1
|
Biancotti JC, Sescleifer AM, Sferra SR, Penikis AB, Halbert-Elliott KM, Bubb CR, Kunisaki SM. Maternal Minocycline as Fetal Therapy in a Rat Model of Myelomeningocele. J Surg Res 2024; 301:696-703. [PMID: 39168042 DOI: 10.1016/j.jss.2024.07.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION This study aimed to investigate whether the maternal administration of minocycline, a tetracycline antibiotic known to have anti-inflammatory and neuroprotective properties in models of neural injury, reduces inflammation and neural cell death in a fetal rat model of myelomeningocele (MMC). METHODS E10 pregnant rats were gavaged with olive oil or olive oil + retinoic acid to induce fetal MMC. At E12, the dams were exposed to regular drinking water or water containing minocycline (range, 40-140 mg/kg/day). At E21, fetal lumbosacral spinal cords were isolated for immunohistochemistry and quantitative gene expression studies focused on microglia activity, inflammation, and apoptosis (P < 0.05). RESULTS There was a trend toward decreased activated Iba1+ microglial cells within the dorsal spinal cord of MMC pups following minocycline exposure when compared to water (H2O) alone (P = 0.052). Prenatal minocycline exposure was correlated with significantly reduced expression of the proinflammatory cytokine, IL-6 (minocycline: 1.75 versus H2O: 3.52, P = 0.04) and apoptosis gene, Bax (minocycline: 0.71 versus H2O: 1.04, P < 0.001) among MMC pups. CONCLUSIONS This study found evidence that the maternal administration of minocycline reduces selected markers of inflammation and apoptosis within the exposed dorsal spinal cords of fetal MMC rats. Further study of minocycline as a novel prenatal treatment strategy to mitigate spinal cord damage in MMC is warranted.
Collapse
Affiliation(s)
- Juan C Biancotti
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Anne M Sescleifer
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Shelby R Sferra
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Annalise B Penikis
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Kyra M Halbert-Elliott
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ciaran R Bubb
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Shaun M Kunisaki
- Division of General Pediatric Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
2
|
Eivazi Zadeh Z, Nour S, Kianersi S, Jonidi Shariatzadeh F, Williams RJ, Nisbet DR, Bruggeman KF. Mining human clinical waste as a rich source of stem cells for neural regeneration. iScience 2024; 27:110307. [PMID: 39156636 PMCID: PMC11326931 DOI: 10.1016/j.isci.2024.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Neural diseases are challenging to treat and are regarded as one of the major causes of disability and morbidity in the world. Stem cells can provide a solution, by offering a mechanism to replace damaged circuitry. However, obtaining sufficient cell sources for neural regeneration remains a significant challenge. In recent years, waste-derived stem(-like) cells (WDS-lCs) extracted from both prenatal and adult clinical waste tissues/products, have gained increasing attention for application in neural tissue repair and remodeling. This often-overlooked pool of cells possesses favorable characteristics; including self-renewal, neural differentiation, secretion of neurogenic factors, cost-effectiveness, and low ethical concerns. Here, we offer a perspective regarding the biological properties, extraction protocols, and preclinical and clinical treatments where prenatal and adult WDS-lCs have been utilized for cell replacement therapy in neural applications, and the challenges involved in optimizing these approaches toward patient led therapies.
Collapse
Affiliation(s)
- Zahra Eivazi Zadeh
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Shirin Nour
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- Polymer Science Group, Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sogol Kianersi
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences, University of Galway, Galway, Ireland
| | | | - Richard J. Williams
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - David R. Nisbet
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Founder and Scientific Advisory of Nano Status, Building 137, Sullivans Creek Rd, ANU, Acton, Canberra, ACT, Australia
| | - Kiara F. Bruggeman
- Laboratory of Advanced Biomaterials Research, School of Engineering, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
3
|
Felício R, Franco A, Corrêa-Moreira D, Martinez de Carvalho F, Guimarães A, Vargas FR. Humoral immune transcriptome signature in myelomeningocele patients. J Reprod Immunol 2024; 163:104224. [PMID: 38479055 DOI: 10.1016/j.jri.2024.104224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 06/03/2024]
Abstract
INTRODUCTION Myelomeningocele (MMC) results from incomplete closure of the neural tube, and has a complex multifactorial etiology, including an inflammatory microenvironment. OBJECTIVE We evaluated the contribution of humoral immune response for development of inflammatory milieu. METHODS Using public repository Gene Expression Omnibus (GEO), we retrieve dataset transcriptome from the amniotic fluid of ten fetuses with myelomeningocele and ten healthy control fetuses to found differential gene expression associated with disturbances and inflammatory signatures in MMC. The identified DEGs were submitted to enrichment, network, and matrix correlation analyses. RESULTS Our initial analysis revealed 90 DEGs in MMC, mainly associated with signaling pathways of inflammation, including the immune modules, humoral immune response and IFN-type I signatures. Protein-protein analysis (PPI) revealed an association with three protein networks; positive regulation of B cell proliferation constituted the largest network. Matrix correlation analyses showed that MMC alters the co-expression of genes related to inflammatory processes that promote microenvironment inflammation. CONCLUSION These results revealed an altered humoral immune response in MMC patients, contributing to an inflammatory profile and providing opportunities for identifying potential biomarkers in myelomeningocele disease.
