1
|
Reeves J, Tournier P, Becquart P, Carton R, Tang Y, Vigilante A, Fang D, Habib SJ. Rejuvenating aged osteoprogenitors for bone repair. eLife 2024; 13:RP104068. [PMID: 39692737 DOI: 10.7554/elife.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Aging is marked by a decline in tissue regeneration, posing significant challenges to an increasingly older population. Here, we investigate age-related impairments in calvarial bone healing and introduce a novel two-part rejuvenation strategy to restore youthful repair. We demonstrate that aging negatively impacts the calvarial bone structure and its osteogenic tissues, diminishing osteoprogenitor number and function and severely impairing bone formation. Notably, increasing osteogenic cell numbers locally fails to rescue repair in aged mice, identifying the presence of intrinsic cellular deficits. Our strategy combines Wnt-mediated osteoprogenitor expansion with intermittent fasting, which leads to a striking restoration of youthful levels of bone healing. We find that intermittent fasting improves osteoprogenitor function, benefits that can be recapitulated by modulating NAD+-dependent pathways or the gut microbiota, underscoring the multifaceted nature of this intervention. Mechanistically, we identify mitochondrial dysfunction as a key component in age-related decline in osteoprogenitor function and show that both cyclical nutrient deprivation and Nicotinamide mononucleotide rejuvenate mitochondrial health, enhancing osteogenesis. These findings offer a promising therapeutic avenue for restoring youthful bone repair in aged individuals, with potential implications for rejuvenating other tissues.
Collapse
Affiliation(s)
- Joshua Reeves
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Pierre Tournier
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Pierre Becquart
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Robert Carton
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Yin Tang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Zhejiang University, Zhejiang, China
- Department of Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Alessandra Vigilante
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Dong Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Zhejiang University, Zhejiang, China
- Department of Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Shukry J Habib
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Gurdal M, Ercan G, Barut Selver O, Aberdam D, Zeugolis DI. Development of Biomimetic Substrates for Limbal Epithelial Stem Cells Using Collagen-Based Films, Hyaluronic Acid, Immortalized Cells, and Macromolecular Crowding. Life (Basel) 2024; 14:1552. [PMCID: PMC11678493 DOI: 10.3390/life14121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/05/2025] Open
Abstract
Despite the promising potential of cell-based therapies developed using tissue engineering techniques to treat a wide range of diseases, including limbal stem cell deficiency (LSCD), which leads to corneal blindness, their commercialization remains constrained. This is primarily attributable to the limited cell sources, the use of non-standardizable, unscalable, and unsustainable techniques, and the extended manufacturing processes required to produce transplantable tissue-like surrogates. Herein, we present the first demonstration of the potential of a novel approach combining collagen films (CF), hyaluronic acid (HA), human telomerase-immortalized limbal epithelial stem cells (T-LESCs), and macromolecular crowding (MMC) to develop innovative biomimetic substrates for limbal epithelial stem cells (LESCs). The initial step involved the fabrication and characterization of CF and CF enriched with HA (CF-HA). Subsequently, T-LESCs were seeded on CF, CF-HA, and tissue culture plastic (TCP). Thereafter, the effect of these matrices on basic cellular function and tissue-specific extracellular matrix (ECM) deposition with or without MMC was evaluated. The viability and metabolic activity of cells cultured on CF, CF-HA, and TCP were found to be similar, while CF-HA induced the highest (p < 0.05) cell proliferation. It is notable that CF and HA induced cell growth, whereas MMC increased (p < 0.05) the deposition of collagen IV, fibronectin, and laminin in the T-LESC culture. The data highlight the potential of, in particular, immortalized cells and MMC for the development of biomimetic cell culture substrates, which could be utilized in ocular surface reconstruction following further in vitro, in vivo, and clinical validation of the approach.
Collapse
Affiliation(s)
- Mehmet Gurdal
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, 35100 Izmir, Türkiye;
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland;
| | - Gulinnaz Ercan
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, 35100 Izmir, Türkiye;
- Department of Stem Cell, Institute of Health Sciences, Ege University, 35100 Izmir, Türkiye;
| | - Ozlem Barut Selver
- Department of Stem Cell, Institute of Health Sciences, Ege University, 35100 Izmir, Türkiye;
- Department of Ophthalmology, Faculty of Medicine, Ege University, 35100 Izmir, Türkiye
| | - Daniel Aberdam
- INSERM U1138, Centre des Cordeliers, Université de Paris, 75006 Paris, France;
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland;
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland
| |
Collapse
|
3
|
Liu XW, Xu HW, Yi YY, Zhang SB, Chang SJ, Pan W, Wang SJ. Inhibition of Mettl3 ameliorates osteoblastic senescence by mitigating m6A modifications on Slc1a5 via Igf2bp2-dependent mechanisms. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167273. [PMID: 38844111 DOI: 10.1016/j.bbadis.2024.167273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Age-related osteoporosis is characterized by a marked decrease in the number of osteoblasts, which has been partly attributed to the senescence of cells of the osteoblastic lineage. Epigenetic studies have provided new insights into the mechanisms of current osteoporosis treatments and bone repair pathophysiology. N6-methyladenosine (m6A) is a novel transcript modification that plays a major role in cellular senescence and is essential for skeletal development and internal environmental stability. Bioinformatics analysis revealed that the expression of the m6A reading protein Igf2bp2 was significantly higher in osteoporosis patients. However, the role of Igf2bp2 in osteoblast senescence has not been elucidated. In this study, we found that Igf2bp2 levels are increased in ageing osteoblasts induced by multiple repetition and H2O2. Increasing Igf2bp2 expression promotes osteoblast senescence by increasing the stability of Slc1a5 mRNA and inhibiting cell cycle progression. Additionally, Mettl3 was identified as Slc1a5 m6A-methylated protein with increased m6A modification. The knockdown of Mettl3 in osteoblasts inhibits the reduction of senescence, whereas the overexpression of Mettl3 promotes the senescence of osteoblasts. We found that administering Cpd-564, a specific inhibitor of Mettl3, induced increased bone mass and decreased bone marrow fat accumulation in aged rats. Notably, in an OVX rat model, Igf2bp2 small interfering RNA delivery also induced an increase in bone mass and decreased fat accumulation in the bone marrow. In conclusion, our study demonstrated that the Mettl3/Igf2bp2-Slc1a5 axis plays a key role in the promotion of osteoblast senescence and age-related bone loss.
