1
|
Kosovari M, Buffeteau T, Thomas L, Guay Bégin AA, Vellutini L, McGettrick JD, Laroche G, Durrieu MC. Silanization Strategies for Tailoring Peptide Functionalization on Silicon Surfaces: Implications for Enhancing Stem Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29770-29782. [PMID: 38832565 DOI: 10.1021/acsami.4c03727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Biomaterial surface engineering and the integration of cell-adhesive ligands are crucial in biological research and biotechnological applications. The interplay between cells and their microenvironment, influenced by chemical and physical cues, impacts cellular behavior. Surface modification of biomaterials profoundly affects cellular responses, especially at the cell-surface interface. This work focuses on enhancing cellular activities through material manipulation, emphasizing silanization for further functionalization with bioactive molecules such as RGD peptides to improve cell adhesion. The grafting of three distinct silanes onto silicon wafers using both spin coating and immersion methods was investigated. This study sheds light on the effects of different alkyl chain lengths and protecting groups on cellular behavior, providing valuable insights into optimizing silane-based self-assembled monolayers (SAMs) before peptide or protein grafting for the first time. Specifically, it challenges the common use of APTES molecules in this context. These findings advance our understanding of surface modification strategies, paving the way for tailoring biomaterial surfaces to modulate the cellular behavior for diverse biotechnological applications.
Collapse
Affiliation(s)
- Melissa Kosovari
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac F-33600, France
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, 1065 Avenue de la médecine, Québec G1 V 0A6, Canada
- Axe médecine régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada
| | - Thierry Buffeteau
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France
| | - Laurent Thomas
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France
| | - Andrée-Anne Guay Bégin
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, 1065 Avenue de la médecine, Québec G1 V 0A6, Canada
- Axe médecine régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada
| | - Luc Vellutini
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France
| | - James D McGettrick
- College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, U.K
| | - Gaétan Laroche
- Laboratoire d'Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, 1065 Avenue de la médecine, Québec G1 V 0A6, Canada
- Axe médecine régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec G1L 3L5, Canada
| | | |
Collapse
|
2
|
Liu Y, Yang Y, Wang G, Wang D, Shao PL, Tang J, He T, Zheng J, Hu R, Liu Y, Xu Z, Niu D, Lv J, Yang J, Xiao H, Wu S, He S, Tang Z, Liu Y, Tang M, Jiang X, Yuan J, Dai H, Zhang B. Multiplexed discrimination of SARS-CoV-2 variants via plasmonic-enhanced fluorescence in a portable and automated device. Nat Biomed Eng 2023; 7:1636-1648. [PMID: 37735541 DOI: 10.1038/s41551-023-01092-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Abstract
Portable assays for the rapid identification of lineages of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed to aid large-scale efforts in monitoring the evolution of the virus. Here we report a multiplexed assay in a microarray format for the detection, via isothermal amplification and plasmonic-gold-enhanced near-infrared fluorescence, of variants of SARS-CoV-2. The assay, which has single-nucleotide specificity for variant discrimination, single-RNA-copy sensitivity and does not require RNA extraction, discriminated 12 lineages of SARS-CoV-2 (in three mutational hotspots of the Spike protein) and detected the virus in nasopharyngeal swabs from 1,034 individuals at 98.8% sensitivity and 100% specificity, with 97.6% concordance with genome sequencing in variant discrimination. We also report a compact, portable and fully automated device integrating the entire swab-to-result workflow and amenable to the point-of-care detection of SARS-CoV-2 variants. Portable, rapid, accurate and multiplexed assays for the detection of SARS-CoV-2 variants and lineages may facilitate variant-surveillance efforts.
Collapse
Affiliation(s)
- Ying Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Infectious Disease Department, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Guanghui Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dou Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Pan-Lin Shao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiahu Tang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Tingzhen He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jintao Zheng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ruibin Hu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yiyi Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ziyi Xu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dan Niu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jiahui Lv
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jingkai Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Hongjun Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shuai Wu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Infectious Disease Department, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Shuang He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Zhongrong Tang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yan Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Infectious Disease Department, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | | | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Jing Yuan
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Infectious Disease Department, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
| | - Hongjie Dai
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Bo Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
3
|
He J, Wu S, Chen W, Kim A, Yang W, Wang C, Gu Z, Shen J, Dai S, Chen W, Chen P. Calligraphy of Nanoplasmonic Bioink-Based Multiplex Immunosensor for Precision Immune Monitoring and Modulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50047-50057. [PMID: 37856877 DOI: 10.1021/acsami.3c11417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Immunomodulation therapies have attracted immense interest recently for the treatment of immune-related diseases, such as cancer and viral infections. This new wave of enthusiasm for immunomodulators, predominantly revolving around cytokines, has spurred emerging needs and opportunities for novel immune monitoring and diagnostic tools. Considering the highly dynamic immune status and limited window for therapeutic intervention, precise real-time detection of cytokines is critical to effectively monitor and manage the immune system and optimize the therapeutic outcome. The clinical success of such a rapid, sensitive, multiplex immunoanalytical platform further requires the system to have ease of integration and fabrication for sample sparing and large-scale production toward massive parallel analysis. In this article, we developed a nanoplasmonic bioink-based, label-free, multiplex immunosensor that can be readily "written" onto a glass substrate via one-step calligraphy patterning. This facile nanolithography technique allows programmable patterning of a minimum of 3 μL of nanoplasmonic bioink in 1 min and thus enables fabrication of a nanoplasmonic microarray immunosensor with 2 h simple incubation. The developed immunosensor was successfully applied for real-time, parallel detection of multiple cytokines (e.g., interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-beta (TGF-β)) in immunomodulated macrophage samples. This integrated platform synergistically incorporates the concepts of nanosynthesis, nanofabrication, and nanobiosensing, showing great potential in the scalable production of label-free multiplex immunosensing devices with superior analytical performance for clinical applications in immunodiagnostics and immunotherapy.
Collapse
Affiliation(s)
- Jiacheng He
- Materials Research and Education Center, Auburn University, Auburn, Alabama 36849, United States
| | - Siqi Wu
- Materials Research and Education Center, Auburn University, Auburn, Alabama 36849, United States
| | - Wu Chen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| | - Albert Kim
- Materials Research and Education Center, Auburn University, Auburn, Alabama 36849, United States
- Center for Medicine, Health, and Society, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Wen Yang
- Materials Research and Education Center, Auburn University, Auburn, Alabama 36849, United States
| | - Chuanyu Wang
- Materials Research and Education Center, Auburn University, Auburn, Alabama 36849, United States
| | - Zhengyang Gu
- Materials Research and Education Center, Auburn University, Auburn, Alabama 36849, United States
| | - Jialiang Shen
- Materials Research and Education Center, Auburn University, Auburn, Alabama 36849, United States
| | - Siyuan Dai
- Materials Research and Education Center, Auburn University, Auburn, Alabama 36849, United States
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, New York, New York 11201, United States
- Department of Biomedical Engineering, New York University, Brooklyn, New York 11201, United States
| | - Pengyu Chen
- Materials Research and Education Center, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
4
|
Vasicek TW, Guillermo S, Swofford DR, Durchman J, Jenkins SV. β-Glucosidase Immobilized on Magnetic Nanoparticles: Controlling Biomolecule Footprint and Particle Functional Group Density to Navigate the Activity-Stability Tradeoff. ACS APPLIED BIO MATERIALS 2022; 5:5347-5355. [PMID: 36331934 DOI: 10.1021/acsabm.2c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the present work, the immobilized footprint of β-glucosidase (BGL) on silica-coated iron oxide was explored to produce reusable catalysts with flexible active sites for high activity and heightened storage stability. Synthesized iron oxide particles were coated with silica and functionalized with various densities of (3-aminopropyl)triethoxysilane (APTES) to obtain particles with amine densities ranging from 0 to 3 × 10-5 mol/g particle. The amine-modified particles were activated with glutaraldehyde, and subsequently, BGL was immobilized using either a 0.1 or 1 mg/mL enzyme solution to produce biomolecules with a large or small footprint on the particle surface. The initial activity, activity for subsequent hydrolysis cycles, activity after extended storage, and biomolecule footprint were studied as a function of APTES density and concentration of enzyme used for immobilization. At high immobilization amounts, the specific activity and footprint were reduced, but the immobilized biomolecules were stable during storage. However, at low enzyme immobilizations, the activity of the enzymes was retained, the immobilized enzymes adopted large footprints, and the storage stability increased with APTES density relative to the free enzyme. These results highlight how controlling both the protein load and functional group density can yield immobilized enzymes possessing high activity, which are stable during storage.
