1
|
Kirschall J, Uzun G, Bakchoul T, Marini I. In vitro Hemostatic Functions of Cold-Stored Platelets. Transfus Med Hemother 2024; 51:94-100. [PMID: 38584694 PMCID: PMC10996062 DOI: 10.1159/000533735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/21/2023] [Indexed: 04/09/2024] Open
Abstract
Background Transfusion of platelets is a life-saving medical strategy used worldwide to treat patients with thrombocytopenia as well as platelet function disorders. Summary Until the end of 1960s, platelets were stored in the cold because of their superior hemostatic functionality. Cold storage of platelets was then abandoned due to better posttransfusion recovery and survival of room temperature (RT)-stored platelets, demonstrated by radioactive labeling studies. Based on these findings, RT became the standard condition to store platelets for clinical applications. Evidence shows that RT storage increases the risk of septic transfusion reactions associated with bacterial contamination. Therefore, the storage time is currently limited to 4-7 days, according to the national guidelines, causing a constant challenge to cover the clinical request. Despite the enormous efforts made to optimize storage conditions of platelets, the quality and efficacy of platelets still decrease during the short storage time at RT. In this context, during the last years, cold storage has seen a renaissance due to the better hemostatic functionality, reduced risk of bacterial contamination, and potentially longer storage time. Key Messages In this review, we will focus on the impact of cold storage on the in vitro platelet functions as promising alternative storage temperature for future medical applications.
Collapse
Affiliation(s)
- Johanna Kirschall
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, Tuebingen, Germany
| | - Günalp Uzun
- Center for Clinical Transfusion Medicine Tuebingen, Tuebingen, Germany
| | - Tamam Bakchoul
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, Tuebingen, Germany
- Center for Clinical Transfusion Medicine Tuebingen, Tuebingen, Germany
| | - Irene Marini
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, Tuebingen, Germany
- Center for Clinical Transfusion Medicine Tuebingen, Tuebingen, Germany
| |
Collapse
|
2
|
Schrottmaier WC, Schmuckenschlager A, Thunberg T, Wigren-Byström J, Fors-Connolly AM, Assinger A, Ahlm C, Forsell MNE. Direct and indirect effects of Puumala hantavirus on platelet function. Thromb Res 2024; 233:41-54. [PMID: 38006765 DOI: 10.1016/j.thromres.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
Thrombocytopenia is a cardinal symptom of hantavirus-induced diseases including Puumala virus (PUUV)-induced hemorrhagic fever with renal syndrome (HFRS), which is associated with impaired platelet function, bleeding manifestations and augmented thrombotic risk. However, the underlying mechanisms causing thrombocytopenia and platelet hypo-responsiveness are unknown. Thus, we investigated the direct and indirect impact of PUUV on platelet production, function and degradation. Analysis of PUUV-HFRS patient blood revealed that platelet hypo-responsiveness in PUUV infection was cell-intrinsic and accompanied by reduced platelet-leukocyte aggregates (PLAs) and upregulation of monocyte tissue factor (TF), whereas platelet vasodilator-stimulated phosphoprotein (VASP) phosphorylation was comparable to healthy controls. Plasma CXCL4 levels followed platelet count dynamics throughout disease course. PUUV activated both neutrophils and monocytes in vitro, but platelet desialylation, degranulation and GPIIb/IIIa activation as well as PLA formation and endothelial adhesion under flow remained unaltered in the presence of PUUV. Further, MEG-01 megakaryocytes infected with PUUV displayed unaltered polyploidization, expression of surface receptors and platelet production. However, infection of endothelial cells with PUUV significantly increased platelet sequestration. Our data thus demonstrate that although platelet production, activation or degradation are not directly modulated, PUUV indirectly fosters thrombocytopenia by sequestration of platelets to infected endothelium. Upregulation of immunothrombotic processes in PUUV-HFRS may further contribute to platelet dysfunction and consumption. Given the pathophysiologic similarities of hantavirus infections, our findings thus provide important insights into the mechanisms underlying thrombocytopenia and highlight immune-mediated coagulopathy as potential therapeutic target.
Collapse
Affiliation(s)
- Waltraud C Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria; Department of Clinical Microbiology, Umeå University, Umeå, Sweden.
| | - Anna Schmuckenschlager
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Therese Thunberg
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | | | | | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
3
|
Duan Y, Szlam F, Hu Y, Chen W, Li R, Ke Y, Sniecinski R, Salaita K. Detection of cellular traction forces via the force-triggered Cas12a-mediated catalytic cleavage of a fluorogenic reporter strand. Nat Biomed Eng 2023; 7:1404-1418. [PMID: 37957275 PMCID: PMC11289779 DOI: 10.1038/s41551-023-01114-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 09/26/2023] [Indexed: 11/15/2023]
Abstract
Molecular forces generated by cell receptors are infrequent and transient, and hence difficult to detect. Here we report an assay that leverages the CRISPR-associated protein 12a (Cas12a) to amplify the detection of cellular traction forces generated by as few as 50 adherent cells. The assay involves the immobilization of a DNA duplex modified with a ligand specific for a cell receptor. Traction forces of tens of piconewtons trigger the dehybridization of the duplex, exposing a cryptic Cas12-activating strand that sets off the indiscriminate Cas12-mediated cleavage of a fluorogenic reporter strand. We used the assay to perform hundreds of force measurements using human platelets from a single blood draw to extract individualized dose-response curves and half-maximal inhibitory concentrations for a panel of antiplatelet drugs. For seven patients who had undergone cardiopulmonary bypass, platelet dysfunction strongly correlated with the need for platelet transfusion to limit bleeding. The Cas12a-mediated detection of cellular traction forces may be used to assess cell state, and to screen for genes, cell-adhesion ligands, drugs or metabolites that modulate cell mechanics.
