1
|
Cai AJ, Gao K, Zhang F, Jiang YW. Recent advances and current status of gene therapy for epilepsy. World J Pediatr 2024; 20:1115-1137. [PMID: 39395088 DOI: 10.1007/s12519-024-00843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/05/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Epilepsy is a common neurological disorder with complex pathogenic mechanisms, and refractory epilepsy often lacks effective treatments. Gene therapy is a promising therapeutic option, with various preclinical experiments achieving positive results, some of which have progressed to clinical studies. DATA SOURCES This narrative review was conducted by searching for papers published in PubMed/MEDLINE with the following single and/or combination keywords: epilepsy, children, neurodevelopmental disorders, genetics, gene therapy, vectors, transgenes, receptors, ion channels, micro RNAs (miRNAs), clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)9 (CRISPR/Cas9), expression regulation, optogenetics, chemical genetics, mitochondrial epilepsy, challenges, ethics, and disease models. RESULTS Currently, gene therapy research in epilepsy primarily focuses on symptoms attenuation mediated by viral vectors such as adeno-associated virus and other types. Advances in gene therapy technologies, such as CRISPR/Cas9, have provided a new direction for epilepsy treatment. However, the clinical application still faces several challenges, including issues related to vectors, models, expression controllability, and ethical considerations. CONCLUSIONS Here, we summarize the relevant research and clinical advances in gene therapy for epilepsy and outline the challenges facing its clinical application. In addition to the shortcomings inherent in gene therapy components, the reconfiguration of excitatory and inhibitory properties in epilepsy treatment is a delicate process. On-demand, cell-autonomous treatments and multidisciplinary collaborations may be crucial in addressing these issues. Understanding gene therapy for epilepsy will help clinicians gain a clearer perception of the research progress and challenges, guiding the design of future clinical protocols and research decisions.
Collapse
Affiliation(s)
- Ao-Jie Cai
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Henan Province, Zhengzhou, 450052, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Fan Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- Children Epilepsy Center, Peking University First Hospital, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| | - Yu-Wu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China.
- Children Epilepsy Center, Peking University First Hospital, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
2
|
Lopez V, Schuh HJM, Mirza S, Vaaßen VJ, Schmidt MS, Sylvester K, Idris RM, Renn C, Schäkel L, Pelletier J, Sévigny J, Naggi A, Scheffler B, Lee SY, Bendas G, Müller CE. Heparins are potent inhibitors of ectonucleotide pyrophosphatase/phospho-diesterase-1 (NPP1) - a promising target for the immunotherapy of cancer. Front Immunol 2023; 14:1173634. [PMID: 37711611 PMCID: PMC10497752 DOI: 10.3389/fimmu.2023.1173634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/03/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Heparins, naturally occurring glycosaminoglycans, are widely used for thrombosis prevention. Upon application as anticoagulants in cancer patients, heparins were found to possess additional antitumor activities. Ectonucleotidases have recently been proposed as novel targets for cancer immunotherapy. Methods and results In the present study, we discovered that heparin and its derivatives act as potent, selective, allosteric inhibitors of the poorly investigated ectonucleotidase NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1, CD203a). Structure-activity relationships indicated that NPP1 inhibition could be separated from the compounds' antithrombotic effect. Moreover, unfractionated heparin (UFH) and different low molecular weight heparins (LMWHs) inhibited extracellular adenosine production by the NPP1-expressing glioma cell line U87 at therapeutically relevant concentrations. As a consequence, heparins inhibited the ability of U87 cell supernatants to induce CD4+ T cell differentiation into immunosuppressive Treg cells. Discussion NPP1 inhibition likely contributes to the anti-cancer effects of heparins, and their specific optimization may lead to improved therapeutics for the immunotherapy of cancer.
Collapse
Affiliation(s)
- Vittoria Lopez
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - H. J. Maximilian Schuh
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, Bonn, Germany
| | - Salahuddin Mirza
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Victoria J. Vaaßen
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Michael S. Schmidt
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, Bonn, Germany
| | - Katharina Sylvester
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Riham M. Idris
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Christian Renn
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Laura Schäkel
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Départment de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Annamaria Naggi
- Institute for Chemical and Biochemical Research “G. Ronzoni”, Milan, Italy
| | - Björn Scheffler
- DKFZ Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner site, University Hospital Essen and German Cancer Research Center, Heidelberg, Germany
| | - Sang-Yong Lee
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Gerd Bendas
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, Bonn, Germany
| | - Christa E. Müller
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Human In Vitro Models of Epilepsy Using Embryonic and Induced Pluripotent Stem Cells. Cells 2022; 11:cells11243957. [PMID: 36552721 PMCID: PMC9776452 DOI: 10.3390/cells11243957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/25/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
The challenges in making animal models of complex human epilepsy phenotypes with varied aetiology highlights the need to develop alternative disease models that can address the limitations of animal models by effectively recapitulating human pathophysiology. The advances in stem cell technology provide an opportunity to use human iPSCs to make disease-in-a-dish models. The focus of this review is to report the current information and progress in the generation of epileptic patient-specific iPSCs lines, isogenic control cell lines, and neuronal models. These in vitro models can be used to study the underlying pathological mechanisms of epilepsies, anti-seizure medication resistance, and can also be used for drug testing and drug screening with their isogenic control cell lines.