Collapse
Affiliation(s)
- Rfm Felício
- Birth Defects Epidemiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Rede de Atenção à Saúde nas Anomalias Congênitas do Sistema Nervoso Central, Instituo Oswaldo Cruz, Fundação Oswaldo Cruz, Brazil; Laboratory for Applied Genomics and Bioinnovations, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Almm Franco
- Birth Defects Epidemiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Genética), Universidade Federal do Rio de Janeiro, Brazil; Laboratory for Applied Genomics and Bioinnovations, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - D Corrêa-Moreira
- Rede de Atenção à Saúde nas Anomalias Congênitas do Sistema Nervoso Central, Instituo Oswaldo Cruz, Fundação Oswaldo Cruz, Brazil; Laboratory of Taxonomy, Biochesmistry and Bioprospecting of Fungi, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazil; Laboratory for Applied Genomics and Bioinnovations, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - F Martinez de Carvalho
- Birth Defects Epidemiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Rede de Atenção à Saúde nas Anomalias Congênitas do Sistema Nervoso Central, Instituo Oswaldo Cruz, Fundação Oswaldo Cruz, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Genética), Universidade Federal do Rio de Janeiro, Brazil; Laboratory for Applied Genomics and Bioinnovations, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Acr Guimarães
- Laboratory of Taxonomy, Biochesmistry and Bioprospecting of Fungi, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazil; Laboratory for Applied Genomics and Bioinnovations, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - F R Vargas
- Birth Defects Epidemiology Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Rede de Atenção à Saúde nas Anomalias Congênitas do Sistema Nervoso Central, Instituo Oswaldo Cruz, Fundação Oswaldo Cruz, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Genética), Universidade Federal do Rio de Janeiro, Brazil; Laboratory for Applied Genomics and Bioinnovations, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil; Departamento de Genética e Biologia Molecular, Universidade Federal do Estado do Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Abe Y, Sato Y, Tanaka M, Ochiai D. Development of a new treatment for preterm birth complications using amniotic fluid stem cell therapy. Histol Histopathol 2023; 38:965-974. [PMID: 36971371 DOI: 10.14670/hh-18-607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
This paper describes the current status of studies and clinical trials on the use of mesenchymal stem cells (MSCs) and amniotic fluid stem cells (AFSCs) for complications of preterm birth (PTB), an urgent issue in the perinatal field. PTB is a serious challenge in clinical medicine that is increasing globally, and effective control of its complications is necessary for newborns' subsequent long life. Classical treatments are inadequate, and many patients have PTB complications. A growing body of evidence provided by translational medicine and others indicates that MSCs, and among them, the readily available AFSCs, may be useful in treating PTB complications. AFSCs are the only MSCs available prenatally and are known to be highly anti-inflammatory and tissue-protective and do not form tumors when transplanted. Furthermore, because they are derived from the amniotic fluid, a medical waste product, no ethical issues are involved. AFSCs are an ideal cell resource for MSC therapy in neonates. This paper targets the brain, lungs, and intestines, which are the vital organs most likely to be damaged by PTB complications. The evidence to date and future prospects with MSCs and AFSCs for these organs are described.
Collapse
Affiliation(s)
- Yushi Abe
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Yu Sato
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Daigo Ochiai
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
- Department of Obstetrics and Gynecology, Kitasato University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
5
|
Moskowitzova K, Fauza DO. Transamniotic stem cell therapy (TRASCET): An emerging minimally invasive strategy for intrauterine stem cell delivery. Semin Perinatol 2023; 47:151728. [PMID: 36990923 DOI: 10.1016/j.semperi.2023.151728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Transamniotic stem cell therapy (TRASCET) is an emerging strategy for prenatal stem cell therapy involving the least invasive method described to date of delivering select stem cells to virtually any anatomical site in the fetus, including the blood and bone marrow, as well as to fetal annexes, including the placenta. Such broad therapeutic potential derives, to a large extent, from unique routing patterns following stem cell delivery into the amniotic fluid, which have commonalities with naturally occurring fetal cell kinetics. First reported experimentally only less than a decade ago, TRASCET has yet to be attempted clinically, though a first clinical trial appears imminent. Despite significant experimental advances, much promise and perhaps excessive publicity, most cell-based therapies have yet to deliver meaningful large-scale impact to patient care. The few exceptions typically consist of therapies based on the amplification of the normal biological role played by the given cells in their natural environment. Therein lays much of the appeal of TRASCET, in that it, too, is in essence a magnification of naturally occurring processes in the distinctive environment of the maternal-fetal unit. As much as fetal stem cells possess unique characteristics compared with other stem cells, so does the fetus when compared with any other age group, converging into a scenario that enables therapeutic paradigms exclusive to prenatal life. This review summarizes the diversity of applications and biological responses associated with the TRASCET principle.
Collapse
Affiliation(s)
- Kamila Moskowitzova
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue - Fegan 3, Boston, MA 02115, USA
| | - Dario O Fauza
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue - Fegan 3, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Prophylactic administration of human amniotic fluid stem cells suppresses inflammation-induced preterm birth via macrophage polarization. Mol Cell Biochem 2023; 478:363-374. [PMID: 35810415 DOI: 10.1007/s11010-022-04512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/22/2022] [Indexed: 02/02/2023]
Abstract
Ascending inflammation from the vagina is a major cause of preterm birth. Currently, this condition-especially when uncontrolled-has no effective treatment. Human amniotic fluid stem cells (hAFSCs) are mesenchymal stem cells known to exert potent anti-inflammatory effects in animal models of perinatal diseases, such as periventricular leukomalacia, myelomeningocele, and neonatal sepsis. However, hAFSC therapy for inflammation-induced preterm birth has not been tested. In order to determine the therapeutic effect of hAFSC transplantation, we employed a preterm mouse model of ascending infection; this model was constructed by administering lipopolysaccharide to pregnant mice. We investigated the preterm birth rate and evaluated the inflammation of tissues, which is related to progressive infections, such as those involving the cervix, placenta, and lavage cells, using real-time qPCR. Further, we tracked the fluorescence of fluorescently labeled hAFSCs using an in vivo imaging system, and hAFSC aggregation was evaluated using immunohistochemistry analysis. We also investigated the presence of multiple types of peritoneal macrophages via flow cytometry analysis. Finally, we performed sphere culturing and co-culturing to determine the therapeutic effects of hAFSCs, such as their anti-inflammatory effects and their potential to alter macrophage polarization. We found that hAFSC administration to the peritoneal cavity significantly reduced inflammation-induced preterm birth in the mouse model. The treatment also significantly suppressed inflammation of the placenta and cervix. Transplanted hAFSCs may have aggregated with peritoneal macrophages, switching them from an inflammatory to an anti-inflammatory type. This property has been reported in vivo previously, but here, we examined the effect in vitro. Our findings support the hypothesis that hAFSCs suppress inflammation and reduce preterm birth by switching macrophage polarity. This study is the first to demonstrate that hAFSCs are effective in the treatment and prevention of inflammation-induced preterm birth.