Collapse
Affiliation(s)
- Xiao-Wei Liu
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hao-Wei Xu
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yu-Yang Yi
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shu-Bao Zhang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Sheng-Jie Chang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wei Pan
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shan-Jin Wang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
4
|
Welter EM, Benavides S, Archer TK, Kosyk O, Zannas AS. Machine learning-based morphological quantification of replicative senescence in human fibroblasts. GeroScience 2024; 46:2425-2439. [PMID: 37985642 PMCID: PMC10828145 DOI: 10.1007/s11357-023-01007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023] Open
Abstract
Although aging has been investigated extensively at the organismal and cellular level, the morphological changes that individual cells undergo along their replicative lifespan have not been precisely quantified. Here, we present the results of a readily accessible machine learning-based pipeline that uses standard fluorescence microscope and open access software to quantify the minute morphological changes that human fibroblasts undergo during their replicative lifespan in culture. Applying this pipeline in a widely used fibroblast cell line (IMR-90), we find that advanced replicative age robustly increases (+28-79%) cell surface area, perimeter, number and total length of pseudopodia, and nuclear surface area, while decreasing cell circularity, with phenotypic changes largely occurring as replicative senescence is reached. These senescence-related morphological changes are recapitulated, albeit to a variable extent, in primary dermal fibroblasts derived from human donors of different ancestry, age, and sex groups. By performing integrative analysis of single-cell morphology, our pipeline further classifies senescent-like cells and quantifies how their numbers increase with replicative senescence in IMR-90 cells and in dermal fibroblasts across all tested donors. These findings provide quantitative insights into replicative senescence, while demonstrating applicability of a readily accessible computational pipeline for high-throughput cell phenotyping in aging research.
Collapse
Affiliation(s)
- Emma M Welter
- Department of Psychiatry, University of North Carolina at Chapel Hill, 438 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Sofia Benavides
- Department of Psychiatry, University of North Carolina at Chapel Hill, 438 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Trevor K Archer
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, 27709, USA
| | - Oksana Kosyk
- Department of Psychiatry, University of North Carolina at Chapel Hill, 438 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Anthony S Zannas
- Department of Psychiatry, University of North Carolina at Chapel Hill, 438 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC, 27599, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, 438 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
5
|
Guillaumin S, Gurdal M, Zeugolis DI. Gums as Macromolecular Crowding Agents in Human Skin Fibroblast Cultures. Life (Basel) 2024; 14:435. [PMID: 38672707 PMCID: PMC11051389 DOI: 10.3390/life14040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Even though tissue-engineered medicines are under intense academic, clinical, and commercial investigation, only a handful of products have been commercialised, primarily due to the costs associated with their prolonged manufacturing. While macromolecular crowding has been shown to enhance and accelerate extracellular matrix deposition in eukaryotic cell culture, possibly offering a solution in this procrastinating tissue-engineered medicine development, there is still no widely accepted macromolecular crowding agent. With these in mind, we herein assessed the potential of gum Arabic, gum gellan, gum karaya, and gum xanthan as macromolecular crowding agents in WS1 skin fibroblast cultures (no macromolecular crowding and carrageenan were used as a control). Dynamic light scattering analysis revealed that all macromolecules had negative charge and were polydispersed. None of the macromolecules affected basic cellular function. At day 7 (the longest time point assessed), gel electrophoresis analysis revealed that all macromolecules significantly increased collagen type I deposition in comparison to the non-macromolecular crowding group. Also at day 7, immunofluorescence analysis revealed that carrageenan; the 50 µg/mL, 75 µg/mL, and 100 µg/mL gum gellan; and the 500 µg/mL and 1000 µg/mL gum xanthan significantly increased both collagen type I and collagen type III deposition and only carrageenan significantly increased collagen type V deposition, all in comparison to the non-macromolecular crowding group at the respective time point. This preliminary study demonstrates the potential of gums as macromolecular crowding agents, but more detailed biological studies are needed to fully exploit their potential in the development of tissue-engineered medicines.
Collapse
Affiliation(s)
- Salome Guillaumin
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland; (S.G.); (M.G.)
| | - Mehmet Gurdal
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland; (S.G.); (M.G.)
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, University of Galway, H91 TK33 Galway, Ireland; (S.G.); (M.G.)
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), D04 V1W8 Dublin, Ireland
| |
Collapse
|
6
|
Wang X, Ouyang L, Chen W, Cao Y, Zhang L. Efficient expansion and delayed senescence of hUC-MSCs by microcarrier-bioreactor system. Stem Cell Res Ther 2023; 14:284. [PMID: 37794520 PMCID: PMC10552362 DOI: 10.1186/s13287-023-03514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Human umbilical cord mesenchymal stem cells (hUC-MSCs) are widely used in cell therapy due to their robust immunomodulatory and tissue regenerative capabilities. Currently, the predominant method for obtaining hUC-MSCs for clinical use is through planar culture expansion, which presents several limitations. Specifically, continuous cell passaging can lead to cellular aging, susceptibility to contamination, and an absence of process monitoring and control, among other limitations. To overcome these challenges, the technology of microcarrier-bioreactor culture was developed with the aim of ensuring the therapeutic efficacy of cells while enabling large-scale expansion to meet clinical requirements. However, there is still a knowledge gap regarding the comparison of biological differences in cells obtained through different culture methods. METHODS We developed a culture process for hUC-MSCs using self-made microcarrier and stirred bioreactor. This study systematically compares the biological properties of hUC-MSCs amplified through planar culture and microcarrier-bioreactor systems. Additionally, RNA-seq was employed to compare the differences in gene expression profiles between the two cultures, facilitating the identification of pathways and genes associated with cell aging. RESULTS The findings revealed that hUC-MSCs expanded on microcarriers exhibited a lower degree of cellular aging compared to those expanded through planar culture. Additionally, these microcarrier-expanded hUC-MSCs showed an enhanced proliferation capacity and a reduced number of cells in the cell cycle retardation period. Moreover, bioreactor-cultured cells differ significantly from planar cultures in the expression of genes associated with the cytoskeleton and extracellular matrix. CONCLUSIONS The results of this study demonstrate that our microcarrier-bioreactor culture method enhances the proliferation efficiency of hUC-MSCs. Moreover, this culture method exhibits the potential to delay the process of cell aging while preserving the essential stem cell properties of hUC-MSCs.
