeding, VTE recurrence, and death were recorded. RESULTS 79 (3.8%) SSPEs were identified from 2,055 diagnoses of PE, and 14,300 CTPA reports. 44 (56%) of SSPEs were single artery emboli, 25 (32%) were multiple unilateral emboli, and 10 (13%) were multiple bilateral emboli. Mortality, VTE recurrence and major bleeding were similar at 3 months across all groups. 87.3% of SSPE imaging reports had an additional radiological diagnosis, with pleural effusion (30%), consolidation (19%), and cardiomegaly (19%) being the most common. CONCLUSION The prevalence of SSPE was 3.8% of all PEs and there were a substantial number of additional radiological findings in the SSPE group that may have accounted for their symptoms.
Collapse
|
7
|
Mohammed Y, Touw CE, Nemeth B, van Adrichem RA, Borchers CH, Rosendaal FR, van Vlijmen BJ, Cannegieter SC. Targeted proteomics for evaluating risk of venous thrombosis following traumatic lower-leg injury or knee arthroscopy. J Thromb Haemost 2022; 20:684-699. [PMID: 34919779 PMCID: PMC9303526 DOI: 10.1111/jth.15623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Patients with lower-leg cast immobilization and patients undergoing knee arthroscopy have an increased risk of venous thrombosis (VT). Guidelines are ambiguous about thromboprophylaxis use, and individual risk factors for developing VT are often ignored. To assist in VT risk stratification and guide thromboprophylaxis use, various prediction models have been developed. These models depend largely on clinical factors and provide reasonably good C-statistics of around 70%. We explored using protein levels in blood plasma measured by multiplexed quantitative targeted proteomics to predict VT. Our aim was to assess whether a VT risk prediction model based on absolute plasma protein quantification is possible. METHODS We used internal standards to quantify proteins in less than 10 μl plasma. We measured 270 proteins in samples from patients scheduled for knee arthroscopy or with lower-leg cast immobilization. The two prospective POT-(K)CAST trails allow complementary views of VT signature in blood, namely pre and post trauma, respectively. From approximately 3000 patients, 31 patients developed VT who were included and matched with double the number of controls. RESULTS Top discriminating proteins between cases and controls included APOC3, APOC4, APOC2, ATRN, F13B, and F2 in knee arthroscopy patients and APOE, SERPINF2, B2M, F13B, AFM, and C1QC in patients with lower-leg cast. A logistic regression model with cross-validation resulted in C-statistics of 88.1% (95% CI: 85.7-90.6%) and 79.6% (95% CI: 77.2-82.0%) for knee arthroscopy and cast immobilization groups respectively. CONCLUSIONS Promising C-statistics merit further exploration of the value of proteomic tests for predicting VT risk upon additional validation.
Collapse
Affiliation(s)
- Yassene Mohammed
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
- University of Victoria ‐ Genome British Columbia Proteomics CentreVictoriaBritish ColumbiaCanada
| | - Carolina E. Touw
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
- Department of Orthopaedic SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Banne Nemeth
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
- Department of Orthopaedic SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Raymond A. van Adrichem
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
- Department of Orthopaedic SurgeryLeiden University Medical CenterLeidenThe Netherlands
| | - Christoph H. Borchers
- Segal Cancer Proteomics CentreSegal Cancer CentreLady Davis InstituteJewish General HospitalMcGill UniversityMontrealQuebecCanada
- Gerald Bronfman Department of OncologyJewish General Hospital, McGill UniversityMontrealQuebecCanada
- Department of Data Intensive Science and EngineeringSkolkovo Institute of Science and TechnologySkolkovo Innovation CenterMoscowRussia
| | - Frits R. Rosendaal
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Bart J. van Vlijmen
- Einthoven Laboratory for Experimental Vascular MedicineDepartment of Internal MedicineDivision of Thrombosis & HemostasisLeiden University Medical CenterLeidenThe Netherlands
| | - Suzanne C. Cannegieter
- Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineDepartment of Internal MedicineDivision of Thrombosis & HemostasisLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
8
|
