1
|
Hao Z, Dong X, Zhang Z, Qin Z. A Nanobody of PEDV S1 Protein: Screening and Expression in Escherichia coli. Biomolecules 2024; 14:1116. [PMID: 39334881 PMCID: PMC11430113 DOI: 10.3390/biom14091116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) has caused significant economic losses to the pig farming industry in various countries for a long time. Currently, there are no highly effective preventive or control measures available. Research into the pathogenic mechanism of PEDV has shown that it primarily causes infection by binding the S protein to the CD13 (APN) receptor on the membrane of porcine intestinal epithelial cells. The S1 region contains three neutralization epitopes and multiple receptor-binding domains, which are closely related to viral antigenicity and ad-sorption invasion. Nanobodies are a type of single-domain antibody that have been discovered in recent years. They can be expressed on a large scale through prokaryotic expression systems, which makes them cost-effective, stable, and less immunogenic. This study used a phage display library of nanobodies against the PEDV S1 protein. After three rounds of selection and enrichment, the DNA sequence of the highly specific nanobody S1Nb1 was successfully obtained. To obtain soluble nanobody S1Nb1, its DNA sequence was inserted into the vector Pcold and a solubility-enhancing SUMO tag was added. The resulting recombinant vector, Pcold-SUMO-S1Nb1, was then transformed into E. coli BL21(DE3) to determine the optimal expression conditions for the nanobody. Following purification using Ni-column affinity chromatography, Western blot analysis confirmed the successful purification of S1Nb1 carrying the solubility-enhancing tag. ELISA results demonstrated a strong affinity between the S1Nb1 nanobody and PEDV S1 protein.
Collapse
Affiliation(s)
| | | | | | - Zhihua Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Z.H.); (X.D.); (Z.Z.)
| |
Collapse
|
2
|
Martinod K, Wagner DD. Reflections on Targeting Neutrophil Extracellular Traps in Deep Vein Thrombosis. Arterioscler Thromb Vasc Biol 2024; 44:1719-1724. [PMID: 39047082 PMCID: PMC11279430 DOI: 10.1161/atvbaha.124.320148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Affiliation(s)
- Kimberly Martinod
- Center for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Denisa D. Wagner
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, US
| |
Collapse
|
3
|
Li X, Zhang W, Shu Y, Huo R, Zheng C, Qi Q, Fu P, Sun J, Wang Y, Wang Y, Lu J, Zhao X, Yin G, Wang Q, Hong J. Biparatopic anti-PCSK9 antibody enhances the LDL-uptake in HepG2 cells. Sci Rep 2024; 14:15331. [PMID: 38961200 PMCID: PMC11222478 DOI: 10.1038/s41598-024-66290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a promising therapeutic target to reduce lipids. In 2020, we reported a chimeric camelid-human heavy chain antibody VHH-B11-Fc targeting PCSK9. Recently, it was verified that VHH-B11 binds one linear epitope in the PCSK9 hinge region. To enhance its druggability, we have developed a novel biparatopic B11-H2-Fc Ab herein. Thereinto, surface plasmon resonance (SPR) confirmed the epitope differences in binding-PCSK9 among VHH-B11, VHH-H2 and the approved Repatha. Additionally, SPR revealed the B11-H2-Fc exhibits an avidity of approximately 0.036 nM for PCSK9, representing a considerable increase compared to VHH-B11-Fc (~ 0.69 nM). Moreover, we found the Repatha and B11-H2-Fc exhibited > 95% PCSK9 inhibition efficiency compared to approximately 48% for the VHH-Fc at 7.4 nM (P < 0.0005). Further, we verified its biological activity using the human hepatoma cells G2 model, where the B11-H2-Fc exhibited almost 100% efficiency in PCSK9 inhibition at only 0.75 μM. The immunoblotting results of low-density lipoprotein cholesterol (LDL-c) uptake assay also demonstrated the excellent performance of B11-H2-Fc on recovering the LDL-c receptor (LDLR), as strong as the Repatha (P > 0.05). These findings provide the first evidence of the efficacy of a novel Ab targeting PCSK9 in the field of lipid-lowering drugs.