Collapse
Affiliation(s)
- Thaddeus W Vasicek
- Department of Chemistry, The Citadel, Charleston, South Carolina29409, United States
| | - Sylvester Guillermo
- Department of Chemistry, The Citadel, Charleston, South Carolina29409, United States
| | - Danny R Swofford
- Department of Chemistry, The Citadel, Charleston, South Carolina29409, United States
| | - Jeremy Durchman
- Department of Physical Science, University of Arkansas Fort Smith, Fort Smith, Arkansas72913, United States
| | - Samir V Jenkins
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas72205, United States
| |
Collapse
|
5
|
Smits J, Prasad Giri R, Shen C, Mendonça D, Murphy B, Huber P, Rezwan K, Maas M. Assessment of nanoparticle immersion depth at liquid interfaces from chemically equivalent macroscopic surfaces. J Colloid Interface Sci 2022; 611:670-683. [PMID: 34974227 DOI: 10.1016/j.jcis.2021.12.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 01/22/2023]
Abstract
HYPOTHESIS We test whether the wettability of nanoparticles (NPs) straddling at an air/water surface or oil/water interface can be extrapolated from sessile drop-derived macroscopic contact angles (mCAs) on planar substrates, assuming that both the nanoparticles and the macroscopic substrates are chemically equivalent and feature the same electrokinetic potential. EXPERIMENTS Pure silica (SiO2) and amino-terminated silica (APTES-SiO2) NPs are compared to macroscopic surfaces with extremely low roughness (root mean square [RMS] roughness ≤ 2 nm) or a roughness determined by a close-packed layer of NPs (RMS roughness ∼ 35 nm). Equivalence of the surface chemistry is assessed by comparing the electrokinetic potentials of the NPs via electrophoretic light scattering and of the macroscopic substrates via streaming current analysis. The wettability of the macroscopic substrates is obtained from advancing (ACAs) and receding contact angles (RCAs) and in situ synchrotron X-ray reflectivity (XRR) provided by the NP wettability at the liquid interfaces. FINDINGS Generally, the RCA on smooth surfaces provides a good estimate of NP wetting properties. However, mCAs alone cannot predict adsorption barriers that prevent NP segregation to the interface, as is the case with the pure SiO2 nanoparticles. This strategy greatly facilitates assessing the wetting properties of NPs for applications such as emulsion formulation, flotation, or water remediation.
Collapse
Affiliation(s)
- Joeri Smits
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, Bremen D-28359, Germany.
| | - Rajendra Prasad Giri
- Institute of Experimental and Applied Physics, Kiel University, Kiel D-24098, Germany.
| | - Chen Shen
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg D-22607, Germany.
| | - Diogo Mendonça
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, Bremen D-28359, Germany; Department of Mechanical Engineering, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil.
| | - Bridget Murphy
- Institute of Experimental and Applied Physics, Kiel University, Kiel D-24098, Germany; Ruprecht-Haensel Laboratory, Kiel University, Kiel 24118, Germany.
| | - Patrick Huber
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg D-22607, Germany; Hamburg University of Technology, Institute for Materials and X-Ray Physics, Eißendorfer Straße 42, Hamburg 21073, Germany; Hamburg University, Center for Hybrid Nanostructures ChyN, Luruper Chaussee 149, Hamburg 22607, Germany.
| | - Kurosch Rezwan
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, Bremen D-28359, Germany; MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, Bremen D-28359, Germany.
| | - Michael Maas
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, Bremen D-28359, Germany; MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, Bremen D-28359, Germany.
| |
Collapse
|
6
|
Gao Z, Song Y, Hsiao TY, He J, Wang C, Shen J, MacLachlan A, Dai S, Singer BH, Kurabayashi K, Chent P. Machine-Learning-Assisted Microfluidic Nanoplasmonic Digital Immunoassay for Cytokine Storm Profiling in COVID-19 Patients. ACS NANO 2021; 15:18023-18036. [PMID: 34714639 PMCID: PMC8577373 DOI: 10.1021/acsnano.1c06623] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/25/2021] [Indexed: 05/08/2023]
Abstract
Cytokine storm, known as an exaggerated hyperactive immune response characterized by elevated release of cytokines, has been described as a feature associated with life-threatening complications in COVID-19 patients. A critical evaluation of a cytokine storm and its mechanistic linkage to COVID-19 requires innovative immunoassay technology capable of rapid, sensitive, selective detection of multiple cytokines across a wide dynamic range at high-throughput. In this study, we report a machine-learning-assisted microfluidic nanoplasmonic digital immunoassay to meet the rising demand for cytokine storm monitoring in COVID-19 patients. Specifically, the assay was carried out using a facile one-step sandwich immunoassay format with three notable features: (i) a microfluidic microarray patterning technique for high-throughput, multiantibody-arrayed biosensing chip fabrication; (ii) an ultrasensitive nanoplasmonic digital imaging technology utilizing 100 nm silver nanocubes (AgNCs) for signal transduction; (iii) a rapid and accurate machine-learning-based image processing method for digital signal analysis. The developed immunoassay allows simultaneous detection of six cytokines in a single run with wide working ranges of 1-10,000 pg mL-1 and ultralow detection limits down to 0.46-1.36 pg mL-1 using a minimum of 3 μL serum samples. The whole chip can afford a 6-plex assay of 8 different samples with 6 repeats in each sample for a total of 288 sensing spots in less than 100 min. The image processing method enhanced by convolutional neural network (CNN) dramatically shortens the processing time ∼6,000 fold with a much simpler procedure while maintaining high statistical accuracy compared to the conventional manual counting approach. The immunoassay was validated by the gold-standard enzyme-linked immunosorbent assay (ELISA) and utilized for serum cytokine profiling of COVID-19 positive patients. Our results demonstrate the nanoplasmonic digital immunoassay as a promising practical tool for comprehensive characterization of cytokine storm in patients that holds great promise as an intelligent immunoassay for next generation immune monitoring.