Collapse
Affiliation(s)
- Yuxin Duan
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Fania Szlam
- Department of Anesthesiology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Yuesong Hu
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Wenchun Chen
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Departments of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Departments of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Roman Sniecinski
- Department of Anesthesiology, School of Medicine, Emory University, Atlanta, GA, USA.
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA.
| |
Collapse
|
4
|
Jourdi G, Ramström S, Sharma R, Bakchoul T, Lordkipanidzé M. Consensus report on flow cytometry for platelet function testing in thrombocytopenic patients: communication from the SSC of the ISTH. J Thromb Haemost 2023; 21:2941-2952. [PMID: 37481072 DOI: 10.1016/j.jtha.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Platelet count alone does not reliably predict bleeding risk, suggesting platelet function is important to monitor in patients with thrombocytopenia. There is still an unmet need for improved platelet function diagnostics in patients with low platelet count in many clinical situations. Flow cytometry is a promising tool allowing reliable platelet function study in this setting. OBJECTIVES The goal of this joint project between the International Society on Thrombosis and Haemostasis (ISTH) Scientific Standardization Committee (SSC) Subcommittees on Platelet Physiology and Platelet Immunology is to provide expert consensus guidance on the use of flow cytometry for the evaluation of platelet function, particularly activation, in patients with low platelet counts. METHODS A literature review was performed to identify relevant questions and areas of interest. An electronic expression of interest form was thereafter announced on the ISTH webpage, followed by a survey encompassing 37 issues regarding preanalytical, analytical, postanalytical, and performance aspects. Areas of disagreement or uncertainty were identified and formed the basis for 2 focus group discussions. RESULTS Consensus recommendations relative to patient sample collection, preanalytical variables, sample type, platelet-count cutoff, any potential specific modification of the standard flow cytometry protocol, and results expression and reporting are proposed based on the current practices of experts in the field as well as on literature review. CONCLUSION The proposed consensus recommendations would allow standardization of protocols in upcoming clinical studies. The clinical utility of platelet function testing using flow cytometry to predict bleeding risk still needs rigorous multicenter outcome studies in patients with thrombocytopenia.
Collapse
Affiliation(s)
- Georges Jourdi
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada; Université Paris Cité, INSERM, Innovative Therapies in Haemostasis, Paris, France; Service d'Hématologie Biologique, AP-HP, Hôpital Lariboisière, Paris, France
| | - Sofia Ramström
- Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Ruchika Sharma
- Versiti Blood Center of Wisconsin Pediatric Hematology/Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Division of Hematology/Oncology/BMT, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Tamam Bakchoul
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty of Tuebingen, University Hospital of Tuebingen, Tuebingen, Germany
| | - Marie Lordkipanidzé
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Törnudd M, Ramström S, Kvitting JPE, Alfredsson J, Nyberg L, Björkman E, Berg S. Platelet Function is Preserved After Moderate Cardiopulmonary Bypass Times But Transiently Impaired After Protamine. J Cardiothorac Vasc Anesth 2023:S1053-0770(23)00180-5. [PMID: 37059638 DOI: 10.1053/j.jvca.2023.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 04/16/2023]
Abstract
OBJECTIVES Previous studies have described impaired platelet function after cardiopulmonary bypass (CPB). Whether this is still valid in contemporary cardiac surgery is unclear. This study aimed to quantify changes in function and number of platelets during CPB in a present-day cardiac surgery cohort. DESIGN Prospective, controlled clinical study. SETTING A single-center university hospital. PARTICIPANTS Thirty-nine patients scheduled for coronary artery bypass graft surgery with CPB. INTERVENTIONS Platelet function and numbers were measured at 6 timepoints in 39 patients during and after coronary artery bypass graft surgery; at baseline before anesthesia, at the end of CPB, after protamine administration, at intensive care unit (ICU) arrival, 3 hours after ICU arrival, and on the morning after surgery. MEASUREMENTS AND MAIN RESULTS Platelet function was assessed with impedance aggregometry and flow cytometry. Platelet numbers are expressed as actual concentration and as numbers corrected for dilution using hemoglobin as a reference marker. There was no consistent impairment of platelet function during CPB with either impedance aggregometry or flow cytometry. After protamine administration, a decrease in platelet function was seen with impedance aggregometry and for some markers of activation with flow cytometry. Platelet function was restored 3 hours after arrival in the ICU. During CPB (85.0 ± 21 min), the number of circulating platelets corrected for dilution increased from 1.73 ± 0.42 × 109/g to 1.91 ± 0.51 × 109/g (p < 0.001). CONCLUSIONS During cardiac surgery with moderate CPB times, platelet function was not impaired, and no consumption of circulating platelets could be detected. Administration of protamine transiently affected platelet function.