Collapse
|
4
|
Garcia-Gil M, Camici M, Allegrini S, Pesi R, Tozzi MG. Metabolic Aspects of Adenosine Functions in the Brain. Front Pharmacol 2021; 12:672182. [PMID: 34054547 PMCID: PMC8160517 DOI: 10.3389/fphar.2021.672182] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Adenosine, acting both through G-protein coupled adenosine receptors and intracellularly, plays a complex role in multiple physiological and pathophysiological processes by modulating neuronal plasticity, astrocytic activity, learning and memory, motor function, feeding, control of sleep and aging. Adenosine is involved in stroke, epilepsy and neurodegenerative pathologies. Extracellular concentration of adenosine in the brain is tightly regulated. Adenosine may be generated intracellularly in the central nervous system from degradation of AMP or from the hydrolysis of S-adenosyl homocysteine, and then exit via bi-directional nucleoside transporters, or extracellularly by the metabolism of released nucleotides. Inactivation of extracellular adenosine occurs by transport into neurons or neighboring cells, followed by either phosphorylation to AMP by adenosine kinase or deamination to inosine by adenosine deaminase. Modulation of the nucleoside transporters or of the enzymatic activities involved in the metabolism of adenosine, by affecting the levels of this nucleoside and the activity of adenosine receptors, could have a role in the onset or the development of central nervous system disorders, and can also be target of drugs for their treatment. In this review, we focus on the contribution of 5'-nucleotidases, adenosine kinase, adenosine deaminase, AMP deaminase, AMP-activated protein kinase and nucleoside transporters in epilepsy, cognition, and neurodegenerative diseases with a particular attention on amyotrophic lateral sclerosis and Huntington's disease. We include several examples of the involvement of components of the adenosine metabolism in learning and of the possible use of modulators of enzymes involved in adenosine metabolism or nucleoside transporters in the amelioration of cognition deficits.
Collapse
Affiliation(s)
- Mercedes Garcia-Gil
- Department of Biology, Unit of Physiology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Marcella Camici
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Simone Allegrini
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Rossana Pesi
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Maria Grazia Tozzi
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Sadanandan N, Saft M, Gonzales-Portillo B, Borlongan CV. Multipronged Attack of Stem Cell Therapy in Treating the Neurological and Neuropsychiatric Symptoms of Epilepsy. Front Pharmacol 2021; 12:596287. [PMID: 33815100 PMCID: PMC8010689 DOI: 10.3389/fphar.2021.596287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/15/2021] [Indexed: 11/13/2022] Open
Abstract
Epilepsy stands as a life-threatening disease that is characterized by unprovoked seizures. However, an important characteristic of epilepsy that needs to be examined is the neuropsychiatric aspect. Epileptic patients endure aggression, depression, and other psychiatric illnesses. Therapies for epilepsy can be divided into two categories: antiepileptic medications and surgical resection. Antiepileptic drugs are used to attenuate heightened neuronal firing and to lessen seizure frequency. Alternatively, surgery can also be conducted to physically cut out the area of the brain that is assumed to be the root cause for the anomalous firing that triggers seizures. While both treatments serve as viable approaches that aim to regulate seizures and ameliorate the neurological detriments spurred by epilepsy, they do not serve to directly counteract epilepsy's neuropsychiatric traits. To address this concern, a potential new treatment involves the use of stem cells. Stem cell therapy has been employed in experimental models of neurological maladies, such as Parkinson's disease, and neuropsychiatric illnesses like depression. Cell-based treatments for epilepsy utilizing stem cells such as neural stem cells (NSCs), mesenchymal stem cells (MSCs), and interneuron grafts have been explored in preclinical and clinical settings, highlighting both the acute and chronic stages of epilepsy. However, it is difficult to create an animal model to capitalize on all the components of epilepsy due to the challenges in delineating the neuropsychiatric aspect. Therefore, further preclinical investigation into the safety and efficacy of stem cell therapy in addressing both the neurological and the neuropsychiatric components of epilepsy is warranted in order to optimize cell dosage, delivery, and timing of cell transplantation.