Collapse
Affiliation(s)
- Xia Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Wenxia Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yulin Cao
- Beijing Tang Yi Hui Kang Biomedical Technology Co., LTD, Beijing, 100032, People's Republic of China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
7
|
Kosanović M, Milutinović B, Kutzner TJ, Mouloud Y, Bozic M. Clinical Prospect of Mesenchymal Stromal/Stem Cell-Derived Extracellular Vesicles in Kidney Disease: Challenges and the Way Forward. Pharmaceutics 2023; 15:1911. [PMID: 37514097 PMCID: PMC10384614 DOI: 10.3390/pharmaceutics15071911] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Kidney disease is a growing public health problem worldwide, including both acute and chronic forms. Existing therapies for kidney disease target various pathogenic mechanisms; however, these therapies only slow down the progression of the disease rather than offering a cure. One of the potential and emerging approaches for the treatment of kidney disease is mesenchymal stromal/stem cell (MSC) therapy, shown to have beneficial effects in preclinical studies. In addition, extracellular vesicles (EVs) released by MSCs became a potent cell-free therapy option in various preclinical models of kidney disease due to their regenerative, anti-inflammatory, and immunomodulatory properties. However, there are scarce clinical data available regarding the use of MSC-EVs in kidney pathologies. This review article provides an outline of the renoprotective effects of MSC-EVs in different preclinical models of kidney disease. It offers a comprehensive analysis of possible mechanisms of action of MSC-EVs with an emphasis on kidney disease. Finally, on the journey toward the implementation of MSC-EVs into clinical practice, we highlight the need to establish standardized methods for the characterization of an EV-based product and investigate the adequate dosing, safety, and efficacy of MSC-EVs application, as well as the development of suitable potency assays.
Collapse
Affiliation(s)
- Maja Kosanović
- Institute for the Application of Nuclear Energy (INEP), University of Belgrade, 11 000 Belgrade, Serbia
| | - Bojana Milutinović
- Department of Neurosurgery, MD Anderson Cancer Center, University of Texas, Houston, TX 770302, USA
| | - Tanja J Kutzner
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45355 Essen, North Rhine-Westhpalia, Germany
| | - Yanis Mouloud
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45355 Essen, North Rhine-Westhpalia, Germany
| | - Milica Bozic
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45355 Essen, North Rhine-Westhpalia, Germany
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25196 Lleida, Spain
| |
Collapse
|
8
|
Copp G, Robb KP, Viswanathan S. Culture-expanded mesenchymal stromal cell therapy: does it work in knee osteoarthritis? A pathway to clinical success. Cell Mol Immunol 2023; 20:626-650. [PMID: 37095295 PMCID: PMC10229578 DOI: 10.1038/s41423-023-01020-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/29/2023] [Indexed: 04/26/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative multifactorial disease with concomitant structural, inflammatory, and metabolic changes that fluctuate in a temporal and patient-specific manner. This complexity has contributed to refractory responses to various treatments. MSCs have shown promise as multimodal therapeutics in mitigating OA symptoms and disease progression. Here, we evaluated 15 randomized controlled clinical trials (RCTs) and 11 nonrandomized RCTs using culture-expanded MSCs in the treatment of knee OA, and we found net positive effects of MSCs on mitigating pain and symptoms (improving function in 12/15 RCTs relative to baseline and in 11/15 RCTs relative to control groups at study endpoints) and on cartilage protection and/or repair (18/21 clinical studies). We examined MSC dose, tissue of origin, and autologous vs. allogeneic origins as well as patient clinical phenotype, endotype, age, sex and level of OA severity as key parameters in parsing MSC clinical effectiveness. The relatively small sample size of 610 patients limited the drawing of definitive conclusions. Nonetheless, we noted trends toward moderate to higher doses of MSCs in select OA patient clinical phenotypes mitigating pain and leading to structural improvements or cartilage preservation. Evidence from preclinical studies is supportive of MSC anti-inflammatory and immunomodulatory effects, but additional investigations on immunomodulatory, chondroprotective and other clinical mechanisms of action are needed. We hypothesize that MSC basal immunomodulatory "fitness" correlates with OA treatment efficacy, but this hypothesis needs to be validated in future studies. We conclude with a roadmap articulating the need to match an OA patient subset defined by molecular endotype and clinical phenotype with basally immunomodulatory "fit" or engineered-to-be-fit-for-OA MSCs in well-designed, data-intensive clinical trials to advance the field.
Collapse
Affiliation(s)
- Griffin Copp
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Kevin P Robb
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Sowmya Viswanathan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, Division of Hematology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Domínguez LM, Bueloni B, Cantero MJ, Albornoz M, Pacienza N, Biani C, Luzzani C, Miriuka S, García M, Atorrasagasti C, Yannarelli G, Bayo J, Fiore E, Mazzolini G. Chromatographic Scalable Method to Isolate Engineered Extracellular Vesicles Derived from Mesenchymal Stem Cells for the Treatment of Liver Fibrosis in Mice. Int J Mol Sci 2023; 24:ijms24119586. [PMID: 37298538 DOI: 10.3390/ijms24119586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
New therapeutic options for liver cirrhosis are needed. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have emerged as a promising tool for delivering therapeutic factors in regenerative medicine. Our aim is to establish a new therapeutic tool that employs EVs derived from MSCs to deliver therapeutic factors for liver fibrosis. EVs were isolated from supernatants of adipose tissue MSCs, induced-pluripotent-stem-cell-derived MSCs, and umbilical cord perivascular cells (HUCPVC-EVs) by ion exchange chromatography (IEC). To produce engineered EVs, HUCPVCs were transduced with adenoviruses that code for insulin-like growth factor 1 (AdhIGF-I-HUCPVC-EVs) or green fluorescent protein. EVs were characterized by electron microscopy, flow cytometry, ELISA, and proteomic analysis. We evaluated EVs' antifibrotic effect in thioacetamide-induced liver fibrosis in mice and on hepatic stellate cells in vitro. We found that IEC-isolated HUCPVC-EVs have an analogous phenotype and antifibrotic activity to those isolated by ultracentrifugation. EVs derived from the three MSCs sources showed a similar phenotype and antifibrotic potential. EVs derived from AdhIGF-I-HUCPVC carried IGF-1 and showed a higher therapeutic effect in vitro and in vivo. Remarkably, proteomic analysis revealed that HUCPVC-EVs carry key proteins involved in their antifibrotic process. This scalable MSC-derived EV manufacturing strategy is a promising therapeutic tool for liver fibrosis.