Collapse
Affiliation(s)
- Mattias Törnudd
- Department of Cardiothoracic and Vascular Surgery and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Sofia Ramström
- Department of Clinical Chemistry and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - John-Peder Escobar Kvitting
- Department of Cardiothoracic Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Joakim Alfredsson
- Department of Cardiology and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Linnea Nyberg
- Department of Cardiothoracic and Vascular Surgery and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Department of Clinical Chemistry and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Erik Björkman
- Department of Cardiothoracic and Vascular Surgery and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Department of Clinical Chemistry and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sören Berg
- Department of Cardiothoracic and Vascular Surgery and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
6
|
Schmuckenschlager A, Pirabe A, Assinger A, Schrottmaier WC. Platelet count, temperature and pH value differentially affect hemostatic and immunomodulatory functions of platelets. Thromb Res 2023; 223:111-122. [PMID: 36738664 DOI: 10.1016/j.thromres.2023.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Platelets are primarily recognized for their role in hemostasis, but also regulate immune responses by interacting with leukocytes. Their highly sensitive nature enables platelets to rapidly respond to micro-environmental changes, which is crucial under physiological condition but can jeopardize in vitro analyses. Thus, we tested how platelet count and changes in pH and temperatures, which are commonly experienced during inflammation and infection but also affected by ex vivo analyses, influence platelet-leukocyte interaction and immunomodulation. Reducing platelet count by up to 90 % slightly decreased platelet activation and platelet-leukocyte aggregate formation, but did not affect CD11b activation nor CD62L shedding of monocytes or neutrophils. Acidosis (pH 6.9) slightly elevated platelet degranulation and binding to innate leukocytes, though pH changes did not modulate leukocyte activation. While platelet responsiveness was higher at room temperature than at 37 °C, incubation temperature did not affect platelet-leukocyte aggregate formation. In contrast, platelet-mediated CD11b activation and CD62L expression increased with temperature. Our data thus demonstrate the importance of standardized protocols for sample preparation and assay procedure to obtain comparable data. Further, unspecific physiologic responses such as thrombocytopenia, acidosis or temperature changes may contribute to platelet dysfunction and altered platelet-mediated immunomodulation in inflammatory and infectious disease.
Collapse
Affiliation(s)
- Anna Schmuckenschlager
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anita Pirabe
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Waltraud C Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Mehic D, Machacek J, Schramm T, Buresch L, Kaider A, Eichelberger B, Haslacher H, Fillitz M, Dixer B, Flasch T, Anderle T, Rath A, Assinger A, Ay C, Pabinger I, Gebhart J. Platelet function and soluble P-selectin in patients with primary immune thrombocytopenia. Thromb Res 2023; 223:102-110. [PMID: 36738663 DOI: 10.1016/j.thromres.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/17/2023]
Abstract
BACKGROUND The bleeding phenotype in immune thrombocytopenia (ITP) is heterogeneous, but usually mild and only partly dependent on the severity of thrombocytopenia. Platelet reactivity has previously been suggested to underly the mild phenotype. METHODS Platelet function was assessed as basal and agonist-induced surface expression of P-selectin and activation of GPIIb/IIIa via flow cytometry, and soluble (s)P-selectin levels were assessed in plasma of 77 patients with primary ITP, 19 hemato-oncologic thrombocytopenic controls (TC) and 20 healthy controls (HC). The association of platelet function with laboratory and clinical parameters such as bleeding manifestations at inclusion and previous thrombosis was analyzed. RESULTS ITP patients showed tendency towards increased surface P-selectin and elevated levels of activated GPIIb/IIIa. Platelet activation after stimulation with all agonists including TRAP-6, ADP, arachidonic acid and CRP was decreased compared to HC. Compared to TC, only GPIIb/IIIa activation but not surface P-selectin was higher in ITP. Levels of soluble (s)P-selectin were significantly higher in ITP patients compared to TC, but similar to HC. Higher sP-selectin levels were associated with blood group O and current therapy, with highest levels in TPO-RA treated patients. Platelet reactivity was not associated with platelet count or size, platelet antibodies, treatment regime, or blood group. No correlation between platelet activation with the bleeding phenotype or previous thrombotic events could be observed. CONCLUSION ITP patients did not have hyper-reactive platelets compared to HC, but partly higher reactivity compared to TC. Further studies are needed to understand the underlying mechanism behind the bleeding and pro-thrombotic phenotype in ITP. 250/250.
Collapse
Affiliation(s)
- Dino Mehic
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jennifer Machacek
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Theresa Schramm
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Lisbeth Buresch
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Alexandra Kaider
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | | | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Fillitz
- Department of Internal Medicine, Hanusch Hospital, Vienna, Austria
| | - Barbara Dixer
- Department of Internal Medicine, Hanusch Hospital, Vienna, Austria
| | - Tanja Flasch
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Theresa Anderle
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anja Rath
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Cihan Ay
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ingrid Pabinger
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Johanna Gebhart
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Azoulay D, Naamad M, Frydman D, Broide E, Zimran A, Stemer G, Revel-Vilk S. Brain-Derived Neurotrophic Factor (BDNF) Is Associated with Platelet Activity and Bleeding Tendency in Patients with Gaucher Disease. Int J Mol Sci 2022; 23:13982. [PMID: 36430458 PMCID: PMC9697957 DOI: 10.3390/ijms232213982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Bleeding tendency, a prominent feature of patients with Gaucher disease (GD), is associated with abnormal platelet function. Brain-derived neurotrophic factor (BDNF) is a protein with neuroprotective potential stored in alpha granules of circulating platelets. Here we studied BDNF levels in 50 patients with type I GD (GD1) and their correlation with platelet activity and bleeding tendency. Flow cytometry was used to test unstimulated and stimulated measurement of platelet surface-activated expression of αIIbβ3 integrin, P-selectin and lysosomal-associated membrane protein (LAMP3/CD63). Serum and plasma BDNF levels were quantified using ELISA. The bleeding history was recorded by a bleeding questionnaire. Serum BDNF levels were positively correlated with platelet count and moderately correlated with unstimulated and stimulated platelet P-selectin expression. Patients with more than one bleeding manifestation were shown to have lower serum BDNF levels, albeit similar platelet count. Plasma BDNF levels were significantly elevated in splenectomized patients and showed a moderate positive correlation with stimulated platelet CD63 expression. These observations demonstrate the first association between BDNF levels in the peripheral blood with platelet dysfunction and increased bleeding manifestation. The role of measuring serum BDNF for assessing platelet alpha degranulation defects and bleeding risk in patients with GD and the general population needs further study.