Collapse
Affiliation(s)
- Xinyang Li
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China.
| | - Wei Zhang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Yu Shu
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China
| | - Rui Huo
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China
| | - Chengyang Zheng
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China
| | - Qi Qi
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China
| | - Pengfei Fu
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China
| | - Jie Sun
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China
| | - Yuhuan Wang
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China
| | - Yan Wang
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China
| | - Juxu Lu
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China
| | - Xiangjie Zhao
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China
| | - Guoyou Yin
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China.
| | - Qingqing Wang
- Employment and Business Startup Service Center, Henan University of Urban Construction, Ping Dingshan, 467036, China.
| | - Jun Hong
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China.
| |
Collapse
|
4
|
Sim DS, Shukla M, Mallari CR, Fernández JA, Xu X, Schneider D, Bauzon M, Hermiston TW, Mosnier LO. Selective modulation of activated protein C activities by a nonactive site-targeting nanobody library. Blood Adv 2023; 7:3036-3048. [PMID: 36735416 PMCID: PMC10331410 DOI: 10.1182/bloodadvances.2022008740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Activated protein C (APC) is a pleiotropic coagulation protease with anticoagulant, anti-inflammatory, and cytoprotective activities. Selective modulation of these APC activities contributes to our understanding of the regulation of these physiological mechanisms and permits the development of therapeutics for the pathologies associated with these pathways. An antibody library targeting the nonactive site of APC was generated using llama antibodies (nanobodies). Twenty-one nanobodies were identified that selectively recognize APC compared with the protein C zymogen. Overall, 3 clusters of nanobodies were identified based on the competition for APC in biolayer interferometry studies. APC functional assays for anticoagulant activity, histone H3 cleavage, and protease-activated receptor 1 (PAR1) cleavage were used to understand their diversity. These functional assays revealed 13 novel nanobody-induced APC activity profiles via the selective modulation of APC pleiotropic activities, with the potential to regulate specific mechanisms for therapeutic purposes. Within these, 3 nanobodies (LP2, LP8, and LP17) inhibited all 3 APC functions. Four nanobodies (LP1, LP5, LP16, and LP20) inhibited only 2 of the 3 functions. Monofunction inhibition specific to APC anticoagulation activity was observed only by 2 nanobodies (LP9 and LP11). LP11 was also found to shift the ratio of APC cleavage of PAR1 at R46 relative to R41, which results in APC-mediated biased PAR1 signaling and APC cytoprotective effects. Thus, LP11 has an activity profile that could potentially promote hemostasis and cytoprotection in bleedings associated with hemophilia or coagulopathy by selectively modulating APC anticoagulation and PAR1 cleavage profile.
Collapse
Affiliation(s)
- Derek S. Sim
- Coagulant Therapeutics Corporation, Berkeley, CA
| | - Meenal Shukla
- Department of Molecular Medicine, Scripps Research, La Jolla, CA
| | | | | | - Xiao Xu
- Department of Molecular Medicine, Scripps Research, La Jolla, CA
| | | | - Maxine Bauzon
- Consultants for Coagulant Therapeutics, Berkeley, CA
| | | | | |
Collapse
|
5
|
Shestopal SA, Parunov LA, Olivares P, Chun H, Ovanesov MV, Pettersson JR, Sarafanov AG. Isolated Variable Domains of an Antibody Can Assemble on Blood Coagulation Factor VIII into a Functional Fv-like Complex. Int J Mol Sci 2022; 23:ijms23158134. [PMID: 35897712 PMCID: PMC9330781 DOI: 10.3390/ijms23158134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
Single-chain variable fragments (scFv) are antigen-recognizing variable fragments of antibodies (FV) where both subunits (VL and VH) are connected via an artificial linker. One particular scFv, iKM33, directed against blood coagulation factor VIII (FVIII) was shown to inhibit major FVIII functions and is useful in FVIII research. We aimed to investigate the properties of iKM33 enabled with protease-dependent disintegration. Three variants of iKM33 bearing thrombin cleavage sites within the linker were expressed using a baculovirus system and purified by two-step chromatography. All proteins retained strong binding to FVIII by surface plasmon resonance, and upon thrombin cleavage, dissociated into VL and VH as shown by size-exclusion chromatography. However, in FVIII activity and low-density lipoprotein receptor-related protein 1 binding assays, the thrombin-cleaved iKM33 variants were still inhibitory. In a pull-down assay using an FVIII-affinity sorbent, the isolated VH, a mixture of VL and VH, and intact iKM33 were carried over via FVIII analyzed by electrophoresis. We concluded that the isolated VL and VH assembled into scFv-like heterodimer on FVIII, and the isolated VH alone also bound FVIII. We discuss the potential use of both protease-cleavable scFvs and isolated Fv subunits retaining high affinity to the antigens in various practical applications such as therapeutics, diagnostics, and research.