Castoldi E, Hézard N, Mourey G, Wichapong K, Poggi M, Ibrahim-Kosta M, Thomassen MCLGD, Fournel A, Hayward CPM, Alessi MC, Hackeng TM, Rosing J, Morange PE. Severe thrombophilia in a factor V-deficient patient homozygous for the Ala2086Asp mutation (FV Besançon). J Thromb Haemost 2021; 19:1186-1199. [PMID: 33605529 DOI: 10.1111/jth.15274] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/04/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Coagulation factor V (FV), present in plasma and platelets, has both pro- and anticoagulant functions. OBJECTIVE We investigated an FV-deficient patient (FV:C 3%, FV:Ag 4%) paradoxically presenting with recurrent venous thrombosis (11 events) instead of bleeding. METHODS/RESULTS Thrombophilia screening revealed only heterozygosity for the F2 20210G>A mutation. Although thrombin generation in the patient's platelet-poor plasma was suggestive of a hypocoagulable state, thrombin generation in the patient's platelet-rich plasma (PRP) was higher than in control PRP and extremely resistant to activated protein C (APC). This was partially attributable to the complete abolition of the APC-cofactor activity of FV and a marked reduction of plasma tissue factor pathway inhibitor antigen and activity. The patient was homozygous for a novel missense mutation (Ala2086Asp, FVBesançon ) that favors a "closed conformation" of the C2 domain, predicting impaired binding of FV(a) to phospholipids. Recombinant FVBesançon was hardly secreted, indicating that this mutation is responsible for the patient's FV deficiency. Model system experiments performed using highly diluted plasma as a source of FV showed that, compared with normal FVa, FVaBesançon has slightly (≤1.5-fold) unfavorable kinetic parameters (Km , Vmax ) of prothrombin activation, but also a lower rate of APC-catalyzed inactivation in the presence of protein S. CONCLUSIONS FVBesançon induces a hypercoagulable state via quantitative (markedly decreased FV level) and qualitative (phospholipid-binding defect) effects that affect anticoagulant pathways (anticoagulant activities of FV, FVa inactivation, tissue factor pathway inhibitor α level) more strongly than the prothrombinase activity of FVa. A possible specific role of platelet FV cannot be excluded.
Collapse
Affiliation(s)
- Elisabetta Castoldi
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Nathalie Hézard
- Laboratory of Haematology, La Timone Hospital, Marseille, France
| | - Guillaume Mourey
- Department of Clinical Hemostasis, University Hospital of Besançon, Besançon, France
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Marjorie Poggi
- C2VN, INSERM, INRA, Aix Marseille University, Marseille, France
| | | | | | - Alexandra Fournel
- Department of Clinical Hemostasis, University Hospital of Besançon, Besançon, France
| | | | | | - Tilman M Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Jan Rosing
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | | |
Collapse
|
9
|
Ward MP, Saadeh FA, O'Toole SA, O'Leary JJ, Gleeson N, Norris LA. Procoagulant activity in high grade serous ovarian cancer patients following neoadjuvant chemotherapy-The role of the activated protein C pathway. Thromb Res 2021; 200:91-98. [PMID: 33571724 DOI: 10.1016/j.thromres.2021.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Ovarian cancer patients are at high risk of thrombosis particularly during chemotherapy treatment however the mechanism is not understood. The aim of this study is to investigate the role of the activated protein C (aPC) pathway in the procoagulant activity observed in ovarian cancer patients undergoing neoadjuvant chemotherapy. PATIENTS AND METHODS Thrombin generation was determined before and after addition of thrombomodulin (TM) in high grade serous ovarian cancer (HGSOC) patients treated with neoadjuvant chemotherapy (n = 29) compared with HGSOC patients who were chemo naïve (n = 23) and patients with benign tumours (n = 29). Plasma expression of proteins from the aPC pathway was analysed. mRNA expression was determined in endothelial (EA.hy926) and ovarian (OAW42) cell lines following addition of carboplatin and paclitaxel. RESULTS Lower levels of ETP (p < 0.007; p < 0.003) and peak thrombin (p < 0.0008; p < 0.0018) were found in the neoadjuvant group compared with both chemo naïve and benign groups. Following addition of TM, ETP (p < 0.0005) and peak thrombin (p < 0.0049) were higher in the neoadjuvant group compared with the benign controls indicating an increase in aPC resistance. Increased TM and lower levels of protein S were found in the neoadjuvant group compared with benign controls (p < 0.05; p < 0.003). Factor V levels were increased in the neoadjuvant group compared with the chemo naïve group (p < 0.05). Carboplatin and paclitaxel altered the expression of EPCR and thrombomodulin in OAW42 cells with a modest effect on EA.hy926 cells. CONCLUSION Chemotherapy induced procoagulant activity in HGSOC is associated with an alteration in expression of key members of the aPC pathway. This acquired aPC resistance may explain the procoagulant phenotype associated with ovarian cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Mark P Ward
- Coagulation Research Laboratory, Department of Obstetrics and Gynaecology, Trinity College Dublin, Ireland; Trinity St James's Cancer Institute, St. James's Hospital, Dublin 8, Ireland.