Collapse
Affiliation(s)
- Zhuangqiang Gao
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Yujing Song
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Te Yi Hsiao
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Jiacheng He
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Chuanyu Wang
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Jialiang Shen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Alana MacLachlan
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Siyuan Dai
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Benjamin H. Singer
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Katsuo Kurabayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Pengyu Chent
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
7
|
Zhang D, Zhang X. Bioinspired Solid-State Nanochannel Sensors: From Ionic Current Signals, Current, and Fluorescence Dual Signals to Faraday Current Signals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100495. [PMID: 34117705 DOI: 10.1002/smll.202100495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Inspired from bioprotein channels of living organisms, constructing "abiotic" analogues, solid-state nanochannels, to achieve "smart" sensing towards various targets, is highly seductive. When encountered with certain stimuli, dynamic switch of terminal modified probes in terms of surface charge, conformation, fluorescence property, electric potential as well as wettability can be monitored via transmembrane ionic current, fluorescence intensity, faraday current signals of nanochannels and so on. Herein, the modification methodologies of nanochannels and targets-detecting application are summarized in ions, small molecules, as well as biomolecules, and systematically reviewed are the nanochannel-based detection means including 1) by transmembrane current signals; 2) by the coordination of current- and fluorescence-dual signals; 3) by faraday current signals from nanochannel-based electrode. The coordination of current and fluorescence dual signals offers great benefits for synchronous temporal and spatial monitoring. Faraday signals enable the nanoelectrode to monitor both redox and non-redox components. Notably, by incorporation with confined effect of tip region of a needle-like nanopipette, glorious in-vivo monitoring is conferred on the nanopipette detector at high temporal-spatial resolution. In addition, some outlooks for future application in reliable practical samples analysis and leading research endeavors in the related fantastic fields are provided.
Collapse
Affiliation(s)
- Dan Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| |
Collapse
|
8
|
Yao C, Ahmed MH, De Grave L, Yoshihara K, Mercelis B, Okazaki Y, Van Landuyt KL, Huang C, Van Meerbeek B. Optimizing glass-ceramic bonding incorporating new silane technology in an experimental universal adhesive formulation. Dent Mater 2021; 37:894-904. [PMID: 33757655 DOI: 10.1016/j.dental.2021.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Incorporating silane-coupling agent into universal adhesives (UAs) to simplify adhesive luting of glass-ceramic restorations appeared ineffective due to silane's instability in an acidic aqueous solution. This study aimed to evaluate new silane technology added to an experimental UA to be bonded to glass ceramics without separate prior silanization. METHODS Combined silane technology, consisting of 3-(aminopropyl)triethoxysilane (APTES) and γ-methacryloxypropyltriethoxysilane (γMPTES), was incorporated into an experimental UA formulation, being referred to as ADH-XTE (3M Oral Care). Immediate and aged shear bond strength (SBS) of ADH-XTE onto as-milled ('AM'), tribochemical silica-coated ('TSC'), HF-etched ('HF'), and mirror-polished ('MP') glass-ceramic CAD/CAM blocks (IPS e.max CAD) with/without separate silanization was measured (n = 10/group). The control adhesives included Scotchbond Universal ('SBU') and Scotchbond 1 XT ('SB1-XT'). The glass-ceramic surface topography and the fractography of the SBS-debonded specimens were observed by SEM. RESULTS Without separate prior silanization, the experimental UA ADH-XTE, containing combined APTES/γMPTES silane technology, significantly outperformed the glass-ceramic bonding efficiency of its silane-containing SBU precursor, while it performed equally effective as SBU applied with prior silanization. Upon aging, significant reduction in SBS was recorded when ADH-XTE was bonded to TSC glass-ceramic surfaces (p < 0.05), while not to HF ones. Notably, the lowest SBS was obtained when the UAs were bonded to AM and MP glass-ceramic surfaces, in particular when applied without separate prior silanization (p < 0.05). SIGNIFICANCE The glass-ceramic bonding capacity of the new combined APTES/γMPTES silane-containing UA ADH-XTE surpassed that of its SBU precursor. HF etching remains needed to durably bond to glass-ceramics.
Collapse
Affiliation(s)
- Chenmin Yao
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, 3000 Leuven, Belgium; Wuhan University, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, 430079 Wuhan, China
| | - Mohammed H Ahmed
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, 3000 Leuven, Belgium; Tanta University, Faculty of Dentistry, Department of Dental Biomaterials, 31511 Tanta, Egypt
| | - Lauren De Grave
- KU Leuven (University of Leuven), Department of Chemistry, Polymer Chemistry and Materials, 3000 Leuven, Belgium
| | - Kumiko Yoshihara
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, 761-0395 Takamatsu, Japan; Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Department of Pathology & Experimental Medicine, 700-8556 Okayama, Japan
| | - Ben Mercelis
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, 3000 Leuven, Belgium
| | - Yohei Okazaki
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, 3000 Leuven, Belgium; Hiroshima University, Department of Advanced Prosthodontics, 734-8553 Hiroshima, Japan
| | - Kirsten L Van Landuyt
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, 3000 Leuven, Belgium
| | - Cui Huang
- Wuhan University, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, 430079 Wuhan, China
| | - Bart Van Meerbeek
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, 3000 Leuven, Belgium.
| |
Collapse
|
9
|
Ashraf K, Roy K, Higgins DA, Collinson MM. On the Importance of Silane Infusion Order on the Microscopic and Macroscopic Properties of Multifunctional Charge Gradients. ACS OMEGA 2020; 5:21897-21905. [PMID: 32905528 PMCID: PMC7469646 DOI: 10.1021/acsomega.0c03068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Four multicomponent charge gradients containing acidic and basic functionalities were prepared via sol-gel processes and the controlled-rate infusion (CRI) method to more clearly understand how preparation conditions influence macroscopic properties. CRI is used to form gradients by infusing reactive alkoxysilanes into a glass vial housing a vertically oriented modified silicon wafer. The concentration and time of infusion of the silane solutions were kept constant. Only the sequence of infusion of the silane solutions was changed. The first set of samples was prepared by initially infusing a solution containing 3-aminopropyltriethoxysilane (APTES) followed by a mercaptopropyltrimethoxysilane (MPTMS) solution. The individual gradients were formed either in an aligned or opposed fashion with respect to the initial gradient. The second set of samples was prepared by infusing the MPTMS solution first followed by the APTES solution, again in either an aligned or opposed fashion. To create charge gradients (NH3 +, SO3 -), the samples were immersed into H2O2. The extent of modification, the degree of protonation of the amine, and the thicknesses of the individual layers were examined by X-ray photoelectron spectroscopy (XPS) and spectroscopic ellipsometry. The wettability of the individual gradients was assessed via static contact angle measurements. The results demonstrate the importance of infusion order and how it influences the macroscopic and microscopic properties of gradient surfaces including the surface concentration, packing density, degree of protonation, and ultimately wettability. When the gradient materials are prepared via infusion of the APTES sol first, it results in increased deposition of both the amine and thiol groups as evidenced by XPS. Interestingly, the total thickness evaluated from ellipsometry was independent of the infusion order for the aligned gradients, indicative of significant differences in the film density. For the opposed gradients, however, the infusion of APTES first leads to a significantly thicker composite film. Furthermore, it also leads to a more pronounced gradient in the protonation of the amine, which introduces a very different surface wettability. The use of aminosilanes provides a viable approach to create gradient surfaces with different functional group distributions. These studies demonstrate that the controlled placement of functional groups on a surface can provide a new route to prepare gradient materials with improved performance.