Collapse
Affiliation(s)
- David Azoulay
- Hematology Unit and Laboratories, Galilee Medical Center, Nahariya 22100, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Mira Naamad
- Flow Cytometry Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Dafna Frydman
- Gaucher Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Ellen Broide
- Flow Cytometry Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Ari Zimran
- Gaucher Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel
| | - Galia Stemer
- Hematology Unit and Laboratories, Galilee Medical Center, Nahariya 22100, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Shoshana Revel-Vilk
- Gaucher Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112002, Israel
- Pediatric Hematology/Oncology Unit, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| |
Collapse
|
9
|
El-Elimat T, Qasem WM, Al-Sawalha NA, AbuAlSamen MM, Munaiem RT, Al-Qiam R, Al Sharie AH. A Prospective Non-Randomized Open-Label Comparative Study of The Effects of Matcha Tea on Overweight and Obese Individuals: A Pilot Observational Study. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:447-454. [PMID: 35921023 PMCID: PMC9362463 DOI: 10.1007/s11130-022-00998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Matcha tea has been used as an adjunct in weight loss programs. The weight loss effects of matcha tea were evaluated in a prospective non-randomized open-label comparative study of overweight and obese individuals who followed a specified low-calorie diet (LCD) plan. A total of 40 participants were enrolled and assigned to either matcha tea or control groups. The matcha tea group followed a LCD plan and received matcha tea once daily, whereas the control group followed only the LCD diet plan. The study lasted 12 weeks. The main outcome measures included anthropometric measurements, fasting blood glucose, hemoglobin A1c (HbA1c), lipid profile, obesity-related hormone peptides, pro-inflammatory and anti-inflammatory cytokines, and oxidative stress biomarkers. Thirty-four participants had completed the study. The matcha tea and control groups showed significant reductions in body weight, body mass index, waist circumference, water content, minerals, and fat mass at week 12. The post-treatment body composition and anthropometric measurements were not significantly different between the two groups. The matcha tea group showed a potential increase in HDL-C, a potential decrease in blood glucose, and a potential increase in HbA1c. Furthermore, the study indicated a potential decrease in insulin and leptin levels, a potential increase in the activity of superoxide dismutase, and a potential decreased activity of glutathione peroxidase. IL-10 was increased by matcha tea consumption. The data suggest that matcha tea may have some potential effect on weight loss, along with anti-inflammatory properties. The findings of this study will be used to design a multicenter randomized clinical trial to examine the potential weight loss benefits of matcha tea.
Collapse
Affiliation(s)
- Tamam El-Elimat
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Wala'a M Qasem
- Faculty of Agriculture, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Nour A Al-Sawalha
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mahmoud M AbuAlSamen
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ramzi T Munaiem
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Reema Al-Qiam
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ahmed H Al Sharie
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
10
|
Shen CL, Wu YF. Flow cytometry for evaluating platelet immunophenotyping and function in patients with thrombocytopenia. Tzu Chi Med J 2022; 34:381-387. [PMID: 36578648 PMCID: PMC9791859 DOI: 10.4103/tcmj.tcmj_117_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/10/2022] [Accepted: 06/08/2022] [Indexed: 01/19/2023] Open
Abstract
Platelets play an essential role in primary hemostasis through bleeding and thromboembolism. Thus, the diagnosis or evaluation of impaired hereditary, acquired, and drug-related platelet dysfunction has become imperative. The assessment of the platelet function is too complex for routine platelet function study. The major methods involved in platelet function study include platelet function analyzer testing, thromboelastography, thromboelastometry, light transmission aggregometry, and flow cytometry. The current review article focuses on the methods with flow cytometry for immunophenotyping of platelet and evaluating platelet function for platelet disorders, especially in patients with thrombocytopenia. According to the consensus published by the International Society on Thrombosis and Haemostasis, for inherited and acquired platelet disorders, the two major measures by which flow cytometry determines platelet function are glycoprotein IIb/IIIa/P-selectin (CD62p) expression and percentage of leukocyte-platelet aggregates. Using flow cytometry to determine platelet function has several advantages, including good sensitivity to low platelet counts, small blood volume required, and the nonnecessity of centrifugation. However, flow cytometry has still many limitations and challenges, with standardization for routine laboratory testing also proving difficult. Although flow cytometry is available for multipurpose and sensitive study of platelet functions at the same time, the challenging analysis gradually increases and needs to be addressed before reality.