Collapse
|
6
|
Development and characterization of a camelid derived antibody targeting a linear epitope in the hinge domain of human PCSK9 protein. Sci Rep 2022; 12:12211. [PMID: 35842473 PMCID: PMC9288512 DOI: 10.1038/s41598-022-16453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
PCSK9 is an effective target for lowering LDL-c. Previously, a camelid-human chimeric heavy chain antibody VHH-B11-Fc targeting human PCSK9 was designed. It had a potent hypolipidemic effect. However, the nanobody VHH-B11 interacts with PCSK9 at low affinity, while camelid VHH exhibits some immunogenicity. Moreover, the interacting epitope is yet to be identified, although VHH-B11 was shown to have distinct hPCSK9-binding epitopes for Evolocumab. This might impede the molecule’s progress from bench to bedside. In the present study, we designed various configurations to improve the affinity of VHH-B11 with hPCSK9 (< 10 nM) that in turn enhanced the druggability of VHH-B11-Fc. Then, 17 amino acids were specifically mutated to increase the degree of humanization of the nanobody VHH-B11. Using phage display and sequencing technology, the linear epitope “STHGAGW” (amino acids 447–452) was identified in the hinge region of PCSK9 as the interacting site between VHH-B11-Fc and hPCSK9. Unlike the interaction epitope of Evolocumab, located in the catalytic region of PCSK9, the binding epitope of VHH-B11 is located in the hinge region of PCSK9, which is rarely reported. These findings indicated that a specific mechanism underlying this interaction needs to be explored.
Collapse
|
7
|
Sedzro JC, Adam F, Auditeau C, Bianchini E, De Carvalho A, Peyron I, Daramé S, Gandrille S, Thomassen S, Hackeng TM, Christophe OD, Lenting PJ, Denis CV, Borgel D, Saller F. Antithrombotic potential of a single-domain antibody enhancing the activated protein C-cofactor activity of protein S. J Thromb Haemost 2022; 20:1653-1664. [PMID: 35445541 DOI: 10.1111/jth.15736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/05/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Protein S (PS) is a natural anticoagulant acting as a cofactor for activated protein C (APC) in the proteolytic inactivation of activated factors V (FVa) and VIII (FVIIIa), but also for tissue factor pathway inhibitor α (TFPIα) in the inhibition of activated factor X (FXa). OBJECTIVE For therapeutic purposes, we aimed at generating single-domain antibodies (sdAbs) that could specifically modulate the APC-cofactor activity of PS in vivo. METHODS A llama-derived immune library of sdAbs was generated and screened on recombinant human PS by phage display. PS binders were tested in a global activated partial thromboplastin time (APTT)-based APC-cofactor activity assay. RESULTS A PS-specific sdAb (PS003) was found to enhance the APC-cofactor activity of PS in our APTT-based assay, and this enhancing effect was greater for a bivalent form of PS003 (PS003biv). Further characterization of PS003biv demonstrated that PS003biv also enhanced the APC-cofactor activity of PS in a tissue factor (TF)-induced thrombin generation assay and stimulated APC in the inactivation of FVa, but not FVIIIa, in plasma-based assays. Furthermore, PS003biv was directed against the sex hormone-binding globulin (SHBG)-like domain but did not inhibit the binding of PS to C4b-binding protein (C4BP) and did not interfere with the TFPIα-cofactor activity of PS. In mice, PS003biv exerted an antithrombotic effect in a FeCl3 -induced thrombosis model, while not affecting physiological hemostasis in a tail-clip bleeding model. DISCUSSION Altogether, these results showed that pharmacological enhancement of the APC-cofactor activity of PS through an original anti-PS sdAb might constitute a promising and safe antithrombotic strategy.