Collapse
Affiliation(s)
- Kayesh
M. Ashraf
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Kallol Roy
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Daniel A. Higgins
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506-0401, United States
| | - Maryanne M. Collinson
- Department
of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| |
Collapse
|
10
|
Kolosov MA, Chuyko YI, Kulyk OG, Mazepa AV, Zavarzin VV, Kholin YV. α-Aminophosphonate derivatives of triethoxysilane for the synthesis of surface-modified silica. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1689270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Maksim A. Kolosov
- School of Chemistry, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Yulia I. Chuyko
- School of Chemistry, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Olesia G. Kulyk
- School of Chemistry, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Alexander V. Mazepa
- A.V. Bogatsky Physico-Chemical Institute of the NAS of Ukraine, Odessa, Ukraine
| | | | - Yuriy V. Kholin
- School of Chemistry, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| |
Collapse
|
11
|
Villegas M, Zhang Y, Abu Jarad N, Soleymani L, Didar TF. Liquid-Infused Surfaces: A Review of Theory, Design, and Applications. ACS NANO 2019; 13:8517-8536. [PMID: 31373794 DOI: 10.1021/acsnano.9b04129] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Due to inspiration from the Nepenthes pitcher plant, a frontier of devices has emerged with unmatched capabilities. Liquid-infused surfaces (LISs), particularly known for their liquid-repelling behavior under low tilting angles (<5°), have demonstrated a plethora of applications in medical, marine, energy, industrial, and environmental materials. This review presents recent developments of LIS technology and its prospective to define the future direction of this technology in solving tomorrow's real-life challenges. First, an introduction to the different models explaining the physical phenomena of these surfaces, their wettability, and viscous-dependent frictional forces is discussed. Then, an outline of different emerging strategies required to fabricate a stable liquid-infused interface is presented, including different substrates, lubricants, surface chemistries, and design parameters which can be tuned depending on the application. Furthermore, applications of LIS coatings in the areas of anticorrosion, antifouling, anti-icing, self-healing, droplet manipulation, and biomedical devices will be presented followed by the limitations and future direction of this technology.
Collapse
|
12
|
Dharanivasan G, Jesse DM, Rajamuthuramalingam T, Rajendran G, Shanthi S, Kathiravan K. Scanometric Detection of Tomato Leaf Curl New Delhi Viral DNA Using Mono- and Bifunctional AuNP-Conjugated Oligonucleotide Probes. ACS OMEGA 2019; 4:10094-10107. [PMID: 31460102 PMCID: PMC6648060 DOI: 10.1021/acsomega.9b00340] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/15/2019] [Indexed: 05/07/2023]
Abstract
Scanometric detection of tomato leaf curl New Delhi viral DNA using AuNP-conjugated mono- and bifunctional oligo probes through direct DNA hybridization assay (DDH assay) and sandwich DNA hybridization assay (SDH assay) with silver enhancement was developed. Tomato leaf curl New Delhi virus (ToLCNDV) coat protein gene-specific thiol-modified ssoligo probes were used for the preparation of mono- and bifunctional AuNP-ssoligo probe conjugates (signal probes). ssDNA arrays were prepared using polymerase chain reaction (PCR), rolling circle amplification (RCA), genomic DNAs fragments, and phosphate-modified positive control/capture probes through 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/1-methylimidazole conjugation on the amine-modified glass slide (GS) surface. In the DDH assay, signal probes were directly hybridized with ssDNA array of positive control and ToLCNDV DNA samples and the detection signals were amplified by silver enhancement. Dark black/gray colors were developed on the GS by the result of Ag enhancement, which can be visualized and discriminated by the naked eye. The images were captured using a simple flatbed scanner, and the determined amounts of signal probes were hybridized with their target DNA. Similarly, the SDH assay also performed through two rounds of hybridization between capture probes and target DNA; target DNA and signal probes followed by silver enhancement. The detection signals were found higher in the PCR sample than the RCA and genomic DNA samples because of the presence of increased copy numbers of complementary DNAs in PCR samples. Further, bifunctional AuNP-ssoligo probe shows higher intensity of detection signal than monofunctional probes because it can be hybridized with both strands of dsDNA targets. Moreover, the DDH-based scanometric method showed higher detection sensitivity than the SDH assay-based scanometric method. Overall, bifunctional signal probes showed more detection sensitivity than monofunctional probes in scanometric methods based on both DDH and SDH assays. The limit of detection of this developed scanometric method was optimized (100 zM to 100 pM concentration). Further, DDH assay-based scanometric method shows significant advantages over the SDH assay method, such as cost-effectiveness, because it requires only single probes (signal probes), less time-consuming by the need of only single-step hybridization, and higher detection sensitivity (up to zM). To the best of our knowledge, this is the first attempt made to develop a scanometric-based nanoassay method for the detection of plant viral DNA. This approach will be a remarkable milestone for the application of nanotechnology in the development of nanobiosensor for plant pathogen detection.
Collapse
Affiliation(s)
- Gunasekaran Dharanivasan
- Department
of Biotechnology and Department of Zoology, University of Madras, Guindy Campus, Chennai 600025, Tamil
Nadu, India
| | - Denison Michael
Immanuel Jesse
- Department
of Biotechnology and Department of Zoology, University of Madras, Guindy Campus, Chennai 600025, Tamil
Nadu, India
| | - Thangavelu Rajamuthuramalingam
- Department
of Biotechnology and Department of Zoology, University of Madras, Guindy Campus, Chennai 600025, Tamil
Nadu, India
| | - Ganapathy Rajendran
- Department
of Biotechnology and Department of Zoology, University of Madras, Guindy Campus, Chennai 600025, Tamil
Nadu, India
| | - Sathappan Shanthi
- Department
of Biotechnology and Department of Zoology, University of Madras, Guindy Campus, Chennai 600025, Tamil
Nadu, India
| | - Krishnan Kathiravan
- Department
of Biotechnology and Department of Zoology, University of Madras, Guindy Campus, Chennai 600025, Tamil
Nadu, India
| |
Collapse
|
13
|
Bae S, Jang JE, Lee HW, Ryu J. Tailored Assembly of Molecular Water Oxidation Catalysts on Photoelectrodes for Artificial Photosynthesis. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Sanghyun Bae
- Department of Energy Engineering; School of Energy and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Ji-Eun Jang
- Department of Energy Engineering; School of Energy and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Hyun-Wook Lee
- Department of Energy Engineering; School of Energy and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Jungki Ryu
- Department of Energy Engineering; School of Energy and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil Ulsan 44919 Republic of Korea
| |
Collapse
|
14
|
Okhrimenko DV, Budi A, Ceccato M, Cárdenas M, Johansson DB, Lybye D, Bechgaard K, Andersson MP, Stipp SLS. Hydrolytic Stability of 3-Aminopropylsilane Coupling Agent on Silica and Silicate Surfaces at Elevated Temperatures. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8344-8353. [PMID: 28195455 DOI: 10.1021/acsami.6b14343] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
3-Aminopropylsilane (APS) coupling agent is widely used in industrial, biomaterial, and medical applications to improve adhesion of polymers to inorganic materials. However, during exposure to elevated humidity and temperature, the deposited APS layers can decompose, leading to reduction in coupling efficiency, thus decreasing the product quality and the mechanical strength of the polymer-inorganic material interface. Therefore, a better understanding of the chemical state and stability of APS on inorganic surfaces is needed. In this work, we investigated APS adhesion on silica wafers and compared its properties with those on complex silicate surfaces such as those used by industry (mineral fibers and fiber melt wafers). The APS was deposited from aqueous and organic (toluene) solutions and studied with surface sensitive techniques, including X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), streaming potential, contact angle, and spectroscopic ellipsometry. APS configuration on a model silica surface at a range of coverages was simulated using density functional theory (DFT). We also studied the stability of adsorbed APS during aging at high humidity and elevated temperature. Our results demonstrated that APS layer formation depends on the choice of solvent and substrate used for deposition. On silica surfaces in toluene, APS formed unstable multilayers, while from aqueous solutions, thinner and more stable APS layers were produced. The chemical composition and substrate roughness influence the amount of deposited APS. More APS was deposited and its layers were more stable on fiber melt than on silica wafers. The changes in the amount of adsorbed APS can be successfully monitored by streaming potential. These results will aid in improving industrial- and laboratory-scale APS deposition methods and increasing adhesion and stability, thus increasing the quality and effectiveness of materials where APS is used as a coupling agent.