| | - Feras Abu Saadeh
- Coagulation Research Laboratory, Department of Obstetrics and Gynaecology, Trinity College Dublin, Ireland; Trinity St James's Cancer Institute, St. James's Hospital, Dublin 8, Ireland; Department of Gynae-oncology, St. James's Hospital, Dublin 8, Ireland
| | - Sharon A O'Toole
- Coagulation Research Laboratory, Department of Obstetrics and Gynaecology, Trinity College Dublin, Ireland; Trinity St James's Cancer Institute, St. James's Hospital, Dublin 8, Ireland; Department of Histopathology, Trinity College Dublin, Ireland
| | - John J O'Leary
- Trinity St James's Cancer Institute, St. James's Hospital, Dublin 8, Ireland; Department of Histopathology, Trinity College Dublin, Ireland; Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin 8, Ireland
| | - Noreen Gleeson
- Coagulation Research Laboratory, Department of Obstetrics and Gynaecology, Trinity College Dublin, Ireland; Trinity St James's Cancer Institute, St. James's Hospital, Dublin 8, Ireland; Department of Gynae-oncology, St. James's Hospital, Dublin 8, Ireland
| | - Lucy A Norris
- Coagulation Research Laboratory, Department of Obstetrics and Gynaecology, Trinity College Dublin, Ireland; Trinity St James's Cancer Institute, St. James's Hospital, Dublin 8, Ireland
| |
Collapse
|
10
|
Link KG, Stobb MT, Sorrells MG, Bortot M, Ruegg K, Manco-Johnson MJ, Di Paola JA, Sindi SS, Fogelson AL, Leiderman K, Neeves KB. A mathematical model of coagulation under flow identifies factor V as a modifier of thrombin generation in hemophilia A. J Thromb Haemost 2020; 18:306-317. [PMID: 31562694 PMCID: PMC6994344 DOI: 10.1111/jth.14653] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/24/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND The variability in bleeding patterns among individuals with hemophilia A, who have similar factor VIII (FVIII) levels, is significant and the origins are unknown. OBJECTIVE To use a previously validated mathematical model of flow-mediated coagulation as a screening tool to identify parameters that are most likely to enhance thrombin generation in the context of FVIII deficiency. METHODS We performed a global sensitivity analysis (GSA) on our mathematical model to identify potential modifiers of thrombin generation. Candidates from the GSA were confirmed by calibrated automated thrombography (CAT) and flow assays on collagen-tissue factor (TF) surfaces at a shear rate of 100 per second. RESULTS Simulations identified low-normal factor V (FV) (50%) as the strongest modifier, with additional thrombin enhancement when combined with high-normal prothrombin (150%). Low-normal FV levels or partial FV inhibition (60% activity) augmented thrombin generation in FVIII-inhibited or FVIII-deficient plasma in CAT. Partial FV inhibition (60%) boosted fibrin deposition in flow assays performed with whole blood from individuals with mild and moderate FVIII deficiencies. These effects were amplified by high-normal prothrombin levels in both experimental models. CONCLUSIONS These results show that low-normal FV levels can enhance thrombin generation in hemophilia A. Further explorations with the mathematical model suggest a potential mechanism: lowering FV reduces competition between FV and FVIII for factor Xa (FXa) on activated platelet surfaces (APS), which enhances FVIII activation and rescues thrombin generation in FVIII-deficient blood.