Collapse
|
7
|
Luo H, Wang Z, Qi F, Wang D. Applications of human amniotic fluid stem cells in wound healing. Chin Med J (Engl) 2022; 135:2272-2281. [PMID: 36535008 PMCID: PMC9771343 DOI: 10.1097/cm9.0000000000002076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT Complete wound regeneration preserves skin structure and physiological functions, including sensation and perception of stimuli, whereas incomplete wound regeneration results in fibrosis and scarring. Amniotic fluid stem cells (AFSCs) would be a kind of cell population with self-renewing and non-immunogenic ability that have a considerable role in wound generation. They are easy to harvest, culture, and store; moreover, they are non-tumorigenic and not subject to ethical restrictions. They can differentiate into different kinds of cells that replenish the skin, subcutaneous tissues, and accessory organs. Additionally, AFSCs independently produce paracrine effectors and secrete them in exosomes, thereby modulating local immune cell activity. They demonstrate anti-inflammatory and immunomodulatory properties, regulate the physicochemical microenvironment of the wound, and promote full wound regeneration. Thus, AFSCs are potential resources in stem cell therapy, especially in scar-free wound healing. This review describes the biological characteristics and clinical applications of AFSCs in treating wounds and provide new ideas for the treatment of wound healing.
Collapse
Affiliation(s)
- Han Luo
- Department of Plastic Surgery and Burns, The Affiliated Hospital of Zunyl Medical University, Zunyl, Guizhou 563003, China
- Department of Plastic Surgery and Burns, Fuling Central Hospital, Chongqing 408000, China
| | - Zhen Wang
- Department of Plastic Surgery and Burns, The Affiliated Hospital of Zunyl Medical University, Zunyl, Guizhou 563003, China
| | - Fang Qi
- Department of Plastic Surgery and Burns, The Affiliated Hospital of Zunyl Medical University, Zunyl, Guizhou 563003, China
| | - Dali Wang
- Department of Plastic Surgery and Burns, The Affiliated Hospital of Zunyl Medical University, Zunyl, Guizhou 563003, China
| |
Collapse
|
8
|
Human Amniotic Fluid Stem Cells Ameliorate Thioglycollate-Induced Peritonitis by Increasing Tregs in Mice. Int J Mol Sci 2022; 23:ijms23126433. [PMID: 35742877 PMCID: PMC9224120 DOI: 10.3390/ijms23126433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) affect immune cells and exert anti-inflammatory effects. Human amniotic fluid stem cells (hAFSCs), a type of MSCs, have a high therapeutic effect in animal models of inflammation-related diseases. hAFSCs can be easily isolated and cultured from amniotic fluid, which is considered a medical waste. Hence, amniotic fluid can be a source of cells for MSC therapy of inflammatory diseases. However, the effect of hAFSCs on acquired immunity in vivo, especially on regulatory T cells, has not yet been fully elucidated. Therefore, in this study, we aimed to understand the effects of hAFSCs on acquired immunity, particularly on regulatory T cells. We showed that hAFSCs ameliorated the thioglycollate-induced inflammation by forming aggregates with host immune cells, such as macrophages, T cells, and B cells in the peritoneal cavity. Further, the regulatory T cells increased in the peritoneal cavity. These results indicated that, in addition to helping the innate immunity, hAFSCs could also aid the acquired immune system in vivo against inflammation-related diseases by increasing regulatory T cells.
Collapse
|
9
|
Spina Bifida: A Review of the Genetics, Pathophysiology and Emerging Cellular Therapies. J Dev Biol 2022; 10:jdb10020022. [PMID: 35735913 PMCID: PMC9224552 DOI: 10.3390/jdb10020022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 12/11/2022] Open
Abstract
Spina bifida is the most common congenital defect of the central nervous system which can portend lifelong disability to those afflicted. While the complete underpinnings of this disease are yet to be fully understood, there have been great advances in the genetic and molecular underpinnings of this disease. Moreover, the treatment for spina bifida has made great advancements, from surgical closure of the defect after birth to the now state-of-the-art intrauterine repair. This review will touch upon the genetics, embryology, and pathophysiology and conclude with a discussion on current therapy, as well as the first FDA-approved clinical trial utilizing stem cells as treatment for spina bifida.
Collapse
|
10
|
Intra-amniotic Injection of Poly(lactic-co-glycolic Acid) Microparticles Loaded with Growth Factor: Effect on Tissue Coverage and Cellular Apoptosis in the Rat Model of Myelomeningocele. J Am Coll Surg 2022; 234:1010-1019. [PMID: 35703790 DOI: 10.1097/xcs.0000000000000156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Myelomeningocele (MMC) is a devastating congenital neurologic disorder that can lead to lifelong morbidity and has limited treatment options. This study investigates the use of poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) loaded with fibroblast growth factor (FGF) as a platform for in utero treatment of MMC. STUDY DESIGN Intra-amniotic injections of PLGA MPs were performed on gestational day 17 (E17) in all-trans retinoic acid-induced MMC rat dams. MPs loaded with fluorescent dye (DiO) were evaluated 3 hours after injection to determine incidence of binding to the MMC defect. Fetuses were then treated with PBS or PLGA particles loaded with DiO, bovine serum albumin, or FGF and evaluated at term (E21). Fetuses with MMC defects were evaluated for gross and histologic evidence of soft tissue coverage. The effect of PLGA-FGF treatment on spinal cord cell death was evaluated using an in situ cell death kit. RESULTS PLGA-DiO MPs had a binding incidence of 86% and 94% 3 hours after injection at E17 for doses of 0.1 mg and 1.2 mg, respectively. Incidence of soft tissue coverage at term was 19% (4 of 21), 22% (2 of 9), and 83% (5 of 6) for PLGA-DiO, PLGA-BSA, and PLGA-FGF, respectively. At E21, the percentage of spinal cord cells positive for in situ cell death was significantly higher in MMC controls compared with wild-type controls or MMC pups treated with PLGA-FGF. CONCLUSION PLGA MPs are an innovative minimally invasive platform for induction of soft tissue coverage in the rat model of MMC and may reduce cellular apoptosis.