Collapse
Affiliation(s)
- Chih-Lung Shen
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yi-Feng Wu
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,School of Medicine, Tzu Chi University, Hualien, Taiwan,Address for correspondence: Dr. Yi-Feng Wu, Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 707, Section 3, Chung-Yang Road, Hualien, Taiwan. E-mail:
| |
Collapse
|
11
|
Tynngård N, Alshamari A, Månsson F, Ramström S. Variation in activation marker expression within the platelet population - a new parameter for evaluation of platelet flow cytometry data. Platelets 2022; 33:1113-1118. [PMID: 35848430 DOI: 10.1080/09537104.2022.2078490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In flow cytometry, individual cells are investigated. Platelet activation is normally reported in form of percentage of platelets expressing the marker (positive platelets) and/or mean/median fluorescence intensity (MFI) for the entire analyzed population. None of these take into account the variance of the marker expression between individual platelets. This can be obtained as data on coefficient of variation (CV). This study explores if CV provides additional information regarding platelet function. Samples from platelet concentrates (PCs) prepared by apheresis- (n = 13) and interim platelet unit (IPU) technique (n = 26) and stored for 6-7 days were included and compared. Spontaneous- and agonist-induced expression of activation markers (fibrinogen binding and exposure of P-selectin, LAMP-1, and CD63) was investigated as percentage positive platelets, MFI and CV. Spontaneous expression of P-selectin as percentage positive platelets and MFI was higher for IPU PCs than apheresis PCs, which in contrast had higher agonist-induced activation. CV for spontaneous fibrinogen binding and P-selectin exposure was larger for apheresis PCs, while IPU PCs generally had larger CV for P-selectin, LAMP-1, and CD63 after agonist stimulation. Our findings show that CV adds additional information when assessing platelet activation by providing data on the variation in activation responses within the platelet population.
Collapse
Affiliation(s)
- Nahreen Tynngård
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Research and Development Unit in Region Östergötland and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Aseel Alshamari
- Department of Clinical Immunology and Transfusion Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Freja Månsson
- Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Sofia Ramström
- Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Department of Clinical Chemistry and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
Lacom C, Tolios A, Löffler MW, Eichelberger B, Quehenberger P, Schaden E, Wiegele M. Assay validity of point-of-care platelet function tests in thrombocytopenic blood samples. Biochem Med (Zagreb) 2022; 32:020713. [PMID: 35799989 PMCID: PMC9195599 DOI: 10.11613/bm.2022.020713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/29/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Point-of-care (POC) platelet function tests are faster and easier to perform than in-depth assessment by flow cytometry. At low platelet counts, however, POC tests are prone to assess platelet function incorrectly. Lower limits of platelet count required to obtain valid test results were defined and a testing method to facilitate comparability between different tests was established. Materials and methods We assessed platelet function in whole blood samples of healthy volunteers at decreasing platelet counts (> 100, 80-100, 50-80, 30-50 and < 30 x109/L) using two POC tests: impedance aggregometry and in-vitro bleeding time. Flow cytometry served as the gold standard. The number of platelets needed to reach 50% of the maximum function (ED50) and the lower reference limit (EDref) were calculated to define limits of test validity. Results The minimal platelet count required for reliable test results was 100 x109/L for impedance aggregometry and in-vitro bleeding time but only 30 x109/L for flow cytometry. Comparison of ED50 and EDref showed significantly lower values for flow cytometry than either POC test (P value < 0.05) but no difference between POC tests nor between the used platelet agonists within a test method. Conclusion Calculating the ED50 and EDref provides an effective way to compare values from different platelet function assays. Flow cytometry enables correct platelet function testing as long as platelet count is > 30 x109/L whereas impedance aggregometry and in-vitro bleeding time are inconsistent unless platelet count is > 100 x109/L.
Collapse
Affiliation(s)
- Conrad Lacom
- Department of Anaesthesia, Critical Care and Pain Medicine, Division of General Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Alexander Tolios
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
- Center for Medical Statistics, Informatics, and Intelligent Systems, Institute for Artificial Intelligence and Decision Support, Medical University of Vienna, Vienna, Austria
| | - Markus W. Löffler
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Beate Eichelberger
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Peter Quehenberger
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Eva Schaden
- Department of Anaesthesia, Critical Care and Pain Medicine, Division of General Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Marion Wiegele
- Department of Anaesthesia, Critical Care and Pain Medicine, Division of General Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Bourguignon A, Tasneem S, Hayward CP. Screening and diagnosis of inherited platelet disorders. Crit Rev Clin Lab Sci 2022; 59:405-444. [PMID: 35341454 DOI: 10.1080/10408363.2022.2049199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inherited platelet disorders are important conditions that often manifest with bleeding. These disorders have heterogeneous underlying pathologies. Some are syndromic disorders with non-blood phenotypic features, and others are associated with an increased predisposition to developing myelodysplasia and leukemia. Platelet disorders can present with thrombocytopenia, defects in platelet function, or both. As the underlying pathogenesis of inherited thrombocytopenias and platelet function disorders are quite diverse, their evaluation requires a thorough clinical assessment and specialized diagnostic tests, that often challenge diagnostic laboratories. At present, many of the commonly encountered, non-syndromic platelet disorders do not have a defined molecular cause. Nonetheless, significant progress has been made over the past few decades to improve the diagnostic evaluation of inherited platelet disorders, from the assessment of the bleeding history to improved standardization of light transmission aggregometry, which remains a "gold standard" test of platelet function. Some platelet disorder test findings are highly predictive of a bleeding disorder and some show association to symptoms of prolonged bleeding, surgical bleeding, and wound healing problems. Multiple assays can be required to diagnose common and rare platelet disorders, each requiring control of preanalytical, analytical, and post-analytical variables. The laboratory investigations of platelet disorders include evaluations of platelet counts, size, and morphology by light microscopy; assessments for aggregation defects; tests for dense granule deficiency; analyses of granule constituents and their release; platelet protein analysis by immunofluorescent staining or flow cytometry; tests of platelet procoagulant function; evaluations of platelet ultrastructure; high-throughput sequencing and other molecular diagnostic tests. The focus of this article is to review current methods for the diagnostic assessment of platelet function, with a focus on contemporary, best diagnostic laboratory practices, and relationships between clinical and laboratory findings.