Collapse
Affiliation(s)
- Luciana M Domínguez
- Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Pilar B1629, Buenos Aires, Argentina
| | - Bárbara Bueloni
- Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Pilar B1629, Buenos Aires, Argentina
| | - Ma José Cantero
- Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Pilar B1629, Buenos Aires, Argentina
| | - Milagros Albornoz
- Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Pilar B1629, Buenos Aires, Argentina
| | - Natalia Pacienza
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Ciudad Autónoma de Buenos Aires C1078, Argentina
| | - Celeste Biani
- LIAN-CONICET, Fleni, Belén de Escobar B1625, Buenos Aires, Argentina
| | - Carlos Luzzani
- LIAN-CONICET, Fleni, Belén de Escobar B1625, Buenos Aires, Argentina
| | - Santiago Miriuka
- LIAN-CONICET, Fleni, Belén de Escobar B1625, Buenos Aires, Argentina
| | - Mariana García
- Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Pilar B1629, Buenos Aires, Argentina
| | - Catalina Atorrasagasti
- Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Pilar B1629, Buenos Aires, Argentina
| | - Gustavo Yannarelli
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Ciudad Autónoma de Buenos Aires C1078, Argentina
| | - Juan Bayo
- Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Pilar B1629, Buenos Aires, Argentina
| | - Esteban Fiore
- Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Pilar B1629, Buenos Aires, Argentina
| | - Guillermo Mazzolini
- Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral-CONICET, Pilar B1629, Buenos Aires, Argentina
- Liver Unit, Hospital Universitario Austral, Universidad Austral-CONICET, Pilar B1629, Buenos Aires, Argentina
| |
Collapse
|
10
|
De Pieri A, Korntner SH, Capella-Monsonis H, Tsiapalis D, Kostjuk SV, Churbanov S, Timashev P, Gorelov A, Rochev Y, Zeugolis DI. Macromolecular crowding transforms regenerative medicine by enabling the accelerated development of functional and truly three-dimensional cell assembled micro tissues. Biomaterials 2022; 287:121674. [PMID: 35835003 DOI: 10.1016/j.biomaterials.2022.121674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022]
Abstract
Scaffold-free in vitro organogenesis exploits the innate ability of cells to synthesise and deposit their own extracellular matrix to fabricate tissue-like assemblies. Unfortunately, cell-assembled tissue engineered concepts require prolonged ex vivo culture periods of very high cell numbers for the development of a borderline three-dimensional implantable device, which are associated with phenotypic drift and high manufacturing costs, thus, hindering their clinical translation and commercialisation. Herein, we report the accelerated (10 days) development of a truly three-dimensional (338.1 ± 42.9 μm) scaffold-free tissue equivalent that promotes fast wound healing and induces formation of neotissue composed of mature collagen fibres, using human adipose derived stem cells seeded at only 50,000 cells/cm2 on an poly (N-isopropylacrylamide-co-N-tert-butylacrylamide (PNIPAM86-NTBA14) temperature-responsive electrospun scaffold and grown under macromolecular crowding conditions (50 μg/ml carrageenan). Our data pave the path for a new era in scaffold-free regenerative medicine.
Collapse
Affiliation(s)
- Andrea De Pieri
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Proxy Biomedical Ltd., Spiddal, Galway, Ireland
| | - Stefanie H Korntner
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Hector Capella-Monsonis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios Tsiapalis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Sergei V Kostjuk
- Department of Chemistry, Belarusian State University and Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus; Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Semyon Churbanov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander Gorelov
- School of Chemistry & Chemical Biology, University College Dublin, Dublin, Ireland
| | - Yuri Rochev
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
11
|
Wiese DM, Wood CA, Ford BN, Braid LR. Cytokine Activation Reveals Tissue-Imprinted Gene Profiles of Mesenchymal Stromal Cells. Front Immunol 2022; 13:917790. [PMID: 35924240 PMCID: PMC9341285 DOI: 10.3389/fimmu.2022.917790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Development of standardized metrics to support manufacturing and regulatory approval of mesenchymal stromal cell (MSC) products is confounded by heterogeneity of MSC populations. Many reports describe fundamental differences between MSCs from various tissues and compare unstimulated and activated counterparts. However, molecular information comparing biological profiles of activated MSCs across different origins and donors is limited. To better understand common and source-specific mechanisms of action, we compared the responses of 3 donor populations each of human umbilical cord (UC) and bone marrow (BM) MSCs to TNF-α, IL-1β or IFN-γ. Transcriptome profiles were analysed by microarray and select secretome profiles were assessed by multiplex immunoassay. Unstimulated (resting) UC and BM-MSCs differentially expressed (DE) 174 genes. Signatures of TNF-α-stimulated BM and UC-MSCs included 45 and 14 new DE genes, respectively, while all but 7 of the initial 174 DE genes were expressed at comparable levels after licensing. After IL-1β activation, only 5 of the 174 DE genes remained significantly different, while 6 new DE genes were identified. IFN-γ elicited a robust transcriptome response from both cell types, yet nearly all differences (171/174) between resting populations were attenuated. Nine DE genes predominantly corresponding to immunogenic cell surface proteins emerged as a BM-MSC signature of IFN-γ activation. Changes in protein synthesis of select analytes correlated modestly with transcript levels. The dynamic responses of licensed MSCs documented herein, which attenuated heterogeneity between unstimulated populations, provide new insight into common and source-imprinted responses to cytokine activation and can inform strategic development of meaningful, standardized assays.
Collapse
Affiliation(s)
| | | | - Barry N. Ford
- Defence Research and Development Canada Suffield Research Centre, Casualty Management Section, Medicine Hat, AB, Canada
| | - Lorena R. Braid
- Aurora BioSolutions Inc., Medicine Hat, AB, Canada
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, BC, Canada
- *Correspondence: Lorena R. Braid, ;
| |
Collapse
|
12
|
BMP9 reduces age-related bone loss in mice by inhibiting osteoblast senescence through Smad1-Stat1-P21 axis. Cell Death Dis 2022; 8:254. [PMID: 35523787 PMCID: PMC9076651 DOI: 10.1038/s41420-022-01048-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022]
Abstract
Age-related osteoporosis is characterized by the accumulation of senescent osteoblastic cells in bone microenvironment and significantly reduced osteogenic differentiation. Clearing of the senescent cells is helpful to improve bone formation in aged mice. Bone morphogenetic protein 9 (BMP9), a multifunctional protein produced and secreted by liver, was reported to improve osteoporosis caused by estrogen withdrawal. However, the mechanism of BMP9 has not been fully elucidated, and its effect on senile osteoporosis has not been reported. This study reveals that BMP9 significantly increases bone mass and improves bone biomechanical properties in aged mice. Furthermore, BMP9 reduces expression of senescent genes in bone microenvironment, accompanied by decreased senescence-associated secretory phenotypes (SASPs) such as Ccl5, Mmp9, Hmgb1, Nfkb1, and Vcam1. In vitro, Bmp9 treatment inhibits osteoblast senescence through activating Smad1, which suppresses the transcriptional activity of Stat1, thereby inhibits P21 expression and SASPs production. Furthermore, inhibiting the Smad1 signal in vivo can reverse the inhibitory effect of BMP9 on Stat1 and downstream senescent genes, which eliminates the protection of BMP9 on age-related osteoporosis. These findings highlight the critical role of BMP9 on reducing age-related bone loss by inhibiting osteoblast senescence through Smad1-Stat1-P21 axis. BMP9 inhibits cellular senescence by activation of Smad1, which suppresses the transcription of Stat1, resulting in decreased P21 expression and SASPs production in osteoblast. The anti-aging effect of BMP9 is benefit to improving age-related osteoporosis.![]()
Collapse
|
13
|
Mönch D, Reinders MEJ, Dahlke MH, Hoogduijn MJ. How to Make Sense out of 75,000 Mesenchymal Stromal Cell Publications? Cells 2022; 11:cells11091419. [PMID: 35563725 PMCID: PMC9101744 DOI: 10.3390/cells11091419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
Mesenchymal stromal cells have been the subject of an expanding number of studies over the past decades. Today, over 75,000 publications are available that shine light on the biological properties and therapeutic effects of these versatile cells in numerous pre-clinical models and early-phase clinical trials. The massive number of papers makes it hard for researchers to comprehend the whole field, and furthermore, they give the impression that mesenchymal stromal cells are wonder cells that are curative for any condition. It is becoming increasingly difficult to dissect how and for what conditions mesenchymal stromal cells exhibit true and reproducible therapeutic effects. This article tries to address the question how to make sense of 75,000, and still counting, publications on mesenchymal stromal cells.