Collapse
|
11
|
|
12
|
Pisani S, Genta I, Modena T, Dorati R, Benazzo M, Conti B. Shape-Memory Polymers Hallmarks and Their Biomedical Applications in the Form of Nanofibers. Int J Mol Sci 2022; 23:1290. [PMID: 35163218 PMCID: PMC8835830 DOI: 10.3390/ijms23031290] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/28/2022] Open
Abstract
Shape-Memory Polymers (SMPs) are considered a kind of smart material able to modify size, shape, stiffness and strain in response to different external (heat, electric and magnetic field, water or light) stimuli including the physiologic ones such as pH, body temperature and ions concentration. The ability of SMPs is to memorize their original shape before triggered exposure and after deformation, in the absence of the stimulus, and to recover their original shape without any help. SMPs nanofibers (SMPNs) have been increasingly investigated for biomedical applications due to nanofiber's favorable properties such as high surface area per volume unit, high porosity, small diameter, low density, desirable fiber orientation and nanoarchitecture mimicking native Extra Cellular Matrix (ECM). This review focuses on the main properties of SMPs, their classification and shape-memory effects. Moreover, advantages in the use of SMPNs and different biomedical application fields are reported and discussed.
Collapse
Affiliation(s)
- Silvia Pisani
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy or (S.P.); (M.B.)
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.G.); (T.M.); (R.D.)
| | - Tiziana Modena
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.G.); (T.M.); (R.D.)
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.G.); (T.M.); (R.D.)
| | - Marco Benazzo
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy or (S.P.); (M.B.)
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.G.); (T.M.); (R.D.)
| |
Collapse
|
13
|
Baughn C, Campion S, Elbabaa S. Amniotic fluid-derived stem cell potential for therapeutic and surgical use: A review of the literature. Prenat Diagn 2022; 42:157-163. [PMID: 35001398 DOI: 10.1002/pd.6087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Spina bifida is a debilitating neutral tube defect affecting many infants. The impact and severity of spina bifida depends on whether the patient exhibits a closed defect, spina bifida occulta, or an open defect, spina bifida aperta. Patients with spina bifida have physical and mental disabilities which merit further research into less invasive, more successful treatments. In addition to serving as protection for the growing fetus and facilitating nutrient exchange, amniotic fluid (AF) is a rich source of a mixed population of stem cells. As such, in vitro culture of AF-derived stem cells has shown promise among therapeutic and surgical applications. We present a critical evaluation of the current preclinical efforts, amniotic fluid-derived stem cell (AFSC) culture process, and the subsequent therapeutic application, with a focus on improvements for spina bifida outcomes in the pediatric patient population. METHOD An evidence - based literature review to investigate the current literature surrounding AFSC culture and use, with an emphasis on the benefits for spina bifida treatment. RESULTS 47 literature sources from PubMed and three studies from ClinicalTrials.gov. CONCLUSION This review synthesizes the current literature, which shows promising data on AFSC pluripotency, as well as successful in utero coverage from AFSC - supported environments in a multitude of animal models.
Collapse
Affiliation(s)
- Caroline Baughn
- College of Medicine, University of Central Florida College of Medicine, Orlando, Florida, USA
| | - Stephani Campion
- Pediatric Neurosurgery, Arnold Palmer Hospital for Children, Orlando, Florida, USA
| | - Samer Elbabaa
- College of Medicine, University of Central Florida College of Medicine, Orlando, Florida, USA.,Pediatric Neurosurgery, Arnold Palmer Hospital for Children, Orlando, Florida, USA
| |
Collapse
|
14
|
Sharma S, Jeyaraman M, Muthu S. Role of stem cell therapy in neurosciences. ESSENTIALS OF EVIDENCE-BASED PRACTICE OF NEUROANESTHESIA AND NEUROCRITICAL CARE 2022:163-179. [DOI: 10.1016/b978-0-12-821776-4.00012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
15
|
Sbragia L, da Costa KM, Nour ALA, Ruano R, Santos MV, Machado HR. State of the art in translating experimental myelomeningocele research to the bedside. Childs Nerv Syst 2021; 37:2769-2785. [PMID: 34333685 DOI: 10.1007/s00381-021-05299-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
Myelomeningocele (MMC), the commonest type of spina bifida (SB), occurs due to abnormal development of the neural tube and manifest as failure of the complete fusion of posterior arches of the spinal column, leading to dysplastic growth of the spinal cord and meninges. It is associated with several degrees of motor and sensory deficits below the level of the lesion, as well as skeletal deformities, bladder and bowel incontinence, and sexual dysfunction. These children might develop varying degrees of neuropsychomotor delay, partly due to the severity of the injuries that affect the nervous system before birth, partly due to the related cerebral malformations (notably hydrocephalus-which may also lead to an increase in intracranial pressure-and Chiari II deformity). Traditionally, MMC was repaired surgically just after birth; however, intrauterine correction of MMC has been shown to have several potential benefits, including better sensorimotor outcomes (since exposure to amniotic fluid and its consequent deleterious effects is shortened) and reduced rates of hydrocephalus, among others. Fetal surgery for myelomeningocele, nevertheless, would not have been made possible without the development of experimental models of this pathological condition. Hence, the aim of the current article is to provide an overview of the animal models of MMC that were used over the years and describe how this knowledge has been translated into the fetal treatment of MMC in humans.