Collapse
Affiliation(s)
- Alex Bourguignon
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Subia Tasneem
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Catherine P Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.,Department of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
14
|
Frelinger AL, Rivera J, Connor DE, Freson K, Greinacher A, Harrison P, Kunishima S, Lordkipanidzé M, Michelson AD, Ramström S, Gresele P. Consensus recommendations on flow cytometry for the assessment of inherited and acquired disorders of platelet number and function: Communication from the ISTH SSC Subcommittee on Platelet Physiology. J Thromb Haemost 2021; 19:3193-3202. [PMID: 34580997 DOI: 10.1111/jth.15526] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022]
Abstract
Flow cytometry is increasingly used in the study of platelets in inherited and acquired disorders of platelet number and function. However, wide variation exists in specific reagents, methods, and equipment used, making interpretation and comparison of results difficult. The goal of the present study was to provide expert consensus guidance on the use of flow cytometry for the evaluation of platelet disorders. A modified RAND/UCLA survey method was used to obtain a consensus among 11 experts from 10 countries across four continents, on the appropriateness of statements relating to clinical utility, pre-analytical variables, instrument and reagent standardization, methods, reporting, and quality control for platelet flow cytometry. Feedback from the initial survey revealed that uncertainty was sometimes due to lack of expertise with a particular test condition rather than unavailable or ambiguous data. To address this, the RAND method was modified to allow experts to self-identify statements for which they could not provide expert input. There was uniform agreement among experts in the areas of instrument and reagent standardization, methods, reporting, and quality control and this agreement is used to suggest best practices in these areas. However, 25.9% and 50% of statements related to pre-analytical variables and clinical utility, respectively, were rated as uncertain. Thus, while citrate is the preferred anticoagulant for many flow cytometric platelet tests, expert opinions differed on the acceptability of other anticoagulants, particularly heparin. Lack of expert consensus on the clinical utility of many flow cytometric platelet tests indicates the need for rigorous multicenter clinical outcome studies.
Collapse
Affiliation(s)
- Andrew L Frelinger
- Division of Hematology/Oncology, Center for Platelet Research Studies, Boston Children's Hospital, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - José Rivera
- Centro Regional de Hemodonación, IMIB-Arrixaca, CB15/00055-CIBERER, Universidad de Murcia, Murcia, Spain
| | - David E Connor
- Haematology Research Laboratory, St Vincent's Centre for Applied Medical Research, Darlinghurst, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Paul Harrison
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Shinji Kunishima
- Department of Advanced Diagnosis, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Marie Lordkipanidzé
- Faculté de Pharmacie, Research Center & The Montreal Heart Institute, Université de Montréal, Montréal, Quebec, Canada
| | - Alan D Michelson
- Division of Hematology/Oncology, Center for Platelet Research Studies, Boston Children's Hospital, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Sofia Ramström
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Paolo Gresele
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
15
|
Karlström C, Gryfelt G, Schmied L, Meinke S, Höglund P. Platelet transfusion improves clot formation and platelet function in severely thrombocytopenic haematology patients. Br J Haematol 2021; 196:224-233. [PMID: 34528253 DOI: 10.1111/bjh.17820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Prophylactic platelet (PLT) transfusion is a common practice in severely thrombocytopenic patients that reduces mortality, but responses to platelet transfusions are variable and difficult to predict in individual patients. In this prospective study, we evaluated the outcome of PLT transfusions in 40 patients with haematological malignancies, linking corrected count increment (CCI) to clot formation and agonist-induced platelet activation after transfusion. The CCI was highly variable between patients and 34% showed no response (1-h CCI < 7,5). Short time since the last PLT transfusion and extended storage time of the PLT product were linked to poor transfusion response, while patient sex, C-reactive protein or the number of chemotherapy cycles prior to transfusion did not influence transfusion outcome. High CCI and good PLT responsiveness to agonist stimulation predicted efficient clot formation in rotational thromboelastometry, but transfusion did not restore poor PLT function in patients to the level of healthy controls. Our study provides new insights into factors affecting PLT transfusion outcome in haematology patients with severe thrombocytopenia, and suggests that the thrombocytopenic environment, or disease-associated factors, may hamper platelet responsiveness.
Collapse
Affiliation(s)
- Cecilia Karlström
- Department of Medicine Huddinge, Center for Haematology and Regenerative Medicine (HERM), Karolinska Institutet, Stockholm, Sweden.,Medical Unit Haematology, Karolinska University Hospital, Stockholm, Sweden
| | - Gunilla Gryfelt
- Medical Unit Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Laurent Schmied
- Department of Medicine Huddinge, Center for Haematology and Regenerative Medicine (HERM), Karolinska Institutet, Stockholm, Sweden
| | - Stephan Meinke
- Department of Medicine Huddinge, Center for Haematology and Regenerative Medicine (HERM), Karolinska Institutet, Stockholm, Sweden
| | - Petter Höglund
- Department of Medicine Huddinge, Center for Haematology and Regenerative Medicine (HERM), Karolinska Institutet, Stockholm, Sweden.,Medical Unit Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Racine-Brzostek SE, Asmis LM. Assessment of platelet function utilizing viscoelastic testing. Transfusion 2021; 60 Suppl 6:S10-S20. [PMID: 33089932 DOI: 10.1111/trf.16081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/29/2020] [Accepted: 08/29/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Sabrina E Racine-Brzostek
- Department of Pathology and Laboratory Medicine, New York-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Lars M Asmis
- Centre for Perioperative Thrombosis and Haemostasis, Zurich, Switzerland
| |
Collapse
|
17
|
Jurk K, Shiravand Y. Platelet Phenotyping and Function Testing in Thrombocytopenia. J Clin Med 2021; 10:jcm10051114. [PMID: 33800006 PMCID: PMC7962106 DOI: 10.3390/jcm10051114] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/21/2021] [Accepted: 03/02/2021] [Indexed: 01/19/2023] Open
Abstract
Patients who suffer from inherited or acquired thrombocytopenia can be also affected by platelet function defects, which potentially increase the risk of severe and life-threatening bleeding complications. A plethora of tests and assays for platelet phenotyping and function analysis are available, which are, in part, feasible in clinical practice due to adequate point-of-care qualities. However, most of them are time-consuming, require experienced and skilled personnel for platelet handling and processing, and are therefore well-established only in specialized laboratories. This review summarizes major indications, methods/assays for platelet phenotyping, and in vitro function testing in blood samples with reduced platelet count in relation to their clinical practicability. In addition, the diagnostic significance, difficulties, and challenges of selected tests to evaluate the hemostatic capacity and specific defects of platelets with reduced number are addressed.