Collapse
Affiliation(s)
| | | | | | - Cesar V. Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| |
Collapse
|
6
|
Lopez V, Schäkel L, Schuh HJM, Schmidt MS, Mirza S, Renn C, Pelletier J, Lee SY, Sévigny J, Alban S, Bendas G, Müller CE. Sulfated Polysaccharides from Macroalgae Are Potent Dual Inhibitors of Human ATP-Hydrolyzing Ectonucleotidases NPP1 and CD39. Mar Drugs 2021; 19:md19020051. [PMID: 33499103 PMCID: PMC7911304 DOI: 10.3390/md19020051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Extracellular ATP mediates proinflammatory and antiproliferative effects via activation of P2 nucleotide receptors. In contrast, its metabolite, the nucleoside adenosine, is strongly immunosuppressive and enhances tumor proliferation and metastasis. The conversion of ATP to adenosine is catalyzed by ectonucleotidases, which are expressed on immune cells and typically upregulated on tumor cells. In the present study, we identified sulfopolysaccharides from brown and red sea algae to act as potent dual inhibitors of the main ATP-hydrolyzing ectoenzymes, ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) and ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, CD39), showing nano- to picomolar potency and displaying a non-competitive mechanism of inhibition. We showed that one of the sulfopolysaccharides tested as a representative example reduced adenosine formation at the surface of the human glioblastoma cell line U87 in a concentration-dependent manner. These natural products represent the most potent inhibitors of extracellular ATP hydrolysis known to date and have potential as novel therapeutics for the immunotherapy of cancer.
Collapse
Affiliation(s)
- Vittoria Lopez
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Laura Schäkel
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - H. J. Maximilian Schuh
- Pharmaceutical & Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (H.J.M.S.); (M.S.S.); (G.B.)
| | - Michael S. Schmidt
- Pharmaceutical & Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (H.J.M.S.); (M.S.S.); (G.B.)
| | - Salahuddin Mirza
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Christian Renn
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec—Université Laval, Québec City, QC G1V 4G2, Canada; (J.P.); (J.S.)
| | - Sang-Yong Lee
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec—Université Laval, Québec City, QC G1V 4G2, Canada; (J.P.); (J.S.)
- Départment de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Susanne Alban
- Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, 24118 Kiel, Germany;
| | - Gerd Bendas
- Pharmaceutical & Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (H.J.M.S.); (M.S.S.); (G.B.)
| | - Christa E. Müller
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (V.L.); (L.S.); (S.M.); (C.R.); (S.-Y.L.)
- PharmaCenter Bonn, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
- Correspondence: ; Tel.: +49-228-73-2301; Fax: +49-228-73-2567
| |
Collapse
|
7
|
Mehrjardi NZ, Molcanyi M, Hatay FF, Timmer M, Shahbazi E, Ackermann JP, Herms S, Heilmann-Heimbach S, Wunderlich TF, Prochnow N, Haghikia A, Lampert A, Hescheler J, Neugebauer EAM, Baharvand H, Šarić T. Acquisition of chromosome 1q duplication in parental and genome-edited human-induced pluripotent stem cell-derived neural stem cells results in their higher proliferation rate in vitro and in vivo. Cell Prolif 2020; 53:e12892. [PMID: 32918782 PMCID: PMC7574866 DOI: 10.1111/cpr.12892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023] Open
Abstract
Objectives Genetic engineering of human‐induced pluripotent stem cell‐derived neural stem cells (hiPSC‐NSC) may increase the risk of genomic aberrations. Therefore, we asked whether genetic modification of hiPSC‐NSCs exacerbates chromosomal abnormalities that may occur during passaging and whether they may cause any functional perturbations in NSCs in vitro and in vivo. Materials and Methods The transgenic cassette was inserted into the AAVS1 locus, and the genetic integrity of zinc‐finger nuclease (ZFN)‐modified hiPSC‐NSCs was assessed by the SNP‐based karyotyping. The hiPSC‐NSC proliferation was assessed in vitro by the EdU incorporation assay and in vivo by staining of brain slices with Ki‐67 antibody at 2 and 8 weeks after transplantation of ZFN‐NSCs with and without chromosomal aberration into the striatum of immunodeficient rats. Results During early passages, no chromosomal abnormalities were detected in unmodified or ZFN‐modified hiPSC‐NSCs. However, at higher passages both cell populations acquired duplication of the entire long arm of chromosome 1, dup(1)q. ZNF‐NSCs carrying dup(1)q exhibited higher proliferation rate than karyotypically intact cells, which was partly mediated by increased expression of AKT3 located on Chr1q. Compared to karyotypically normal ZNF‐NSCs, cells with dup(1)q also exhibited increased proliferation in vivo 2 weeks, but not 2 months, after transplantation. Conclusions These results demonstrate that, independently of ZFN‐editing, hiPSC‐NSCs have a propensity for acquiring dup(1)q and this aberration results in increased proliferation which might compromise downstream hiPSC‐NSC applications.