Collapse
Affiliation(s)
- Dina Mönch
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany;
- University of Tübingen, 72074 Tübingen, Germany
| | - Marlies E. J. Reinders
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Marc H. Dahlke
- Department of Surgery, Robert-Bosch-Hospital, 70376 Stuttgart, Germany;
| | - Martin J. Hoogduijn
- Erasmus MC Transplant Institute, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
14
|
Wiese DM, Wood CA, Braid LR. From Vial to Vein: Crucial Gaps in Mesenchymal Stromal Cell Clinical Trial Reporting. Front Cell Dev Biol 2022; 10:867426. [PMID: 35493074 PMCID: PMC9043315 DOI: 10.3389/fcell.2022.867426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Retrospective analysis of clinical trial outcomes is a vital exercise to facilitate efficient translation of cellular therapies. These analyses are particularly important for mesenchymal stem/stromal cell (MSC) products. The exquisite responsiveness of MSCs, which makes them attractive candidates for immunotherapies, is a double-edged sword; MSC clinical trials result in inconsistent outcomes that may correlate with underlying patient biology or procedural differences at trial sites. Here we review 45 North American MSC clinical trial results published between 2015 and 2021 to assess whether these reports provide sufficient information for retrospective analysis. Trial reports routinely specify the MSC tissue source, autologous or allogeneic origin and administration route. However, most methodological aspects related to cell preparation and handling immediately prior to administration are under-reported. Clinical trial reports inconsistently provide information about cryopreservation media composition, delivery vehicle, post-thaw time and storage until administration, duration of infusion, and pre-administration viability or potency assessments. In addition, there appears to be significant variability in how cell products are formulated, handled or assessed between trials. The apparent gaps in reporting, combined with high process variability, are not sufficient for retrospective analyses that could potentially identify optimal cell preparation and handling protocols that correlate with successful intra- and inter-trial outcomes. The substantial preclinical data demonstrating that cell handling affects MSC potency highlights the need for more comprehensive clinical trial reporting of MSC conditions from expansion through delivery to support development of globally standardized protocols to efficiently advance MSCs as commercial products.
Collapse
Affiliation(s)
| | | | - Lorena R. Braid
- Aurora BioSolutions Inc., Medicine Hat, AB, Canada
- Simon Fraser University, Burnaby, BC, Canada
- *Correspondence: Lorena R. Braid, ,
| |
Collapse
|
15
|
Mönch D, Koch J, Dahlke MH. Are Mesenchymal Stem Cells Fibroblasts with Benefits? CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00210-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Najar M, Melki R, Khalife F, Lagneaux L, Bouhtit F, Moussa Agha D, Fahmi H, Lewalle P, Fayyad-Kazan M, Merimi M. Therapeutic Mesenchymal Stem/Stromal Cells: Value, Challenges and Optimization. Front Cell Dev Biol 2022; 9:716853. [PMID: 35096805 PMCID: PMC8795900 DOI: 10.3389/fcell.2021.716853] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cellular therapy aims to replace damaged resident cells by restoring cellular and molecular environments suitable for tissue repair and regeneration. Among several candidates, mesenchymal stem/stromal cells (MSCs) represent a critical component of stromal niches known to be involved in tissue homeostasis. In vitro, MSCs appear as fibroblast-like plastic adherent cells regardless of the tissue source. The therapeutic value of MSCs is being explored in several conditions, including immunological, inflammatory and degenerative diseases, as well as cancer. An improved understanding of their origin and function would facilitate their clinical use. The stemness of MSCs is still debated and requires further study. Several terms have been used to designate MSCs, although consensual nomenclature has yet to be determined. The presence of distinct markers may facilitate the identification and isolation of specific subpopulations of MSCs. Regarding their therapeutic properties, the mechanisms underlying their immune and trophic effects imply the secretion of various mediators rather than direct cellular contact. These mediators can be packaged in extracellular vesicles, thus paving the way to exploit therapeutic cell-free products derived from MSCs. Of importance, the function of MSCs and their secretome are significantly sensitive to their environment. Several features, such as culture conditions, delivery method, therapeutic dose and the immunobiology of MSCs, may influence their clinical outcomes. In this review, we will summarize recent findings related to MSC properties. We will also discuss the main preclinical and clinical challenges that may influence the therapeutic value of MSCs and discuss some optimization strategies.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Rahma Melki
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Ferial Khalife
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Hadath, Lebanon
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fatima Bouhtit
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco.,Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Douaa Moussa Agha
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco.,Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Mohammad Fayyad-Kazan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Hadath, Lebanon.,Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Lebanon
| | - Makram Merimi
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco.,Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| |
Collapse
|
17
|
Benny M, Courchia B, Shrager S, Sharma M, Chen P, Duara J, Valasaki K, Bellio MA, Damianos A, Huang J, Zambrano R, Schmidt A, Wu S, Velazquez OC, Hare JM, Khan A, Young KC. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:189-199. [PMID: 35298658 PMCID: PMC8929420 DOI: 10.1093/stcltm/szab011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/17/2021] [Indexed: 11/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a life-threatening condition in preterm infants with few effective therapies. Mesenchymal stem or stromal cells (MSCs) are a promising therapeutic strategy for BPD. The ideal MSC source for BPD prevention is however unknown. The objective of this study was to compare the regenerative effects of MSC obtained from bone marrow (BM) and umbilical cord tissue (UCT) in an experimental BPD model. In vitro, UCT-MSC demonstrated greater proliferation and expression of anti-inflammatory cytokines as compared to BM-MSC. Lung epithelial cells incubated with UCT-MSC conditioned media (CM) had better-wound healing following scratch injury. UCT-MSC CM and BM-MSC CM had similar pro-angiogenic effects on hyperoxia-exposed pulmonary microvascular endothelial cells. In vivo, newborn rats exposed to normoxia or hyperoxia (85% O2) from postnatal day (P) 1 to 21 were given intra-tracheal (IT) BM or UCT-MSC (1 × 106 cells/50 μL), or placebo (PL) on P3. Hyperoxia PL-treated rats had marked alveolar simplification, reduced lung vascular density, pulmonary vascular remodeling, and lung inflammation. In contrast, administration of both BM-MSC and UCT-MSC significantly improved alveolar structure, lung angiogenesis, pulmonary vascular remodeling, and lung inflammation. UCT-MSC hyperoxia-exposed rats however had greater improvement in some morphometric measures of alveolarization and less lung macrophage infiltration as compared to the BM-MSC-treated group. Together, these findings suggest that BM-MSC and UCT-MSC have significant lung regenerative effects in experimental BPD but UCT-MSC suppresses lung macrophage infiltration and promotes lung epithelial cell healing to a greater degree.