Collapse
Affiliation(s)
- Denis V Okhrimenko
- Nano-Science Center, Department of Chemistry, University of Copenhagen , 2100 Copenhagen OE, Denmark
| | - Akin Budi
- Nano-Science Center, Department of Chemistry, University of Copenhagen , 2100 Copenhagen OE, Denmark
| | - Marcel Ceccato
- Nano-Science Center, Department of Chemistry, University of Copenhagen , 2100 Copenhagen OE, Denmark
| | - Marité Cárdenas
- Nano-Science Center, Department of Chemistry, University of Copenhagen , 2100 Copenhagen OE, Denmark
- Department of Biomedical Sciences and Biofilm Research Center for Biointerfaces, Health & Society, Malmoe University , Malmoe 20500, Sweden
| | - Dorte B Johansson
- ROCKWOOL International A/S , Hovedgaden 584, 2640 Hedehusene, Denmark
| | - Dorthe Lybye
- ROCKWOOL International A/S , Hovedgaden 584, 2640 Hedehusene, Denmark
| | - Klaus Bechgaard
- Nano-Science Center, Department of Chemistry, University of Copenhagen , 2100 Copenhagen OE, Denmark
| | - Martin P Andersson
- Nano-Science Center, Department of Chemistry, University of Copenhagen , 2100 Copenhagen OE, Denmark
| | - Susan L S Stipp
- Nano-Science Center, Department of Chemistry, University of Copenhagen , 2100 Copenhagen OE, Denmark
| |
Collapse
|
15
|
Chen X, Leary TF, Maldarelli C. Transport of biomolecules to binding partners displayed on the surface of microbeads arrayed in traps in a microfluidic cell. BIOMICROFLUIDICS 2017; 11:014101. [PMID: 28096941 PMCID: PMC5218969 DOI: 10.1063/1.4973247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/13/2016] [Indexed: 05/15/2023]
Abstract
Arrays of probe molecules integrated into a microfluidic cell are utilized as analytical tools to screen the binding interactions of the displayed probes against a target molecule. These assay platforms are useful in enzyme or antibody discovery, clinical diagnostics, and biosensing, as their ultraminiaturized design allows for high sensitivity and reduced consumption of reagents and target. We study here a platform in which the probes are first grafted to microbeads which are then arrayed in the microfluidic cell by capture in a trapping course. We examine a course which consists of V-shaped, half-open enclosures, and study theoretically and experimentally target mass transfer to the surface probes. Target binding is a two step process of diffusion across streamlines which convect the target over the microbead surface, and kinetic conjugation to the surface probes. Finite element simulations are obtained to calculate the target surface concentration as a function of time. For slow convection, large diffusive gradients build around the microbead and the trap, decreasing the overall binding rate. For rapid convection, thin diffusion boundary layers develop along the microbead surface and within the trap, increasing the binding rate to the idealized limit of untrapped microbeads in a channel. Experiments are undertaken using the binding of a target, fluorescently labeled NeutrAvidin, to its binding partner biotin, on the microbead surface. With the simulations as a guide, we identify convective flow rates which minimize diffusion barriers so that the transport rate is only kinetically determined and measure the rate constant.
Collapse
Affiliation(s)
- Xiaoxiao Chen
- Department of Chemical Engineering, Benjamin Levich Institute, City College of the City University of New York , New York, New York 10031, USA
| | - Thomas F Leary
- Department of Chemical Engineering, Benjamin Levich Institute, City College of the City University of New York , New York, New York 10031, USA
| | - Charles Maldarelli
- Department of Chemical Engineering, Benjamin Levich Institute, City College of the City University of New York , New York, New York 10031, USA
| |
Collapse
|
16
|
Shang J, Hong K, Wang T, Zhu D, Shen J. Dielectric and Mechanical Investigations on the Hydrophilicity and Hydrophobicity of Polyethylene Oxide Modified on a Silicon Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11395-11404. [PMID: 27690462 DOI: 10.1021/acs.langmuir.6b02436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Polyethylene oxide (PEO) has been widely used in biomedical fields. The antibiofouling property of the PEO-modified surface has been extensively investigated but is far from being fully understood. A series of PEOs with narrowly distributed molecular weight (Mw), synthesized with the technique of high vacuum anionic polymerization, have been successfully grafted onto the surface of silicon wafers. The power-law relationship between the thickness of the monolayer versus the Mw of the grafted PEO shows a scaling of 0.3, indicating compact condensing of the chains. The static contact angles show higher hydrophobicity for the layer of PEO with higher Mw, which can be attributed to the closely packed conformation of the chains with high density. The frequency shift of the contact resonance indicates that the Young's modulus decreases and the loss factor increases with the increase in the Mw of PEO and the thickness of the PEO layers. Dielectric spectroscopy of bare or PEO-grafted wafers in the aqueous solutions reveals an interfacial polarization, which results from compositional and structural changes in the interface layer and depends on temperatures and salt concentrations. At a given grafting density, the PEO chains are swollen in pure water, demonstrating hydrophilic behavior, whereas they collapse in salt solutions, showing hydrophobic characteristics.
Collapse
Affiliation(s)
- Jing Shang
- Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, China
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831-6494, United States
| | - Tao Wang
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China , Hefei 230026, P. R. China
| | - Dan Zhu
- Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, China
| | - Jian Shen
- Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University , Nanjing 210023, China
| |
Collapse
|
17
|
Nanostructures of 3-aminopropyltriethoxysilane created on flat substrate by combining colloid lithography and vapor deposition. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.01.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Fischer T, Dietrich PM, Unger WES, Rurack K. Multimode Surface Functional Group Determination: Combining Steady-State and Time-Resolved Fluorescence with X-ray Photoelectron Spectroscopy and Absorption Measurements for Absolute Quantification. Anal Chem 2016; 88:1210-7. [DOI: 10.1021/acs.analchem.5b03468] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tobias Fischer
- Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Paul M. Dietrich
- Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Wolfgang E. S. Unger
- Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Knut Rurack
- Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| |
Collapse
|
19
|
Jin J, Han Y, Zhang C, Liu J, Jiang W, Yin J, Liang H. Effect of grafted PEG chain conformation on albumin and lysozyme adsorption: A combined study using QCM-D and DPI. Colloids Surf B Biointerfaces 2015; 136:838-44. [PMID: 26546889 DOI: 10.1016/j.colsurfb.2015.10.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/20/2015] [Accepted: 10/19/2015] [Indexed: 12/23/2022]
Abstract
In this study, elucidation of protein adsorption mechanism is performed using dual polarization interferometry (DPI) and quartz crystal microbalance with dissipation (QCM-D) to study adsorption behaviors of bovine serum albumin (BSA) and lysozyme (LYZ) on poly (ethylene glycol) (PEG) layers. From the analysis of DPI, PEG2000 and PEG5000 show tight and loose mushroom conformations, respectively. Small amount of LYZ could displace the interfacial water surrounding the tight mushroomed PEG2000 chains by hydrogen bond attraction, leading to protein adsorption. The loose mushroomed PEG5000 chains exhibit a more flexible conformation and high elastic repulsion energy that could prevent protein adsorption of all BSA and most of LYZ. From the analysis of QCM, PEG2000 and PEG5000 show tight and extended brush conformations. The LYZ adsorbed mass has critical regions of PEG2000 (0.19 chain/nm(2)) and PEG5000 (0.16 chain/nm(2)) graft density. When graft density of PEG is higher than the critical region (brush conformations), the attraction of hydrogen bonds between PEG and LYZ is the dominant factor. When graft density of PEG is lower than the critical region (mushroom conformations), elastic repulsion between PEG and proteins is driven by the high conformation entropy of PEG chains, which is the dominant force of steric repulsion in PEG-protein systems. Therefore, the adsorption of BSA is suppressed by the high elastic repulsion energy of PEG chains, whereas the adsorption of LYZ is balanced by the interactions between the repulsion of entropy elasticity and the attraction of hydrogen bonds.