Collapse
Affiliation(s)
- Lourenço Sbragia
- Division of Pediatric Surgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Karina Miura da Costa
- Division of Pediatric Surgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Landolffi Abdul Nour
- Division of Pediatric Surgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo Ruano
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Texas, Houston, TX, USA
| | - Marcelo Volpon Santos
- Division of Pediatric Neurosurgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Hélio Rubens Machado
- Division of Pediatric Neurosurgery - Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
16
|
Valiulienė G, Zentelytė A, Beržanskytė E, Navakauskienė R. Metabolic Profile and Neurogenic Potential of Human Amniotic Fluid Stem Cells From Normal vs. Fetus-Affected Gestations. Front Cell Dev Biol 2021; 9:700634. [PMID: 34336852 PMCID: PMC8322743 DOI: 10.3389/fcell.2021.700634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 12/04/2022] Open
Abstract
Human amniotic fluid stem cells (hAFSCs) possess some characteristics with mesenchymal stem cells (MSCs) and embryonic stem cells and have a broader differentiation potential compared to MSCs derived from other sources. Although hAFSCs are widely researched, their analysis mainly involves stem cells (SCs) obtained from normal, fetus-unaffected gestations. However, in clinical settings, knowledge about hAFSCs from normal gestations could be poorly translational, as hAFSCs from healthy and fetus-diseased gestations may differ in their differentiation and metabolic potential. Therefore, a more thorough investigation of hAFSCs derived from pathological gestations would provide researchers with the knowledge about the general characteristics of these cells that could be valuable for further scientific investigations and possible future clinical applicability. The goal of this study was to look into the neurogenic and metabolic potential of hAFSCs derived from diseased fetuses, when gestations were concomitant with polyhydramnios and compare them to hAFSCs derived from normal fetuses. Results demonstrated that these cells are similar in gene expression levels of stemness markers (SOX2, NANOG, LIN28A, etc.). However, they differ in expression of CD13, CD73, CD90, and CD105, as flow cytometry analysis revealed higher expression in hAFSCs from unaffected gestations. Furthermore, hAFSCs from “Normal” and “Pathology” groups were different in oxidative phosphorylation rate, as well as level of ATP and reactive oxygen species production. Although the secretion of neurotrophic factors BDNF and VEGF was of comparable degree, as evaluated with enzyme-linked immunosorbent assay (ELISA) test, hAFSCs from normal gestations were found to be more prone to neurogenic differentiation, compared to hAFSCs from polyhydramnios. Furthermore, hAFSCs from polyhydramnios were distinguished by higher secretion of pro-inflammatory cytokine TNFα, which was significantly downregulated in differentiated cells. Overall, these observations show that hAFSCs from pathological gestations with polyhydramnios differ in metabolic and inflammatory status and also possess lower neurogenic potential compared to hAFSCs from normal gestations. Therefore, further in vitro and in vivo studies are necessary to dissect the potential of hAFSCs from polyhydramnios in stem cell-based therapies. Future studies should also search for strategies that could improve the characteristics of hAFSCs derived from diseased fetuses in order for those cells to be successfully applied for regenerative medicine purposes.
Collapse
Affiliation(s)
- Giedrė Valiulienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aistė Zentelytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Elizabet Beržanskytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
17
|
Costa A, Ceresa D, De Palma A, Rossi R, Turturo S, Santamaria S, Balbi C, Villa F, Reverberi D, Cortese K, De Biasio P, Paladini D, Coviello D, Ravera S, Malatesta P, Mauri P, Quarto R, Bollini S. Comprehensive Profiling of Secretome Formulations from Fetal- and Perinatal Human Amniotic Fluid Stem Cells. Int J Mol Sci 2021; 22:ijms22073713. [PMID: 33918297 PMCID: PMC8038201 DOI: 10.3390/ijms22073713] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
We previously reported that c-KIT+ human amniotic-fluid derived stem cells obtained from leftover samples of routine II trimester prenatal diagnosis (fetal hAFS) are endowed with regenerative paracrine potential driving pro-survival, anti-fibrotic and proliferative effects. hAFS may also be isolated from III trimester clinical waste samples during scheduled C-sections (perinatal hAFS), thus offering a more easily accessible alternative when compared to fetal hAFS. Nonetheless, little is known about the paracrine profile of perinatal hAFS. Here we provide a detailed characterization of the hAFS total secretome (i.e., the entirety of soluble paracrine factors released by cells in the conditioned medium, hAFS-CM) and the extracellular vesicles (hAFS-EVs) within it, from II trimester fetal- versus III trimester perinatal cells. Fetal- and perinatal hAFS were characterized and subject to hypoxic preconditioning to enhance their paracrine potential. hAFS-CM and hAFS-EV formulations were analyzed for protein and chemokine/cytokine content, and the EV cargo was further investigated by RNA sequencing. The phenotype of fetal- and perinatal hAFS, along with their corresponding secretome formulations, overlapped; yet, fetal hAFS showed immature oxidative phosphorylation activity when compared to perinatal ones. The profiling of their paracrine cargo revealed some differences according to gestational stage and hypoxic preconditioning. Both cell sources provided formulations enriched with neurotrophic, immunomodulatory, anti-fibrotic and endothelial stimulating factors, and the immature fetal hAFS secretome was defined by a more pronounced pro-vasculogenic, regenerative, pro-resolving and anti-aging profile. Small RNA profiling showed microRNA enrichment in both fetal- and perinatal hAFS-EV cargo, with a stably- expressed pro-resolving core as a reference molecular signature. Here we confirm that hAFS represents an appealing source of regenerative paracrine factors; the selection of either fetal or perinatal hAFS secretome formulations for future paracrine therapy should be evaluated considering the specific clinical scenario.
Collapse
Affiliation(s)
- Ambra Costa
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (S.T.); (P.M.)
| | - Davide Ceresa
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Antonella De Palma
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.D.P.); (R.R.); (P.M.)
| | - Rossana Rossi
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.D.P.); (R.R.); (P.M.)
| | - Sara Turturo
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (S.T.); (P.M.)
| | - Sara Santamaria
- Human Anatomy Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (S.S.); (K.C.); (S.R.)
| | - Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland;
- Center for Molecular Cardiology, University of Zurich, 8952 Zurich, Switzerland
| | - Federico Villa
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Daniele Reverberi
- Molecular Pathology Unit, IRCCS Ospedale Policlinico, San Martino, 16132 Genova, Italy;
| | - Katia Cortese
- Human Anatomy Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (S.S.); (K.C.); (S.R.)
| | - Pierangela De Biasio
- Prenatal Diagnosis and Perinatal Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Dario Paladini
- Fetal Medicine and Surgery Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Domenico Coviello
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Silvia Ravera
- Human Anatomy Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (S.S.); (K.C.); (S.R.)
| | - Paolo Malatesta
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (S.T.); (P.M.)