Collapse
Affiliation(s)
- Merline Benny
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Benjamin Courchia
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sebastian Shrager
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mayank Sharma
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pingping Chen
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joanne Duara
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Krystalenia Valasaki
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael A Bellio
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andreas Damianos
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jian Huang
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ronald Zambrano
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Augusto Schmidt
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shu Wu
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
- Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Omaida C Velazquez
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua M Hare
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aisha Khan
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Karen C Young
- Corresponding author: Karen C. Young, MD, Batchelor Children’s Research Institute, University of Miami Miller School of Medicine, 1580 NW 10th Avenue, RM-345, Miami, FL 33136, USA. Tel: 305-243-4531;
| |
Collapse
|
18
|
Wang S, Wang Z, Su H, Chen F, Ma M, Yu W, Ye G, Cen S, Mi R, Wu X, Deng W, Feng P, Zeng C, Shen H, Wu Y. Effects of long-term culture on the biological characteristics and RNA profiles of human bone-marrow-derived mesenchymal stem cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 26:557-574. [PMID: 34631285 PMCID: PMC8479280 DOI: 10.1016/j.omtn.2021.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 08/12/2021] [Indexed: 12/16/2022]
Abstract
Expansion in vitro prior to mesenchymal stem cells (MSCs) application is a necessary process. Functional and genomic stability has a crucial role in stem-cell-based therapies. However, the exact expression and co-expressed profiles of coding and non-coding RNAs in human bone marrow (BM)-MSCs in vitro aging are still lacking. In the present studies, the change of morphology, immunophenotype, and capacity of proliferation, differentiation, and immunoregulation of MSCs at passage (P) 4, P6, P8, P10, and P12 were investigated. RNA sequencing identified that 439 mRNAs, 65 long noncoding RNAs (lncRNAs), 59 microRNAs (miRNAs), and 229 circular RNAs (circRNAs) were differentially expressed (DE) in P12 compared with P4, with a similar trend in P6. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) identified several significant biological processes and pathways, including binding, ossification, and Wnt and PPAR signaling pathways. Interaction and co-expression/localization analyses were performed for DE mRNAs and lncRNAs, and several key lncRNAs, circRNAs, and important pathways like autophagy and mitophagy were identified in the competing endogenous RNA (ceRNA) network. Some key RNAs found in the bioinformatics analysis were validated. Our studies indicate that replicative senescence of MSCs is a continuous process, including widespread alterations in biological characteristics and global gene expression patterns that need to be considered before therapeutic applications of MSCs.
Collapse
Affiliation(s)
- Shan Wang
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Ziming Wang
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Hongjun Su
- Center for Biotherapy, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Fenglei Chen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Mengjun Ma
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Wenhui Yu
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Guiwen Ye
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Shuizhong Cen
- Department of Orthopedics, Zhujiang Hospital of Southern Medical Universuty, Guangzhou 510280, P.R. China
| | - Rujia Mi
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Xiaohua Wu
- Center for Biotherapy, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Wen Deng
- Center for Biotherapy, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Pei Feng
- Center for Biotherapy, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Chenying Zeng
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| | - Huiyong Shen
- Department of Orthopedics, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120, P.R. China
| | - Yanfeng Wu
- Center for Biotherapy, Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, P.R. China
| |
Collapse
|
19
|
It is time to crowd your cell culture media - Physicochemical considerations with biological consequences. Biomaterials 2021; 275:120943. [PMID: 34139505 DOI: 10.1016/j.biomaterials.2021.120943] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
In vivo, the interior and exterior of cells is populated by various macromolecules that create an extremely crowded milieu. Yet again, in vitro eukaryotic cell culture is conducted in dilute culture media that hardly imitate the native tissue density. Herein, the concept of macromolecular crowding is discussed in both intracellular and extracellular context. Particular emphasis is given on how the physicochemical properties of the crowding molecules govern and determine kinetics, equilibria and mechanism of action of biochemical and biological reactions, processes and functions. It is evidenced that we are still at the beginning of appreciating, let alone effectively implementing, the potential of macromolecular crowding in permanently differentiated and stem cell culture systems.
Collapse
|
20
|
Meng QS, Liu J, Wei L, Fan HM, Zhou XH, Liang XT. Senescent mesenchymal stem/stromal cells and restoring their cellular functions. World J Stem Cells 2020; 12:966-985. [PMID: 33033558 PMCID: PMC7524698 DOI: 10.4252/wjsc.v12.i9.966] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have various properties that make them promising candidates for stem cell-based therapies in clinical settings. These include self-renewal, multilineage differentiation, and immunoregulation. However, recent studies have confirmed that aging is a vital factor that limits their function and therapeutic properties as standardized clinical products. Understanding the features of senescence and exploration of cell rejuvenation methods are necessary to develop effective strategies that can overcome the shortage and instability of MSCs. This review will summarize the current knowledge on characteristics and functional changes of aged MSCs. Additionally, it will highlight cell rejuvenation strategies such as molecular regulation, non-coding RNA modifications, and microenvironment controls that may enhance the therapeutic potential of MSCs in clinical settings.