Collapse
Affiliation(s)
- Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Correspondence: ; Tel.: +49-6131-178278
| | - Yavar Shiravand
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| |
Collapse
|
18
|
Zheng Y, Montague SJ, Lim YJ, Xu T, Xu T, Gardiner EE, Lee WM. Label-free multimodal quantitative imaging flow assay for intrathrombus formation in vitro. Biophys J 2021; 120:791-804. [PMID: 33513336 DOI: 10.1016/j.bpj.2021.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/17/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022] Open
Abstract
Microfluidics in vitro assays recapitulate a blood vessel microenvironment using surface-immobilized agonists under biofluidic flows. However, these assays do not quantify intrathrombus mass and activities of adhesive platelets at the agonist margin and use fluorescence labeling, therefore limiting clinical translation potential. Here, we describe a label-free multimodal quantitative imaging flow assay that combines rotating optical coherent scattering microscopy and quantitative phase microscopy. The combined imaging platform enables real-time evaluation of membrane fluctuations of adhesive-only platelets and total intrathrombus mass under physiological flow rates in vitro. We call this multimodal quantitative imaging flow assay coherent optical scattering and phase interferometry (COSI). COSI records intrathrombus mass to picogram accuracy and shape changes to a platelet membrane with high spatial-temporal resolution (0.4 μm/s) under physiological and pathophysiological fluid shear stress (1800 and 7500 s-1). With COSI, we generate an axial slice of 4 μm from the coverslip surface, approximately equivalent to the thickness of a single platelet, which permits nanoscale quantification of membrane fluctuation (activity) of adhesive platelets during initial adhesion, spreading, and recruitment into a developing thrombus (mass). Under fluid shear, pretreatment with a broad range metalloproteinase inhibitor (250 μM GM6001) blocked shedding of platelet adhesion receptors that shown elevated adhesive platelet activity at average of 42.1 μm/s and minimal change in intrathrombus mass.
Collapse
Affiliation(s)
- Yujie Zheng
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research
| | - Samantha J Montague
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research
| | - Yean J Lim
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research; ACRF Centre for Intravital Imaging of Niches for Cancer Immune Therapy
| | - Tao Xu
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research
| | - Tienan Xu
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research
| | - Woei Ming Lee
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research; ACRF Centre for Intravital Imaging of Niches for Cancer Immune Therapy; The ARC Centre of Excellence in Advanced Molecular Imaging, The Australian National University, Canberra, Australia.
| |
Collapse
|
19
|
Platelet Function Testing in Patients on Antiplatelet Therapy before Cardiac Surgery. Anesthesiology 2020; 133:1263-1276. [DOI: 10.1097/aln.0000000000003541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Based on variable pharmacodynamic responsiveness and platelet reactivity recovery after discontinuation of P2Y12 receptor inhibitors, preoperative platelet function testing may individualize discontinuation and be a part of transfusion algorithm triggering targeted postpump hemostatic management.
Collapse
|
20
|
Le Blanc J, Mullier F, Vayne C, Lordkipanidzé M. Advances in Platelet Function Testing-Light Transmission Aggregometry and Beyond. J Clin Med 2020; 9:jcm9082636. [PMID: 32823782 PMCID: PMC7464122 DOI: 10.3390/jcm9082636] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/19/2023] Open
Abstract
Platelet function testing is essential for the diagnosis of hemostasis disorders. While there are many methods used to test platelet function for research purposes, standardization is often lacking, limiting their use in clinical practice. Light transmission aggregometry has been the gold standard for over 60 years, with inherent challenges of working with live dynamic cells in specialized laboratories with independent protocols. In recent years, standardization efforts have brought forward fully automated systems that could lead to more widespread use. Additionally, new technical approaches appear promising for the future of specialized hematology laboratories. This review presents developments in platelet function testing for clinical applications.