Collapse
Affiliation(s)
- Kathryn G. Link
- Department of Applied Mathematics, University of California, Merced, Merced, CA, USA
| | - Michael T. Stobb
- Department of Mathematics, University of Utah, Salt Lake City, UT, USA
| | - Matthew G. Sorrells
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Maria Bortot
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, CO, USA
| | - Katherine Ruegg
- Hemophilia and Thrombosis Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Marilyn J. Manco-Johnson
- Hemophilia and Thrombosis Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jorge A. Di Paola
- Hemophilia and Thrombosis Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Suzanne S. Sindi
- Department of Mathematics, University of Utah, Salt Lake City, UT, USA
| | - Aaron L. Fogelson
- Department of Applied Mathematics, University of California, Merced, Merced, CA, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Karin Leiderman
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, USA
| | - Keith B. Neeves
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, CO, USA
- Hemophilia and Thrombosis Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
11
|
Thibord F, Hardy L, Ibrahim-Kosta M, Saut N, Pulcrano-Nicolas AS, Goumidi L, Civelek M, Eriksson P, Deleuze JF, Le Goff W, Trégouët DA, Morange PE. A Genome Wide Association Study on plasma FV levels identified PLXDC2 as a new modifier of the coagulation process. J Thromb Haemost 2019; 17:1808-1814. [PMID: 31271701 DOI: 10.1111/jth.14562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/01/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Factor V (FV) is a circulating protein primarily synthesized in the liver, and mainly present in plasma. It is a major component of the coagulation process. OBJECTIVE To detect novel genetic loci participating to the regulation of FV plasma levels. METHODS We conducted the first Genome Wide Association Study on FV plasma levels in a sample of 510 individuals and replicated the main findings in an independent sample of 1156 individuals. RESULTS In addition to genetic variations at the F5 locus, we identified novel associations at the PLXDC2 locus, with the lead PLXDC2 rs927826 polymorphism explaining ~3.7% (P = 7.5 × 10-15 in the combined discovery and replication samples) of the variability of FV plasma levels. In silico transcriptomic analyses in various cell types confirmed that PLXDC2 expression is positively correlated to F5 expression. SiRNA experiments in human hepatocellular carcinoma cell line confirmed the role of PLXDC2 in modulating factor F5 gene expression, and revealed further influences on F2 and F10 expressions. CONCLUSION Our study identified PLXDC2 as a new molecular player of the coagulation process.
Collapse
Affiliation(s)
- Florian Thibord
- Pierre Louis Doctoral School of Public Health, Sorbonne-Université, Paris, France
- Institut National pour la Santé et la Recherche Médicale (INSERM) Unité Mixte de Recherche en Santé (UMR_S) 1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
- INSERM UMR_S 1166, Université Pierre et Marie Curie (UPMC Univ Paris 06), Sorbonne Université, Paris, France
| | - Lise Hardy
- INSERM UMR_S 1166, Université Pierre et Marie Curie (UPMC Univ Paris 06), Sorbonne Université, Paris, France
- ICAN Institute of Cardiometabolism and Nutrition, Paris, France
| | - Manal Ibrahim-Kosta
- Laboratory of Haematology, La Timone Hospital, Marseille, France
- C2VN, Aix Marseille Univ, INSERM, INRA, Marseille, France
| | - Noémie Saut
- Laboratory of Haematology, La Timone Hospital, Marseille, France
- C2VN, Aix Marseille Univ, INSERM, INRA, Marseille, France
| | - Anne-Sophie Pulcrano-Nicolas
- Pierre Louis Doctoral School of Public Health, Sorbonne-Université, Paris, France
- INSERM UMR_S 1166, Université Pierre et Marie Curie (UPMC Univ Paris 06), Sorbonne Université, Paris, France
- ICAN Institute of Cardiometabolism and Nutrition, Paris, France
| | - Louisa Goumidi
- C2VN, Aix Marseille Univ, INSERM, INRA, Marseille, France
| | - Mete Civelek
- Department of Biomedical Engineering, Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Per Eriksson
- Department of Medicine, Cardiovascular Medicine Unit, BioClinicum, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Solna, Sweden
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, Direction de la Recherche Fondamentale, CEA, Evry, France
- CEPH, Fondation Jean Dausset, Paris, France
| | - Wilfried Le Goff
- INSERM UMR_S 1166, Université Pierre et Marie Curie (UPMC Univ Paris 06), Sorbonne Université, Paris, France
- ICAN Institute of Cardiometabolism and Nutrition, Paris, France
| | - David-Alexandre Trégouët
- Institut National pour la Santé et la Recherche Médicale (INSERM) Unité Mixte de Recherche en Santé (UMR_S) 1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
- INSERM UMR_S 1166, Université Pierre et Marie Curie (UPMC Univ Paris 06), Sorbonne Université, Paris, France
| | - Pierre-Emmanuel Morange
- Laboratory of Haematology, La Timone Hospital, Marseille, France