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Pierluigi Mauri
- Proteomics and Metabolomics Unit, Institute for Biomedical Technologies (ITB-CNR), 20054 Milan, Italy; (A.D.P.); (R.R.); (P.M.)
| | - Rodolfo Quarto
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (S.T.); (P.M.)
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Correspondence: (R.Q.); (S.B.); Tel.: +39-010-5558-257 (S.B.)
| | - Sveva Bollini
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (S.T.); (P.M.)
- Correspondence: (R.Q.); (S.B.); Tel.: +39-010-5558-257 (S.B.)
| |
Collapse
|
18
|
Soltani Khaboushan A, Shakibaei M, Kajbafzadeh AM, Majidi Zolbin M. Prenatal Neural Tube Anomalies: A Decade of Intrauterine Stem Cell Transplantation Using Advanced Tissue Engineering Methods. Stem Cell Rev Rep 2021; 18:752-767. [PMID: 33742349 DOI: 10.1007/s12015-021-10150-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Neural tube defects (NTDs) are among the most common congenital defects during neurulation. Spina bifida is a type of NTD that can occur in different forms. Since myelomeningocele (MMC) is the most severe form of spina bifida, finding a satisfactory treatment for MMC is a gold standard for the treatment of spina bifida. The Management of Myelomeningocele Study (MOMS) demonstrated that intrauterine treatment of spina bifida could ameliorate the complications associated with spina bifida and would also reduce the placement of ventriculoperitoneal (VP) shunt by 50%. Recently developed tissue engineering (TE) approaches using scaffolds, stem cells, and growth factors allow treatment of the fetus with minimally invasive methods and promising outcomes. The application of novel patches with appropriate stem cells and growth factors leads to better coverage of the defect with fewer complications. These approaches with less invasive surgical procedures, even in animal models with similar characteristics as the human MMC defect, paves the way for the modern application of less invasive surgical methods. Significantly, the early detection of these problems and applying these approaches can increase the potential efficacy of MMC treatment with fewer complications. However, further studies should be conducted to find the most suitable scaffolds and stem cells, and their application should be evaluated in animal models. This review intends to discuss advanced TE methods for treating MMC and recent successes in increasing the efficacy of the treatment.
Collapse
Affiliation(s)
- Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419433151, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336, Munich, Germany
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419433151, Iran.
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, 1419433151, Iran.
| |
Collapse
|
19
|
Chen R, Xie Y, Zhong X, Chen F, Gong Y, Wang N, Wang D. MSCs derived from amniotic fluid and umbilical cord require different administration schemes and exert different curative effects on different tissues in rats with CLP-induced sepsis. Stem Cell Res Ther 2021; 12:164. [PMID: 33676566 PMCID: PMC7936453 DOI: 10.1186/s13287-021-02218-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/09/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are derived from multiple tissues, including amniotic fluid (AF-MSCs) and the umbilical cord (UC-MSCs). Although the therapeutic effect of MSCs on sepsis is already known, researchers have not determined whether the cells from different sources require different therapeutic schedules or exert different curative effects. We assessed the biofunction of the administration of AF-MSCs and UC-MSCs in rats with caecal ligation and puncture (CLP)-induced sepsis. METHODS CLP was used to establish a disease model of sepsis in rats, and intravenous tail vein administration of AF-MSCs and UC-MSCs was performed to treat sepsis at 6 h after CLP. Two phases of animal experiments were implemented using MSCs harvested in saline with or without filtration. The curative effect was measured by determining the survival rate. Further effects were assessed by measuring proinflammatory cytokine levels, the plasma coagulation index, tissue histology and the pathology of the lung, liver and kidney. RESULTS We generated rats with medium-grade sepsis with a 30-40% survival rate to study the curative effects of AF-MSCs and UC-MSCs. MSCs reversed CLP-induced changes in proinflammatory cytokine levels and coagulation activation. MSCs ameliorated CLP-induced histological and pathological changes in the lung, liver and kidney. AF-MSCs and UC-MSCs functioned differently in different tissues; UC-MSCs performed well in reducing the upregulation of inflammatory cytokine levels in the lungs and inhibiting the inflammatory cell infiltration into the liver capsule, while AF-MSCs performed well in inhibiting cell death in the kidneys and reducing the plasma blood urea nitrogen (BUN) level, an indicator of renal function. CONCLUSIONS Our studies suggest the safety and efficacy of AF-MSCs and UC-MSCs in the treatment of CLP-induced sepsis in rats and show that the cells potentially exert different curative effects on the main sepsis-affected tissues.
Collapse
Affiliation(s)
- Rui Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Xuan Zhong
- Medical Intensive Care Unit, Guangdong Women and Children Hospital, Guangzhou, 510150, Guangdong, China
| | - Fei Chen
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Yu Gong
- Central Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Na Wang
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Ding Wang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China. .,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
20
|
Ochiai D, Abe Y, Fukutake M, Sato Y, Ikenoue S, Kasuga Y, Masuda H, Tanaka M. Cell sheets using human amniotic fluid stem cells reduce tissue fibrosis in murine full-thickness skin wounds. Tissue Cell 2021; 68:101472. [PMID: 33360545 DOI: 10.1016/j.tice.2020.101472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
The use of mesenchymal stem cell sheets is a promising strategy for skin regeneration. The injection of dissociated human amniotic fluid stem cells (hAFSCs) was recently found to accelerate cutaneous wound healing with reduced fibrotic scarring, similar to fetal wound healing. However, the use of hAFSCs in applications of cell sheet technology remains limited. The aim of this study was to determine the in vivo efficacy of in vitro-cultured hAFSC sheets in wound healing. The cell sheets were characterized by immunohistochemistry and RT-qPCR and grafted onto full-thickness wounds in BALB/c mice. The wound size was measured, and re-epithelialization, granulation tissue area, and collagen content of the regenerated wound were analyzed histologically. Although the hAFSC sheet contained abundant extracellular matrix molecules and expressed high levels of anti-fibrotic mediators, its grafting did not affect wound closure or the size of the granulation tissue area. In contrast, the organization of type I collagen bundles in the regenerated wound was markedly reduced, while the levels of type III collagen were increased after implantation of the hAFSC sheet. These results suggest that hAFSC sheets can exert anti-fibrotic properties without delaying wound closure.