Collapse
Affiliation(s)
- Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yuanyuan Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Chang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Jingchuan Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Haojun Liang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| |
Collapse
|
20
|
Fischer T, Dietrich PM, Streeck C, Ray S, Nutsch A, Shard A, Beckhoff B, Unger WES, Rurack K. Quantification of Variable Functional-Group Densities of Mixed-Silane Monolayers on Surfaces via a Dual-Mode Fluorescence and XPS Label. Anal Chem 2015; 87:2685-92. [DOI: 10.1021/ac503850f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tobias Fischer
- Division
1.9 Chemical and Optical Sensing, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Paul M. Dietrich
- Division
6.8 Surface Analysis and Interfacial Chemistry, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 44-46, 12203 Berlin, Germany
| | - Cornelia Streeck
- X-ray
and IR Spectrometry Group, Physikalisch-Technische Bundesanstalt PTB, Abbestrasse
2-12, 10587 Berlin, Germany
| | - Santanu Ray
- Surface
and Nanoanalysis Group, Analytical Science Division, National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
| | - Andreas Nutsch
- X-ray
and IR Spectrometry Group, Physikalisch-Technische Bundesanstalt PTB, Abbestrasse
2-12, 10587 Berlin, Germany
| | - Alex Shard
- Surface
and Nanoanalysis Group, Analytical Science Division, National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
| | - Burkhard Beckhoff
- X-ray
and IR Spectrometry Group, Physikalisch-Technische Bundesanstalt PTB, Abbestrasse
2-12, 10587 Berlin, Germany
| | - Wolfgang E. S. Unger
- Division
6.8 Surface Analysis and Interfacial Chemistry, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 44-46, 12203 Berlin, Germany
| | - Knut Rurack
- Division
1.9 Chemical and Optical Sensing, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| |
Collapse
|
21
|
Villanueva ME, Salinas A, González JA, Teves S, Copello GJ. Dual antibacterial effect of immobilized quaternary ammonium and aliphatic groups on PVC. NEW J CHEM 2015. [DOI: 10.1039/c5nj01766a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quaternary ammonium salts and lipophilic moieties were separately immobilized onto PVC to obtain a broad spectrum antimicrobial coating.
Collapse
Affiliation(s)
- María Emilia Villanueva
- Cátedra de Química Analítica Instrumental
- Facultad de Farmacia y Bioquímica
- Universidad de Buenos Aires (UBA)
- IQUIMEFA (UBA-CONICET)
- C1113AAD Buenos Aires
| | - Ana Salinas
- Cátedra de Química Analítica Instrumental
- Facultad de Farmacia y Bioquímica
- Universidad de Buenos Aires (UBA)
- IQUIMEFA (UBA-CONICET)
- C1113AAD Buenos Aires
| | - Joaquín Antonio González
- Cátedra de Química Analítica Instrumental
- Facultad de Farmacia y Bioquímica
- Universidad de Buenos Aires (UBA)
- IQUIMEFA (UBA-CONICET)
- C1113AAD Buenos Aires
| | - Sergio Teves
- Cátedra de Microbiología
- Facultad de Farmacia y Bioquímica
- Universidad de Buenos Aires (UBA)
- C1113AAD Ciudad de Buenos Aires
- Argentina
| | - Guillermo Javier Copello
- Cátedra de Química Analítica Instrumental
- Facultad de Farmacia y Bioquímica
- Universidad de Buenos Aires (UBA)
- IQUIMEFA (UBA-CONICET)
- C1113AAD Buenos Aires
| |
Collapse
|
22
|
Vashist SK, Lam E, Hrapovic S, Male KB, Luong JHT. Immobilization of Antibodies and Enzymes on 3-Aminopropyltriethoxysilane-Functionalized Bioanalytical Platforms for Biosensors and Diagnostics. Chem Rev 2014; 114:11083-130. [DOI: 10.1021/cr5000943] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sandeep Kumar Vashist
- HSG-IMIT - Institut für Mikro- und Informationstechnik, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Edmond Lam
- National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | | | - Keith B. Male
- National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | - John H. T. Luong
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Department of Chemistry and Analytical, Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland
| |
Collapse
|
23
|
Dharanivasan G, Rajamuthuramalingam T, Michael Immanuel Jesse D, Rajendiran N, Kathiravan K. Gold nanoparticles assisted characterization of amine functionalized polystyrene multiwell plate and glass slide surfaces. APPLIED NANOSCIENCE 2014. [DOI: 10.1007/s13204-013-0290-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Kirkland B, Wang Z, Zhang P, Takebayashi SI, Lenhert S, Gilbert DM, Guan J. Low-cost fabrication of centimetre-scale periodic arrays of single plasmid DNA molecules. LAB ON A CHIP 2013; 13:3367-72. [PMID: 23824041 PMCID: PMC3753405 DOI: 10.1039/c3lc50562f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report the development of a low-cost method to generate a centimetre-scale periodic array of single plasmid DNA molecules of 11 kilobase pairs. The arrayed DNA molecules are amenable to enzymatic and physical manipulations.
Collapse
Affiliation(s)
- Brett Kirkland
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida 32310-2870, USA
| | - Zhibin Wang
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida 32310-2870, USA
| | - Peipei Zhang
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida 32310-2870, USA
| | - Shin-ichiro Takebayashi
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Steven Lenhert
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
- Integrative NanoScience Institute, Florida State University, Tallahassee, Florida 32306-4370, USA
| | - David M. Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA
| | - Jingjiao Guan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, Florida 32310-2870, USA
- Integrative NanoScience Institute, Florida State University, Tallahassee, Florida 32306-4370, USA
| |
Collapse
|
25
|
Ramiasa M, Ralston J, Fetzer R, Sedev R, Fopp-Spori DM, Morhard C, Pacholski C, Spatz JP. Contact Line Motion on Nanorough Surfaces: A Thermally Activated Process. J Am Chem Soc 2013; 135:7159-71. [DOI: 10.1021/ja3104846] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Melanie Ramiasa
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, South Australia 5095,
Australia
| | - John Ralston
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, South Australia 5095,
Australia
| | - Renate Fetzer
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, South Australia 5095,
Australia
| | - Rossen Sedev
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, South Australia 5095,
Australia
| | - Doris M. Fopp-Spori
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, South Australia 5095,
Australia
| | - Christoph Morhard
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, South Australia 5095,
Australia
| | - Claudia Pacholski
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, South Australia 5095,
Australia
| | - Joachim P. Spatz
- Ian Wark Research Institute, University of South Australia, Mawson Lakes, South Australia 5095,
Australia
| |
Collapse
|
26
|
Anderson CA, Jones AR, Briggs EM, Novitsky EJ, Kuykendall DW, Sottos NR, Zimmerman SC. High-Affinity DNA Base Analogs as Supramolecular, Nanoscale Promoters of Macroscopic Adhesion. J Am Chem Soc 2013; 135:7288-95. [DOI: 10.1021/ja4005283] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cyrus A. Anderson
- Department
of Chemistry, ‡Department of Mechanical Science and Engineering, §Beckman Institute for Advanced Science
and Technology, and ∥Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign,
Urbana, Illinois 61801, United States
| | - Amanda R. Jones
- Department