- C2VN, Aix Marseille Univ, INSERM, INRA, Marseille, France
- CRB Assistance Publique - Hôpitaux de Marseille, HemoVasc (CRB AP-HM HemoVasc), Marseille, France
| |
Collapse
|
12
|
Li-Gao R, Mook-Kanamori DO, Cannegieter SC, Willems van Dijk K, Rosendaal FR, van Hylckama Vlieg A. The association of genetic variants in the cholesteryl ester transfer protein gene with hemostatic factors and a first venous thrombosis. J Thromb Haemost 2019; 17:1535-1543. [PMID: 31148376 DOI: 10.1111/jth.14528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cholesteryl ester transfer protein (CETP) plays an important role in lipoprotein metabolism. Previous studies have suggested that the CETP TaqI B1/B2 allele is associated with the risk of venous thrombosis (VT). AIM To investigate the associations between genetically determined CETP concentrations and 22 hemostatic factors in healthy individuals, and the risk of a first VT event, in a large VT case-control study. METHODS Analyses were performed in the Multiple Environmental and Genetic Assessment of Risk Factors for Venous Thrombosis (MEGA) case-control study. CETP unweighted/weighted genetic risk scores (GRSs) were derived from three single-nucleotide polymorphisms that were identified from a recent genome-wide association study on serum CETP concentrations. The associations between CETP GRSs and 22 hemostatic factors (procoagulant/anticoagulant and fibrinolytic factors) were assessed by linear regression from an additive model in controls (n = 2813). The associations between CETP GRSs and the risk of a first VT were assessed by logistic regression analyses in 3950 VT cases and 4765 controls. RESULTS In the controls (median age, 49 years; 53% women), both unweighted and weighted GRSs showed that factor VII activity was negatively associated with the genetically determined CETP concentration (weighted GRS β -3.08 IU/dL per μg/mL genetically determined CETP, 95% confidence interval -5.73 to -0.42). No association was observed with the risk of a first VT. CONCLUSIONS Genetically determined CETP concentrations only showed a weak negative association with factor VII activity. However, this did not lead to an association with the risk of a first VT.
Collapse
Affiliation(s)
- Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Suzanne C Cannegieter
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine, Section of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Ko Willems van Dijk
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine, Section of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
13
|
Malkani RH, Karia R, Thadani S. A Study of Risk Factors of Chronic Venous Insufficiency and its Association with Features Suggestive of Preceding or Present Deep Venous Thrombosis. Indian J Dermatol 2019; 64:366-371. [PMID: 31543530 PMCID: PMC6749769 DOI: 10.4103/ijd.ijd_271_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Deep venous thrombosis (DVT), even though resolved, may damage the valves and may lead to chronic venous insufficiency (CVI). We designed the present study to examine the thrombotic markers or other ultrasound features in the absence of active thrombosis in patients presenting with features suggestive of CVI. Materials and Methods: It was a cross-sectional study of 50 DVT patients. We collected a detailed history of presenting symptoms (onset, progression, and duration) and associated history of aggravating factors. After classifying the patients, color Doppler investigation for DVT and venous incompetence and blood investigations such as Factor V, D-Dimer, total cholesterol, total triglycerides, homocysteine, high-density lipoproteins, low-density lipoproteins (LDL), and very LDL were done. Results: We found a raised Factor V significantly more in patients classified as severe under clinical classification compared with nonsevere (19% and 0%; P = 0.05) and in patients with a high Venous Severity Clinical Score (VSCS) compared to those with a low VSCS score (17% and 0%; P = 0.03). We also found that perforators were significantly more in patients with a high VSCS score (88% and 58%; P = 0.02), in patients with a primary venous etiology compared with those without any venous etiology (97% and 1%; P < 0.0001), in patients with obstruction/reflux compared to those without any pathology (95% and 0%; P < 0.0001), and in patients with severe clinical classification compared with nonsevere patient (95% and 55%; P = 0.002). Conclusions: Clinical or subclinical DVT, an important cause of CVI, may not always be seen on ultrasound, especially after resolution. However, they may have the presence of blood parameters (Factor V and hyperhomocysteinemia) suggestive of DVT; these can be used as proxy markers for the current or previous DVT.
Collapse
Affiliation(s)
- Ram H Malkani
- Department of Dermatology, Jaslok Hospital, Mumbai, Maharashtra, India
| | - Rusina Karia
- Department of Dermatology, Jaslok Hospital, Mumbai, Maharashtra, India
| | - Sneh Thadani
- Department of Dermatology, Jaslok Hospital, Mumbai, Maharashtra, India
| |
Collapse
|