Collapse
Affiliation(s)
- Daigo Ochiai
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan.
| | - Yushi Abe
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Marie Fukutake
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Yu Sato
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Satoru Ikenoue
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshifumi Kasuga
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hirotaka Masuda
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Abe Y, Ochiai D, Sato Y, Otani T, Fukutake M, Ikenoue S, Kasuga Y, Tanaka M. Amniotic fluid stem cells as a novel strategy for the treatment of fetal and neonatal neurological diseases. Placenta 2021; 104:247-252. [PMID: 33461069 DOI: 10.1016/j.placenta.2021.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/26/2020] [Accepted: 01/08/2021] [Indexed: 01/26/2023]
Abstract
Even in the context of modern medicine, infants with fetal and neonatal neurological diseases such as cerebral palsy and myelomeningocele suffer serious long-lasting impairment due to the irreversible neuronal damage. The promotion of neurologically intact survival in patients with perinatal intractable neurological diseases requires the development of novel strategies. One promising strategy involves the use of human amniotic fluid stem cells (hAFSCs), which have attracted much attention in recent years and are known to exert anti-inflammatory and neuroprotective effects. In recent years, the therapeutic effects of hAFSCs on fetal-neonatal neurological diseases have become evident as per intense research efforts by our group and others. Specifically, hAFSCs administered into the nasal cavity migrated to the brain and controlled local inflammation in a rodent model of neonatal hypoxic-ischemic encephalopathy. In contrast, hAFSCs administered intraperitoneally did not migrate to the brain; they rather formed spheroids in the abdominal cavity, resulting in the suppression of systemic inflammation (including in the brain) via the secretion of anti-inflammatory cytokines in concert with peritoneal macrophages in a rodent model of periventricular leukomalacia. Moreover, studies in a rat model of myelomeningocele suggested that hAFSCs administered in utero secreted hepatocyte growth factor and protected the exposed spinal cord during pregnancy. Importantly, autologous hAFSCs, whose use for fetal-neonatal treatment does not raise ethical issues, can be collected during pregnancy and prepared in sufficient numbers for therapeutic use. This article outlines the results of preclinical research on fetal stem cell therapy, mainly involving hAFSCs, in the context of perinatal neurological diseases.
Collapse
Affiliation(s)
- Yushi Abe
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Daigo Ochiai
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan.
| | - Yu Sato
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Toshimitsu Otani
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Marie Fukutake
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Satoru Ikenoue
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshifumi Kasuga
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Kunpalin Y, Subramaniam S, Perin S, Gerli MFM, Bosteels J, Ourselin S, Deprest J, De Coppi P, David AL. Preclinical stem cell therapy in fetuses with myelomeningocele: A systematic review and meta-analysis. Prenat Diagn 2021; 41:283-300. [PMID: 33427329 PMCID: PMC7611444 DOI: 10.1002/pd.5887] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/16/2020] [Accepted: 12/15/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE We performed a systematic review to summarize the efficacy and safety of in utero stem cells application in preclinical models with myelomeningocele (MMC). METHODS The study was registered with PROSPERO (CRD42019160399). We searched MEDLINE, Embase, Web of Science, Scopus and CENTRAL for publications articles on stem cell therapy in animal fetuses with MMC until May 2020. Publication quality was assessed by the SYRCLE's tool. Meta-analyses were pooled if studies were done in the same animal model providing similar type of stem cell used and outcome measurements. Narrative synthesis was performed for studies that could not be pooled. RESULTS Nineteen and seven studies were included in narrative and quantitative syntheses, respectively. Most used mesenchymal stem cells (MSCs) and primarily involved ovine and rodent models. Both intra-amniotic injection of allogeneic amniotic fluid (AF)-MSCs in rat MMC model and the application of human placental (P)-MSCs to the spinal cord during fetal surgery in MMC ovine model did not compromise fetal survival rates at term (rat model, relative risk [RR] 1.03, 95% CI 0.92-1.16; ovine model, RR 0.94, 95% CI 0.78-1.13). A single intra-amniotic injection of allogeneic AF-MSCs into rat MMC model was associated with a higher rate of complete defect coverage compared to saline injection (RR 16.35, 95% CI 3.27-81.79). The incorporation of human P-MSCs as a therapeutic adjunct to fetal surgery in the ovine MMC model significantly improved sheep locomotor rating scale after birth (mean difference 5.18, 95% CI 3.36-6.99). CONCLUSIONS Stem cell application during prenatal period in preclinical animal models is safe and effective.
Collapse
Affiliation(s)
- Yada Kunpalin
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Sindhu Subramaniam
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Silvia Perin
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Mattia F M Gerli
- Great Ormond Street Institute of Child Health, University College London, London, UK.,Division of Surgery and Interventional Science, Royal Free Hospital, University College London, London, UK
| | - Jan Bosteels
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium.,Cochrane Belgium, Belgian Centre for Evidence-Based Medicine (Cebam), Leuven, Belgium
| | - Sebastien Ourselin
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Jan Deprest
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium.,Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Paolo De Coppi
- Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium.,Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Li Z, Feng J, Yuan Z. Key Modules and Hub Genes Identified by Coexpression Network Analysis for Revealing Novel Biomarkers for Spina Bifida. Front Genet 2020; 11:583316. [PMID: 33343629 PMCID: PMC7738565 DOI: 10.3389/fgene.2020.583316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
Spina bifida is a common neural tube defect (NTD) accounting for 5–10% of perinatal mortalities. As a polygenic disease, spina bifida is caused by a combination of genetic and environmental factors, for which the precise molecular pathogenesis is still not systemically understood. In the present study, we aimed to identify the related gene module that might play a vital role in the occurrence and development of spina bifida by using weighted gene co-expression network analysis (WGCNA). Transcription profiling according to an array of human amniocytes from patients with spina bifida and healthy controls was downloaded from the Gene Expression Omnibus database. First, outliers were identified and removed by principal component analysis (PCA) and sample clustering. Then, genes in the top 25% of variance in the GSE4182 dataset were then determined in order to explore candidate genes in potential hub modules using WGCNA. After data preprocessing, 5407 genes were obtained for further WGCNA. Highly correlated genes were divided into nineteen modules. Combined with a co-expression network and significant differentially expressed genes, 967 candidate genes were identified that may be involved in the pathological processes of spina bifida. Combined with our previous microRNA (miRNA) microarray results, we constructed an miRNA–mRNA network including four miRNAs and 39 mRNA among which three key genes were, respectively, linked to two miRNA-associated gene networks. Following the verification of qRT-PCR and KCND3 was upregulated in the spina bifida. KCND3 and its related miR-765 and miR-142-3p are worthy of further study. These findings may be conducive for early detection and intervention in spina bifida, as well as be of great significance to pregnant women and clinical staff.