Collapse
Affiliation(s)
- Josepha C Sedzro
- Hémostase, Inflammation, Thrombose (HITh), UMR-S1176, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Frédéric Adam
- Hémostase, Inflammation, Thrombose (HITh), UMR-S1176, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Claire Auditeau
- Hémostase, Inflammation, Thrombose (HITh), UMR-S1176, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Service d'Hématologie Biologique, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Elsa Bianchini
- Hémostase, Inflammation, Thrombose (HITh), UMR-S1176, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Allan De Carvalho
- Hémostase, Inflammation, Thrombose (HITh), UMR-S1176, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Ivan Peyron
- Hémostase, Inflammation, Thrombose (HITh), UMR-S1176, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Sadyo Daramé
- Hémostase, Inflammation, Thrombose (HITh), UMR-S1176, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Sophie Gandrille
- Innovations Thérapeutiques en Hémostase, UMR-S1140, INSERM, Université de Paris, Paris, France
- Service d'Hématologie Biologique, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Stella Thomassen
- Cardiovascular Research Institute Maastricht (CARIM), University Maastricht, Maastricht, the Netherlands
| | - Tilman M Hackeng
- Cardiovascular Research Institute Maastricht (CARIM), University Maastricht, Maastricht, the Netherlands
| | - Olivier D Christophe
- Hémostase, Inflammation, Thrombose (HITh), UMR-S1176, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Peter J Lenting
- Hémostase, Inflammation, Thrombose (HITh), UMR-S1176, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Cécile V Denis
- Hémostase, Inflammation, Thrombose (HITh), UMR-S1176, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Delphine Borgel
- Hémostase, Inflammation, Thrombose (HITh), UMR-S1176, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Service d'Hématologie Biologique, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - François Saller
- Hémostase, Inflammation, Thrombose (HITh), UMR-S1176, INSERM, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
8
|
Denis CV, Lenting PJ, Wahl D. TaSER: Combining forces to stop the clot. J Thromb Haemost 2022; 20:293-295. [PMID: 35060308 DOI: 10.1111/jth.15597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Cécile V Denis
- Laboratory for Hemostasis, Inflammation & Thrombosis (HITh), Unité Mixte de Recherche (UMR)-1176, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Peter J Lenting
- Laboratory for Hemostasis, Inflammation & Thrombosis (HITh), Unité Mixte de Recherche (UMR)-1176, Institut National de la Santé et de la Recherche Médicale (Inserm), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Denis Wahl
- Centre Hospitalier Régional Universitaire de Nancy, Vascular Medicine Division and Regional Competence Center for Rare Vascular and Systemic Autoimmune Diseases, Nancy, France
| |
Collapse
|
9
|
Du L, Yang Y, Zhang X, Li F. Recent advances in nanotechnology-based COVID-19 vaccines and therapeutic antibodies. NANOSCALE 2022; 14:1054-1074. [PMID: 35018939 PMCID: PMC8863106 DOI: 10.1039/d1nr03831a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
COVID-19 has caused a global pandemic and millions of deaths. It is imperative to develop effective countermeasures against the causative viral agent, SARS-CoV-2 and its many variants. Vaccines and therapeutic antibodies are the most effective approaches for preventing and treating COVID-19, respectively. SARS-CoV-2 enters host cells through the activities of the virus-surface spike (S) protein. Accordingly, the S protein is a prime target for vaccines and therapeutic antibodies. Dealing with particles with dimensions on the scale of nanometers, nanotechnology has emerged as a critical tool for rapidly designing and developing safe, effective, and urgently needed vaccines and therapeutics to control the COVID-19 pandemic. For example, nanotechnology was key to the fast-track approval of two mRNA vaccines for their wide use in human populations. In this review article, we first explore the roles of nanotechnology in battling COVID-19, including protein nanoparticles (for presentation of protein vaccines), lipid nanoparticles (for formulation with mRNAs), and nanobodies (as unique therapeutic antibodies). We then summarize the currently available COVID-19 vaccines and therapeutics based on nanotechnology.
Collapse
Affiliation(s)
- Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Xiujuan Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Fang Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, USA
- Center for Coronavirus Research, University of Minnesota, Saint Paul, Minnesota, USA.
| |
Collapse
|
10
|
Yu S, Xiong G, Zhao S, Tang Y, Tang H, Wang K, Liu H, Lan K, Bi X, Duan S. Nanobodies targeting immune checkpoint molecules for tumor immunotherapy and immunoimaging (Review). Int J Mol Med 2020; 47:444-454. [PMID: 33416134 PMCID: PMC7797440 DOI: 10.3892/ijmm.2020.4817] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
The immune checkpoint blockade is an effective strategy to enhance the anti-tumor T cell effector activity, thus becoming one of the most promising immunotherapeutic strategies in the history of cancer treatment. Several immune checkpoint inhibitor have been approved by the FDA, such as anti-CTLA-4, anti-PD-1, anti-PD-L1 monoclonal antibodies. Most tumor patients benefitted from these antibodies, but some of the patients did not respond to them. To increase the effectiveness of immunotherapy, including immune checkpoint blockade therapies, miniaturization of antibodies has been introduced. A single-domain antibody, also known as nanobody, is an attractive reagent for immunotherapy and immunoimaging thanks to its unique structural characteristic consisting of a variable region of a single heavy chain antibody. This structure confers to the nanobody a light molecular weight, making it smaller than conventional antibodies, although remaining able to bind to a specific antigen. Therefore, this review summarizes the production of nanobodies targeting immune checkpoint molecules and the application of nanobodies targeting immune checkpoint molecules in immunotherapy and immunoimaging.
Collapse
Affiliation(s)
- Sheng Yu
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Gui Xiong
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Shimei Zhao
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Yanbo Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545001, P.R. China
| | - Hua Tang
- Department of Clinical Laboratory, The Second Clinical Medical College of Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545006, P.R. China
| | - Kaili Wang
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Hongjing Liu
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Ke Lan
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Xiongjie Bi
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545001, P.R. China
| | - Siliang Duan
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| |
Collapse
|