Collapse
Affiliation(s)
- Qing-Shu Meng
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Jing Liu
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Lu Wei
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Hui-Min Fan
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiao-Hui Zhou
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiao-Ting Liang
- Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Institute of Integrated Traditional Chinese and Western Medicine for Cardiovascular Chronic Diseases, Tongji University School of Medicine, Shanghai 200120, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| |
Collapse
|
21
|
Shimoni C, Goldstein M, Ribarski-Chorev I, Schauten I, Nir D, Strauss C, Schlesinger S. Heat Shock Alters Mesenchymal Stem Cell Identity and Induces Premature Senescence. Front Cell Dev Biol 2020; 8:565970. [PMID: 33072750 PMCID: PMC7537765 DOI: 10.3389/fcell.2020.565970] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Heat stress can have a serious impact on the health of both humans and animals. A major question is how heat stress affects normal development and differentiation at both the cellular and the organism levels. Here we use an in vitro experimental system to address how heat shock treatment influences the properties of bovine mesenchymal stem cells (MSCs)—multipotent progenitor cells—which are found in most tissues. Because cattle are sensitive to harsh external temperatures, studying the effects of heat shock on MSCs provides a unique platform to address cellular stress in a physiologically relevant model organism. Following isolation and characterization of MSCs from the cow’s umbilical cord, heat shock was induced either as a pulse (1 h) or continuously (3 days), and consequent effects on MSCs were characterized. Heat shock induced extensive phenotypic changes in MSCs and dramatically curtailed their capacity to proliferate and differentiate. These changes were associated with a partial arrest in the G1/S or G2/M checkpoints. Furthermore, MSCs lost their ability to resolve the inflammatory response of RAW macrophages in coculture. A possible explanation for this loss of function is the accumulation of reactive oxygen species and malfunction of the mitochondria in the treated cells. Heat shock treatments resulted in stress-induced premature senescence, affecting the MSCs’ ability to proliferate properly for many cell passages to follow. Exposure to elevated external temperatures leads to mitochondrial damage and oxidative stress, which in turn conveys critical changes in the proliferation, differentiation, and immunomodulatory phenotype of heat-stressed MSCs. A better understanding of the effect of heat shock on humans and animals may result in important health and economic benefits.
Collapse
Affiliation(s)
- Chen Shimoni
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Myah Goldstein
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ivana Ribarski-Chorev
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Iftach Schauten
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dana Nir
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Carmit Strauss
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Sharon Schlesinger
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
22
|
Lucciola R, Vrljicak P, Gurung S, Filby C, Darzi S, Muter J, Ott S, Brosens JJ, Gargett CE. Impact of Sustained Transforming Growth Factor-β Receptor Inhibition on Chromatin Accessibility and Gene Expression in Cultured Human Endometrial MSC. Front Cell Dev Biol 2020; 8:567610. [PMID: 32984350 PMCID: PMC7490520 DOI: 10.3389/fcell.2020.567610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
Endometrial mesenchymal stem cells (eMSC) drive the extraordinary regenerative capacity of the human endometrium. Clinical application of eMSC for therapeutic purposes is hampered by spontaneous differentiation and cellular senescence upon large-scale expansion in vitro. A83-01, a selective transforming growth factor-β receptor (TGFβ-R) inhibitor, promotes expansion of eMSC in culture by blocking differentiation and senescence, but the underlying mechanisms are incompletely understood. In this study, we combined RNA-seq and ATAC-seq to study the impact of sustained TGFβ-R inhibition on gene expression and chromatin architecture of eMSC. Treatment of primary eMSC with A83-01 for 5 weeks resulted in differential expression of 1,463 genes. Gene ontology analysis showed enrichment of genes implicated in cell growth whereas extracellular matrix genes and genes involved in cell fate commitment were downregulated. ATAC-seq analysis demonstrated that sustained TGFβ-R inhibition results in opening and closure of 3,555 and 2,412 chromatin loci, respectively. Motif analysis revealed marked enrichment of retinoic acid receptor (RAR) binding sites, which was paralleled by the induction of RARB, encoding retinoic acid receptor beta (RARβ). Selective RARβ inhibition attenuated proliferation and clonogenicity of A83-01 treated eMSC. Taken together, our study provides new insights into the gene networks and genome-wide chromatin changes that underpin maintenance of an undifferentiated phenotype of eMSC in prolonged culture.
Collapse
Affiliation(s)
- Raffaella Lucciola
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Pavle Vrljicak
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy’s National Centre for Miscarriage Research, Warwick Medical School, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, United Kingdom
| | - Shanti Gurung
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Caitlin Filby
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Joanne Muter
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy’s National Centre for Miscarriage Research, Warwick Medical School, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, United Kingdom
| | - Sascha Ott
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy’s National Centre for Miscarriage Research, Warwick Medical School, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, United Kingdom
| | - Jan J. Brosens
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy’s National Centre for Miscarriage Research, Warwick Medical School, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, United Kingdom
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Wiese DM, Braid LR. Transcriptome profiles acquired during cell expansion and licensing validate mesenchymal stromal cell lineage genes. Stem Cell Res Ther 2020; 11:357. [PMID: 32795342 PMCID: PMC7427746 DOI: 10.1186/s13287-020-01873-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022] Open
Abstract
Background Mesenchymal stromal cells (MSCs) are rapidly advancing as commercial therapeutics. However, there are still no adequate tools to validate the identity of MSCs and support standardization of MSC-based products. Currently accepted metrics include cell surface marker profiling and tri-lineage differentiation assays, neither of which is definitive. Transcript profiling represents a cost- and time-effective approach amenable to MSC manufacturing processes. Two independent labs recently reported non-overlapping MSC-specific transcriptomic signatures of 489 and 16 genes. Methods Here, we interrogated our repository of transcriptome data to determine whether routine culture manipulations including cell expansion and immune activation affect expression of the reported MSC lineage genes. These data sets comprise 4 donor populations of human umbilical cord (UC) MSCs serially cultured from cryopreservation thaw through pre-senescence, and 3 donor populations each of naïve UC and bone marrow (BM) MSCs and licensed by 3 different cytokines. Results Overall, 437 of 456 proposed signature genes assessed in these data sets were reliably expressed, representing an enduring lineage profile in 96% agreement with the previous studies. Serial passaging resulted in the downregulation of 3 signature genes, and one was silenced. Cytokine stimulation downregulated expression of 16 signature genes, and 3 were uniformly silenced in one or the other MSC type. Fifteen additional genes were unreliably detected, independent of culture manipulation. Conclusion These results validate and refine the proposed transcriptomic tools for reliable identification of MSCs after isolation through cell expansion and after inflammatory activation. We propose a 24-gene signature to support standardized and accessible MSC characterization.