Collapse
Affiliation(s)
- Narges Zare Mehrjardi
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marek Molcanyi
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Firuze Fulya Hatay
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Marco Timmer
- Department of Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Ebrahim Shahbazi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Justus P Ackermann
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Stefan Herms
- Department of Genomics, Life & Brain Center, Institute for Human Genetics, University of Bonn, Bonn, Germany.,Department of Biomedicine, Medical Genetics, Research Group Genomics, University Hospital Basel, Basel, Switzerland
| | - Stefanie Heilmann-Heimbach
- Department of Genomics, Life & Brain Center, Institute for Human Genetics, University of Bonn, Bonn, Germany
| | - Thomas F Wunderlich
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Max Planck Institute for Metabolism Research and Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Nora Prochnow
- Clinic for Neurology, St. Josef-Hospital, Clinic of the Ruhr-University Bochum, Bochum, Germany
| | - Aiden Haghikia
- Clinic for Neurology, St. Josef-Hospital, Clinic of the Ruhr-University Bochum, Bochum, Germany
| | - Angelika Lampert
- Institute of Physiology, Uniklinik, RWTH Aachen University, Aachen, Germany
| | - Jürgen Hescheler
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Edmund A M Neugebauer
- Medizinische Hochschule Brandenburg Theodor Fontane, Campus Neuruppin, Neuruppin, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Tomo Šarić
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Traynelis SF, Dlugos D, Henshall D, Mefford HC, Rogawski MA, Staley KJ, Dacks PA, Whittemore V, Poduri A. Epilepsy Benchmarks Area III: Improved Treatment Options for Controlling Seizures and Epilepsy-Related Conditions Without Side Effects. Epilepsy Curr 2020; 20:23S-30S. [PMID: 31965829 PMCID: PMC7031805 DOI: 10.1177/1535759719895279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The goals of Epilepsy Benchmark Area III involve identifying areas that are ripe for progress in terms of controlling seizures and patient symptoms in light of the most recent advances in both basic and clinical research. These goals were developed with an emphasis on potential new therapeutic strategies that will reduce seizure burden and improve quality of life for patients with epilepsy. In particular, we continue to support the proposition that a better understanding of how seizures are initiated, propagated, and terminated in different forms of epilepsy is central to enabling new approaches to treatment, including pharmacological as well as surgical and device-oriented approaches. The stubbornly high rate of treatment-resistant epilepsy—one-third of patients—emphasizes the urgent need for new therapeutic strategies, including pharmacological, procedural, device linked, and genetic. The development of new approaches can be advanced by better animal models of seizure initiation that represent salient features of human epilepsy, as well as humanized models such as induced pluripotent stem cells and organoids. The rapid advances in genetic understanding of a subset of epilepsies provide a path to new and direct patient-relevant cellular and animal models, which could catalyze conceptualization of new treatments that may be broadly applicable across multiple forms of epilepsies beyond those arising from variation in a single gene. Remarkable advances in machine learning algorithms and miniaturization of devices and increases in computational power together provide an enhanced opportunity to detect and mitigate seizures in real time via devices that interrupt electrical activity directly or administer effective pharmaceuticals. Each of these potential areas for advance will be discussed in turn.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dennis Dlugos
- Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Heather C Mefford
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michael A Rogawski
- Departments of Neurology and Pharmacology, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Kevin J Staley
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | | | - Vicky Whittemore
- Division of Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MA, USA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
9
|
Emerging Role of Purine Metabolizing Enzymes in Brain Function and Tumors. Int J Mol Sci 2018; 19:ijms19113598. [PMID: 30441833 PMCID: PMC6274932 DOI: 10.3390/ijms19113598] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
The growing evidence of the involvement of purine compounds in signaling, of nucleotide imbalance in tumorigenesis, the discovery of purinosome and its regulation, cast new light on purine metabolism, indicating that well known biochemical pathways may still surprise. Adenosine deaminase is important not only to preserve functionality of immune system but also to ensure a correct development and function of central nervous system, probably because its activity regulates the extracellular concentration of adenosine and therefore its function in brain. A lot of work has been done on extracellular 5′-nucleotidase and its involvement in the purinergic signaling, but also intracellular nucleotidases, which regulate the purine nucleotide homeostasis, play unexpected roles, not only in tumorigenesis but also in brain function. Hypoxanthine guanine phosphoribosyl transferase (HPRT) appears to have a role in the purinosome formation and, therefore, in the regulation of purine synthesis rate during cell cycle with implications in brain development and tumors. The final product of purine catabolism, uric acid, also plays a recently highlighted novel role. In this review, we discuss the molecular mechanisms underlying the pathological manifestations of purine dysmetabolisms, focusing on the newly described/hypothesized roles of cytosolic 5′-nucleotidase II, adenosine kinase, adenosine deaminase, HPRT, and xanthine oxidase.
Collapse
|