of Chemistry, ‡Department of Mechanical Science and Engineering, §Beckman Institute for Advanced Science
and Technology, and ∥Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign,
Urbana, Illinois 61801, United States
| | - Ellen M. Briggs
- Department
of Chemistry, ‡Department of Mechanical Science and Engineering, §Beckman Institute for Advanced Science
and Technology, and ∥Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign,
Urbana, Illinois 61801, United States
| | - Eric J. Novitsky
- Department
of Chemistry, ‡Department of Mechanical Science and Engineering, §Beckman Institute for Advanced Science
and Technology, and ∥Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign,
Urbana, Illinois 61801, United States
| | - Darrell W. Kuykendall
- Department
of Chemistry, ‡Department of Mechanical Science and Engineering, §Beckman Institute for Advanced Science
and Technology, and ∥Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign,
Urbana, Illinois 61801, United States
| | - Nancy R. Sottos
- Department
of Chemistry, ‡Department of Mechanical Science and Engineering, §Beckman Institute for Advanced Science
and Technology, and ∥Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign,
Urbana, Illinois 61801, United States
| | - Steven C. Zimmerman
- Department
of Chemistry, ‡Department of Mechanical Science and Engineering, §Beckman Institute for Advanced Science
and Technology, and ∥Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign,
Urbana, Illinois 61801, United States
| |
Collapse
|
27
|
Lusvardi G, Malavasi G, Menabue L, Shruti S. Gallium-containing phosphosilicate glasses: functionalization and in-vitro bioactivity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3190-6. [PMID: 23706200 DOI: 10.1016/j.msec.2013.03.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 03/04/2013] [Accepted: 03/28/2013] [Indexed: 11/15/2022]
Abstract
A gallium containing glass 45.7SiO2·24.1Na2O·26.6CaO·2.6P2O5·1.0Ga2O3 (referred to as "Ga1.0") and a parent Ga-free glass 46.2SiO2·24.3Na2O·26.9CaO·2.6P2O5 (hereinafter represented as "H"), corresponding to Bioglass® 45S5, were functionalized with Tetraethoxysilane (TEOS) and (3-Aminopropyl)triethoxysilane (APTS) in order to improve their ability to bond with biomolecules, such as drugs, proteins, and peptides. Functionalization with TEOS and APTS promoted the increment in OH groups and formation of NH2 groups on the glass surface, respectively. The presence of OH or NH2 groups was investigated by means of IR spectroscopy and elemental analysis. Moreover, in vitro study of these functionalized glasses was performed in simulated body fluid (SBF) so as to investigate the effect of functionalization on the bioactive behavior of H and Ga1.0. The results showed that the functionalization was obtained along with maintaining their bioactivity. The surfaces of both functionalized glasses were covered by a layer of apatite within 30 days of SBF immersion. In addition, CaCO3 was also identified on the surface of APTS functionalized glasses. However, no gallium release was detected during SBF soaking.
Collapse
Affiliation(s)
- Gigliola Lusvardi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | |
Collapse
|
28
|
Ast S, Fischer T, Müller H, Mickler W, Schwichtenberg M, Rurack K, Holdt HJ. Integration of the 1,2,3-triazole "click" motif as a potent signalling element in metal ion responsive fluorescent probes. Chemistry 2013; 19:2990-3005. [PMID: 23319382 DOI: 10.1002/chem.201201575] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Indexed: 12/28/2022]
Abstract
In a systematic approach we synthesized a new series of fluorescent probes incorporating donor-acceptor (D-A) substituted 1,2,3-triazoles as conjugative π-linkers between the alkali metal ion receptor N-phenylaza-[18]crown-6 and different fluorophoric groups with different electron-acceptor properties (4-naphthalimide, meso-phenyl-BODIPY and 9-anthracene) and investigated their performance in organic and aqueous environments (physiological conditions). In the charge-transfer (CT) type probes 1, 2 and 7, the fluorescence is almost completely quenched by intramolecular CT (ICT) processes involving charge-separated states. In the presence of Na(+) and K(+) ICT is interrupted, which resulted in a lighting-up of the fluorescence in acetonitrile. Among the investigated fluoroionophores, compound 7, which contains a 9-anthracenyl moiety as the electron-accepting fluorophore, is the only probe which retains light-up features in water and works as a highly K(+)/Na(+)-selective probe under simulated physiological conditions. Virtually decoupled BODIPY-based 6 and photoinduced electron transfer (PET) type probes 3-5, where the 10-substituted anthracen-9-yl fluorophores are connected to the 1,2,3-triazole through a methylene spacer, show strong ion-induced fluorescence enhancement in acetonitrile, but not under physiological conditions. Electrochemical studies and theoretical calculations were used to assess and support the underlying mechanisms for the new ICT and PET 1,2,3-triazole fluoroionophores.
Collapse
Affiliation(s)
- Sandra Ast
- Institut für Chemie, Anorganische Chemie, Universität Potsdam, Karl-Liebknecht Str. 24-25, 14467 Golm, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Klein TY, Treccani L, Thöming J, Rezwan K. Porous ceramic monoliths assembled from microbeads with high specific surface area for effective biocatalysis. RSC Adv 2013. [DOI: 10.1039/c3ra41765d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
30
|
Pilolli R, Ditaranto N, Cioffi N, Sabbatini L. Non-destructive depth profile reconstruction of bio-engineered surfaces by parallel-angle-resolved X-ray photoelectron spectroscopy. Anal Bioanal Chem 2012; 405:713-24. [DOI: 10.1007/s00216-012-6179-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/14/2012] [Accepted: 06/02/2012] [Indexed: 11/30/2022]
|
31
|
Xiang S, Xing G, Xue W, Lu C, Lin JM. Comparison of two different deposition methods of 3-aminopropyltriethoxysilane on glass slides and their application in the ThinPrep cytologic test. Analyst 2012; 137:1669-73. [DOI: 10.1039/c2an15983j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Christophis C, Taubert I, Meseck GR, Schubert M, Grunze M, Ho AD, Rosenhahn A. Shear stress regulates adhesion and rolling of CD44+ leukemic and hematopoietic progenitor cells on hyaluronan. Biophys J 2011; 101:585-93. [PMID: 21806926 DOI: 10.1016/j.bpj.2011.05.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/19/2011] [Accepted: 05/23/2011] [Indexed: 01/13/2023] Open
Abstract
Leukemic cells and human hematopoietic progenitor cells expressing CD44 receptors have the ability to attach and roll on hyaluronan. We investigated quantitatively the adhesion behavior of leukemic cell lines and hematopoietic progenitor cells on thin films of the polysaccharides hyaluronan and alginate in a microfluidic system. An applied flow enhances the interaction between CD44-positive cells and hyaluronan if a threshold shear stress of 0.2 dyn/cm(2) is exceeded. At shear stress ∼1 dyn/cm(2), the cell rolling speed reaches a maximum of 15 μm/s. Leukemic Jurkat and Kasumi-1 cells lacking CD44-expression showed no adhesion or rolling on the polysaccharides whereas the CD44-expressing leukemic cells KG-1a, HL-60, K-562, and hematopoietic progenitor cells attached and rolled on hyaluronan. Interestingly, the observations of flow-induced cell rolling are related to those found in the recruitment of leukocytes to inflammatory sites and the mechanisms of stem-cell homing into the bone marrow.