Collapse
Affiliation(s)
- Danielle M Wiese
- Aurora BioSolutions Inc., Crescent Heights PO Box 21053, Medicine Hat, AB, T1A 6N0, Canada
| | - Lorena R Braid
- Aurora BioSolutions Inc., Crescent Heights PO Box 21053, Medicine Hat, AB, T1A 6N0, Canada.
| |
Collapse
|
24
|
Fu X, Xu B, Jiang J, Du X, Yu X, Yan Y, Li S, Inglis BM, Ma H, Wang H, Pei X, Si W. Effects of cryopreservation and long-term culture on biological characteristics and proteomic profiles of human umbilical cord-derived mesenchymal stem cells. Clin Proteomics 2020; 17:15. [PMID: 32489333 PMCID: PMC7247169 DOI: 10.1186/s12014-020-09279-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
Background Human umbilical cord-derived MSCs (hUC-MSCs) have been identified as promising seeding cells in tissue engineering and clinical applications of regenerative medicine due to their advantages of simple acquisition procedure and the capability to come from a young tissue donor over the other MSCs sources. In clinical applications, large scale production is required and optimal cryopreservation and culture conditions are essential to autologous and allogeneic transplantation in the future. However, the influence of cryopreserved post-thaw and long-term culture on hUC-MSCs remains unknown, especially in terms of specific protein expression. Therefore, biological characteristics and proteomic profiles of hUC-MSCs after cryopreserving and long-term culturing were investigated. Methods Firstly, hUC-MSCs were isolated from human umbilical cord tissues and identified through morphology, surface markers and tri-lineage differentiation potential at passage 3, and then the biological characteristics and proteomic profiles were detected and compared after cryopreserving and long-term culturing at passage 4 and continuously cultured to passage 10 with detection occurring here as well. The proteomic profiles were tested by using the isobaric tags for relative and absolute quantification (iTRAQ) labeling technique and differential protein were confirmed by mass spectrometry. Results The results showed no significant differences in phenotypes including morphology, surface marker and tri-lineage differentiation potential but have obvious changes in translation level, which is involved in metabolism, cell cycle and other pathways. Conclusion This suggests that protein expression may be used as an indicator of hUC-MSCs security testing before applying in clinical settings, and it is also expected to provide the foundation or standardization guide of hUC-MSCs applications in regenerative medicine.
Collapse
Affiliation(s)
- Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China.,Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Jiang Jiang
- Department of Obstetrics, The First People's Hospital of Yunnan Province, Kunming, 650032 China
| | - Xing Du
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Xiaoli Yu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Yaping Yan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Shanshan Li
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Briauna Marie Inglis
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Huiming Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Hongyan Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Wei Si
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| |
Collapse
|
25
|
Neri S, Borzì RM. Molecular Mechanisms Contributing to Mesenchymal Stromal Cell Aging. Biomolecules 2020; 10:E340. [PMID: 32098040 PMCID: PMC7072652 DOI: 10.3390/biom10020340] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a reservoir for tissue homeostasis and repair that age during organismal aging. Beside the fundamental in vivo role of MSCs, they have also emerged in the last years as extremely promising therapeutic agents for a wide variety of clinical conditions. MSC use frequently requires in vitro expansion, thus exposing cells to replicative senescence. Aging of MSCs (both in vivo and in vitro) can affect not only their replicative potential, but also their properties, like immunomodulation and secretory profile, thus possibly compromising their therapeutic effect. It is therefore of critical importance to unveil the underlying mechanisms of MSC senescence and to define shared methods to assess MSC aging status. The present review will focus on current scientific knowledge about MSC aging mechanisms, control and effects, including possible anti-aging treatments.
Collapse
Affiliation(s)
- Simona Neri
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, 40136 Bologna, Italy;
| | | |
Collapse
|
26
|
Atkinson SP. A preview of selected articles. Stem Cells 2020. [DOI: 10.1002/stem.3138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Andrzejewska A, Catar R, Schoon J, Qazi TH, Sass FA, Jacobi D, Blankenstein A, Reinke S, Krüger D, Streitz M, Schlickeiser S, Richter S, Souidi N, Beez C, Kamhieh-Milz J, Krüger U, Zemojtel T, Jürchott K, Strunk D, Reinke P, Duda G, Moll G, Geissler S. Multi-Parameter Analysis of Biobanked Human Bone Marrow Stromal Cells Shows Little Influence for Donor Age and Mild Comorbidities on Phenotypic and Functional Properties. Front Immunol 2019; 10:2474. [PMID: 31781089 PMCID: PMC6857652 DOI: 10.3389/fimmu.2019.02474] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022] Open
Abstract
Heterogeneous populations of human bone marrow-derived stromal cells (BMSC) are among the most frequently tested cellular therapeutics for treating degenerative and immune disorders, which occur predominantly in the aging population. Currently, it is unclear whether advanced donor age and commonly associated comorbidities affect the properties of ex vivo-expanded BMSCs. Thus, we stratified cells from adult and elderly donors from our biobank (n = 10 and n = 13, mean age 38 and 72 years, respectively) and compared their phenotypic and functional performance, using multiple assays typically employed as minimal criteria for defining multipotent mesenchymal stromal cells (MSCs). We found that BMSCs from both cohorts meet the standard criteria for MSC, exhibiting similar morphology, growth kinetics, gene expression profiles, and pro-angiogenic and immunosuppressive potential and the capacity to differentiate toward adipogenic, chondrogenic, and osteogenic lineages. We found no substantial differences between cells from the adult and elderly cohorts. As positive controls, we studied the impact of in vitro aging and inflammatory cytokine stimulation. Both conditions clearly affected the cellular properties, independent of donor age. We conclude that in vitro aging rather than in vivo donor aging influences BMSC characteristics.
Collapse
Affiliation(s)
- Anastazja Andrzejewska
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Rusan Catar
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Janosch Schoon
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Taimoor Hasan Qazi
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Frauke Andrea Sass
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Dorit Jacobi
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Antje Blankenstein
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Simon Reinke
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - David Krüger
- Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Mathias Streitz
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Stephan Schlickeiser
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Sarina Richter
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Naima Souidi
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Christien Beez
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Julian Kamhieh-Milz
- Department of Transfusion Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Ulrike Krüger
- BIH Core Unit Genomics Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Tomasz Zemojtel
- BIH Core Unit Genomics Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Karsten Jürchott
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Dirk Strunk
- Berlin Center for Advanced Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Petra Reinke
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Spinal Cord Injury and Tissue Regeneration Center, Experimental and Clinical Cell Therapy Institute, Paracelsus Medical University, Salzburg, Austria
| | - Georg Duda
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Guido Moll
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| | - Sven Geissler
- BIH Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany.,Julius Wolff Institute, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, BIH, Berlin, Germany
| |
Collapse
|