Collapse
Affiliation(s)
- Jessica Le Blanc
- Montreal Heart Institute Research Center, Montréal, QC H1T 1C8, Canada;
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - François Mullier
- Université catholique de Louvain, CHU UCL Namur, Namur Thrombosis and Hemostasis Center (NTHC), Hematology Laboratory, 5530 Yvoir, Belgium;
| | - Caroline Vayne
- Department of Hemostasis, University Hospital of Tours, 37044 Tours, France;
- EA 7501 GICC, University of Tours, 37000 Tours, France
| | - Marie Lordkipanidzé
- Montreal Heart Institute Research Center, Montréal, QC H1T 1C8, Canada;
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Correspondence: ; Tel.: +1-514-376-3330 (ext. 2694); Fax: +1-514-376-0173
| |
Collapse
|
21
|
Small procoagulant platelets in diabetes type 2. Thromb Res 2020; 195:1-7. [PMID: 32629151 DOI: 10.1016/j.thromres.2020.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/31/2020] [Accepted: 06/21/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Strong agonist provocation in vitro creates small procoagulant platelets characterized by down-regulated fibrinogen receptors as judged from surface αIIbβ3 activation specific antibody (PAC-1). They further show increased surface Annexin V (binds to platelet membrane phosphatidylserine), lysosomal-associated membrane protein 1 (LAMP-1) (indicates lysosomal release) and exhibit disturbed mitochondria integrity as estimated from mitochondrial transmembrane potential changes. We postulated that some circulating platelets activate continuously thereby forming procoagulant populations in vivo. This study aimed to identify such platelets in diabetes type 2 a condition predisposing for thrombotic events. METHODS A linear Percoll™ gradient covering the density span 1.090 to 1.040 kg/L was used to separate whole blood platelets from type 2 diabetic subjects (n = 12) into 17 density subpopulations. The gradient contained theophylline, prostaglandin E1 and EDTA to prevent platelet activation in vitro. A multi-colour flow cytometer was employed for analysing the characteristics mentioned above for all density separated small-sized platelet subfractions. RESULTS AND CONCLUSION Small platelets were enriched in medium-dense subfractions (nos. 10-13) (1.065-1.053 kg/L). Their PAC-1 activities were significant lower (p < 0.001) as compared to other small-sized subpopulations. They further exposed enhanced surface Annexin V and LAMP-1 together with lower mitochondrial transmembrane potentials. In diabetes type 2 such small circulating platelets showed procoagulant features.
Collapse
|
22
|
Munnix ICA, Van Oerle R, Verhezen P, Kuijper P, Hackeng CM, Hopman-Kerkhoff HIJ, Hudig F, Van De Kerkhof D, Leyte A, De Maat MPM, Oude Elferink RFM, Ruinemans-Koerts J, Schoorl M, Slomp J, Soons H, Stroobants A, Van Wijk E, Henskens YMC. Harmonizing light transmission aggregometry in the Netherlands by implementation of the SSC-ISTH guideline. Platelets 2020; 32:516-523. [PMID: 32522065 DOI: 10.1080/09537104.2020.1771549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Light transmission aggregometry (LTA) is considered the gold standard method for evaluation of platelet function. However, there are a lot of variation in protocols (pre-analytical procedures and agonist concentrations) and results. The aim of our study was to establish a national LTA protocol, to investigate the effect of standardization and to define national reference values for LTA. The SSC guideline was used as base for a national procedure. Almost all recommendations of the SSC were followed e.g. no adjustment of PRP, citrate concentration of 109 mM, 21 needle gauge, fasting, resting time for whole blood and PRP, centrifugation time, speed and agonists concentrations. LTA of healthy volunteers was measured in a total of 16 hospitals with 5 hospitals before and after standardization. Results of more than 120 healthy volunteers (maximum aggregation %) were collected, with participating laboratories using 4 different analyzers with different reagents. Use of low agonist concentrations showed high variation before and after standardization, with the exception of collagen. For most high agonist concentrations (ADP, collagen, ristocetin, epinephrine and arachidonic acid) variability in healthy subjects decreased after standardization. We can conclude that a standardized Dutch protocol for LTA, based on the SSC guideline, does not result in smaller variability in healthy volunteers for all agonist concentrations.
Collapse
Affiliation(s)
- I C A Munnix
- Department of Clinical Chemistry, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - R Van Oerle
- Central Diagnostic Laboratory, Maastricht University Medical Centre +, Maastricht, The Netherlands
| | - P Verhezen
- Central Diagnostic Laboratory, Maastricht University Medical Centre +, Maastricht, The Netherlands
| | - P Kuijper
- Clinical Laboratory, Maxima Medical Centre, Veldhoven, The Netherlands
| | - C M Hackeng
- Department of Clinical Chemistry, St. Antonius Hospital, Nieuwegein, The Netherlands
| | | | - F Hudig
- LabWest, Haga Teaching Hospital, The Hague, The Netherlands
| | - D Van De Kerkhof
- Clinical Laboratory, Catharina Hospital, Eindhoven, The Netherlands
| | - A Leyte
- Department of Clinical Chemistry, OLVG Laboratoria BV, Amsterdam, The Netherlands
| | - M P M De Maat
- Department of Hematology, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | - J Ruinemans-Koerts
- Department of Clinical Chemistry and Haematology, Rijnstate Hospital, Arnhem, The Netherlands
| | - M Schoorl
- Department of Clinical Chemistry, Haematology & Immunology,Northwest Clinics, Alkmaar, The Netherlands
| | - J Slomp
- Department of Clinical Chemistry, Medlon, Location Medisch Spectrum Twente, Enschede, The Netherlands
| | - H Soons
- Department of Clinical Chemistry, St. Anna Hospital, Geldrop, The Netherlands
| | - A Stroobants
- Department of Clinical Chemistry, AmsterdamUMC Location AMC, Amsterdam, The Netherlands
| | - E Van Wijk
- Department of Clinical Chemistry, St. Elisabeth Hospital, Tilburg, The Netherlands
| | - Y M C Henskens
- Central Diagnostic Laboratory, Maastricht University Medical Centre +, Maastricht, The Netherlands
| |
Collapse
|