Collapse
|
33
|
Briand E, Humblot V, Landoulsi J, Petronis S, Pradier CM, Kasemo B, Svedhem S. Chemical modifications of Au/SiO2 template substrates for patterned biofunctional surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:678-685. [PMID: 21142210 DOI: 10.1021/la101858y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The aim of this work was to create patterned surfaces for localized and specific biochemical recognition. For this purpose, we have developed a protocol for orthogonal and material-selective surface modifications of microfabricated patterned surfaces composed of SiO(2) areas (100 μm diameter) surrounded by Au. The SiO(2) spots were chemically modified by a sequence of reactions (silanization using an amine-terminated silane (APTES), followed by amine coupling of a biotin analogue and biospecific recognition) to achieve efficient immobilization of streptavidin in a functional form. The surrounding Au was rendered inert to protein adsorption by modification by HS(CH(2))(10)CONH(CH(2))(2)(OCH(2)CH(2))(7)OH (thiol-OEG). The surface modification protocol was developed by testing separately homogeneous SiO(2) and Au surfaces, to obtain the two following results: (i) SiO(2) surfaces which allowed the grafting of streptavidin, and subsequent immobilization of biotinylated antibodies, and (ii) Au surfaces showing almost no affinity for the same streptavidin and antibody solutions. The surface interactions were monitored by quartz crystal microbalance with dissipation monitoring (QCM-D), and chemical analyses were performed by polarization modulation-reflexion absorption infrared spectroscopy (PM-RAIRS) and X-ray photoelectron spectroscopy (XPS) to assess the validity of the initial orthogonal assembly of APTES and thiol-OEG. Eventually, microscopy imaging of the modified Au/SiO(2) patterned substrates validated the specific binding of streptavidin on the SiO(2)/APTES areas, as well as the subsequent binding of biotinylated anti-rIgG and further detection of fluorescent rIgG on the functionalized SiO(2) areas. These results demonstrate a successful protocol for the preparation of patterned biofunctional surfaces, based on microfabricated Au/SiO(2) templates and supported by careful surface analysis. The strong immobilization of the biomolecules resulting from the described protocol is advantageous in particular for micropatterned substrates for cell-surface interactions.
Collapse
Affiliation(s)
- Elisabeth Briand
- Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
34
|
Esfandiari NM, Wang Y, McIntire TM, Blum SA. Real-Time Imaging of Platinum−Sulfur Ligand Exchange Reactions at the Single-Molecule Level via a General Chemical Technique. Organometallics 2011. [DOI: 10.1021/om100911n] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- N. Melody Esfandiari
- Department of Chemistry, University of California at Irvine, Irvine, California 92697, United States
| | - Yong Wang
- Department of Chemistry, University of California at Irvine, Irvine, California 92697, United States
| | - Theresa M. McIntire
- Department of Chemistry, University of California at Irvine, Irvine, California 92697, United States
| | - Suzanne A. Blum
- Department of Chemistry, University of California at Irvine, Irvine, California 92697, United States
| |
Collapse
|
35
|
Nie Z, Deiss F, Liu X, Akbulut O, Whitesides GM. Integration of paper-based microfluidic devices with commercial electrochemical readers. LAB ON A CHIP 2010; 10:3163-9. [PMID: 20927458 PMCID: PMC3060706 DOI: 10.1039/c0lc00237b] [Citation(s) in RCA: 311] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The combination of simple Electrochemical Micro-Paper-based Analytical Devices (EµPADs) with commercially available glucometers allows rapid, quantitative electrochemical analysis of a number of compounds relevant to human health (e.g., glucose, cholesterol, lactate, and alcohol) in blood or urine.
Collapse
|
36
|
Prabhu AS, Jubery TZN, Freedman KJ, Mulero R, Dutta P, Kim MJ. Chemically modified solid state nanopores for high throughput nanoparticle separation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:454107. [PMID: 21339595 DOI: 10.1088/0953-8984/22/45/454107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The separation of biomolecules and other nanoparticles is a vital step in several analytical and diagnostic techniques. Towards this end we present a solid state nanopore-based set-up as an efficient separation platform. The translocation of charged particles through a nanopore was first modeled mathematically using the multi-ion model and the surface charge density of the nanopore membrane was identified as a critical parameter that determines the selectivity of the membrane and the throughput of the separation process. Drawing from these simulations a single 150 nm pore was fabricated in a 50 nm thick free-standing silicon nitride membrane by focused-ion-beam milling and was chemically modified with (3-aminopropyl)triethoxysilane to change its surface charge density. This chemically modified membrane was then used to separate 22 and 58 nm polystyrene nanoparticles in solution. Once optimized, this approach can readily be scaled up to nanopore arrays which would function as a key component of next-generation nanosieving systems.
Collapse
Affiliation(s)
- Anmiv S Prabhu
- School of Biomedical Engineering and Health Science, Drexel University, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
37
|
Esfandiari NM, Wang Y, Bass JY, Cornell TP, Otte DAL, Cheng MH, Hemminger JC, McIntire TM, Mandelshtam VA, Blum SA. Single-Molecule Imaging of Platinum Ligand Exchange Reaction Reveals Reactivity Distribution. J Am Chem Soc 2010; 132:15167-9. [DOI: 10.1021/ja105517d] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Yong Wang
- Department of Chemistry, University of California, Irvine, California 92697
| | - Jonathan Y. Bass
- Department of Chemistry, University of California, Irvine, California 92697
| | - Trevor P. Cornell
- Department of Chemistry, University of California, Irvine, California 92697
| | - Douglas A. L. Otte
- Department of Chemistry, University of California, Irvine, California 92697
| | - Ming H. Cheng
- Department of Chemistry, University of California, Irvine, California 92697
| | - John C. Hemminger
- Department of Chemistry, University of California, Irvine, California 92697
| | | | | | - Suzanne A. Blum
- Department of Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
38
|
Gandhiraman R, Gubala V, Nam LCH, Volcke C, Doyle C, James B, Daniels S, Williams D. Deposition of chemically reactive and repellent sites on biosensor chips for reduced non-specific binding. Colloids Surf B Biointerfaces 2010; 79:270-5. [DOI: 10.1016/j.colsurfb.2010.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 04/13/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
|
39
|
Takahashi H, Nakayama M, Yamato M, Okano T. Controlled Chain Length and Graft Density of Thermoresponsive Polymer Brushes for Optimizing Cell Sheet Harvest. Biomacromolecules 2010; 11:1991-9. [DOI: 10.1021/bm100342e] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Masamichi Nakayama
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University (TWIns), 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
40
|
Pozhitkov AE, Boube I, Brouwer MH, Noble PA. Beyond Affymetrix arrays: expanding the set of known hybridization isotherms and observing pre-wash signal intensities. Nucleic Acids Res 2009; 38:e28. [PMID: 19969547 PMCID: PMC2836560 DOI: 10.1093/nar/gkp1122] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microarray hybridization studies have attributed the nonlinearity of hybridization isotherms to probe saturation and post-hybridization washing. Both processes are thought to distort ‘true’ target abundance because immobilized probes are saturated with excess target and stringent washing removes loosely bound targets. Yet the paucity of studies aimed at understanding hybridization and dissociation makes it difficult to align physicochemical theory to microarray results. To fill the void, we first examined hybridization isotherms generated on different microarray platforms using a ribosomal RNA target and then investigated hybridization signals at equilibrium and after stringent wash. Hybridization signal at equilibrium was achieved by treating the microarray with isopropanol, which prevents nucleic acids from dissolving into solution. Our results suggest that (i) the shape of hybridization isotherms varied by microarray platform with some being hyperbolic or linear, and others following a power-law; (ii) at equilibrium, fluorescent signal of different probes hybridized to the same target were not similar even with excess of target and (iii) the amount of target removed by stringent washing depended upon the hybridization time, the probe sequence and the presence/absence of nonspecific targets. Possible physicochemical interpretations of the results and future studies are discussed.
Collapse
Affiliation(s)
- Alex E Pozhitkov
- Gulf Coast Research Laboratory, University of Southern Mississippi, 703 E Beach Dr, Ocean Springs, MS 39564, USA
| | | | | | | |
Collapse
|