Collapse
Affiliation(s)
- Zijian Li
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Sato Y, Ochiai D, Abe Y, Masuda H, Fukutake M, Ikenoue S, Kasuga Y, Shimoda M, Kanai Y, Tanaka M. Prophylactic therapy with human amniotic fluid stem cells improved survival in a rat model of lipopolysaccharide-induced neonatal sepsis through immunomodulation via aggregates with peritoneal macrophages. Stem Cell Res Ther 2020; 11:300. [PMID: 32690106 PMCID: PMC7370504 DOI: 10.1186/s13287-020-01809-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/06/2020] [Accepted: 07/03/2020] [Indexed: 01/15/2023] Open
Abstract
Background Despite recent advances in neonatal care, sepsis remains a leading cause of mortality in neonates. Mesenchymal stem cells derived from various tissues, such as bone marrow, umbilical cord, and adipose tissue, have beneficial effects on adult sepsis. Although human amniotic fluid stem cells (hAFSCs) have mesenchymal stem cell properties, the efficacy of hAFSCs on neonatal sepsis is yet to be elucidated. This study aimed to investigate the therapeutic potential of hAFSCs on neonatal sepsis using a rat model of lipopolysaccharide (LPS)-induced sepsis. Methods hAFSCs were isolated as CD117-positive cells from human amniotic fluid. Three-day-old rat pups were intraperitoneally treated with LPS to mimic neonatal sepsis. hAFSCs were administered either 3 h before or at 0, 3, or 24 h after LPS exposure. Serum inflammatory cytokine levels, gene expression profiles from spleens, and multiple organ damage were analyzed. hAFSC localization was determined in vivo. In vitro LPS stimulation tests were performed using neonatal rat peritoneal macrophages co-cultured with hAFSCs in a cell-cell contact-dependent/independent manner. Immunoregulation in the spleen was determined using a DNA microarray analysis. Results Prophylactic therapy with hAFSCs improved survival in the LPS-treated rats while the hAFSCs transplantation after LPS exposure did not elicit a therapeutic response. Therefore, hAFSC pretreatment was used for all subsequent studies. Inflammatory cytokine levels were elevated after LPS injection, which was attenuated by hAFSC pretreatment. Subsequently, inflammation-induced damages in the brain, lungs, and liver were ameliorated. hAFSCs aggregated with peritoneal macrophages and/or transiently accumulated in the liver, mesentery, and peritoneum. Paracrine factors released by hAFSCs induced M1-M2 macrophage polarization in a cell-cell contact-independent manner. Direct contact between hAFSCs and peritoneal macrophages further enhanced the polarization. Microarray analysis of the spleen showed that hAFSC pretreatment reduced the expression of genes involved in apoptosis and inflammation and subsequently suppressed toll-like receptor 4 signaling pathways. Conclusions Prophylactic therapy with hAFSCs improved survival in a rat model of LPS-induced neonatal sepsis. These effects might be mediated by a phenotypic switch from M1 to M2 in peritoneal macrophages, triggered by hAFSCs in a cell-cell contact-dependent/independent manner and the subsequent immunomodulation of the spleen.
Collapse
Affiliation(s)
- Yu Sato
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Daigo Ochiai
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan.
| | - Yushi Abe
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Hirotaka Masuda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Marie Fukutake
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Satoru Ikenoue
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Yoshifumi Kasuga
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| |
Collapse
|
25
|
Wei X, Ma W, Gu H, Liu D, Luo W, Bai Y, Wang W, Lui VCH, Yang P, Yuan Z. Transamniotic mesenchymal stem cell therapy for neural tube defects preserves neural function through lesion-specific engraftment and regeneration. Cell Death Dis 2020; 11:523. [PMID: 32655141 PMCID: PMC7354991 DOI: 10.1038/s41419-020-2734-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022]
Abstract
Neural tube defects (NTDs) lead to prenatal mortality and lifelong morbidity. Currently, surgical closure of NTD lesions results in limited functional recovery. We previously suggested that nerve regeneration was critical for NTD therapy. Here, we report that transamniotic bone marrow-derived mesenchymal stem cell (BMSC) therapy for NTDs during early development may achieve beneficial functional recovery. In our ex vivo rat embryonic NTD model, BMSCs injected into the amniotic cavity spontaneously migrated into the defective neural tissue. Hepatocyte growth factor and its receptor c-MET were found to play critical roles in this NTD lesion-specific migration. Using the in vivo rat fetal NTD model, we further discovered that the engrafted BMSCs specifically differentiated into the cell types of the defective tissue, including skin and different types of neurons in situ. BMSC treatment triggered skin repair in fetuses, leading to a 29.9 ± 5.6% reduction in the skin lesion area. The electrophysiological functional recovery assay revealed a decreased latency and increased motor-evoked potential amplitude in the BMSC-treated fetuses. Based on these positive outcomes, ease of operation, and reduced trauma to the mother and fetus, we propose that transamniotic BMSC administration could be a new effective therapy for NTDs.
Collapse
Affiliation(s)
- Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Vincent Chi Hang Lui
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Peixin Yang
- Departments of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
26
|
Cell therapy for prenatal repair of myelomeningocele: A systematic review. Curr Res Transl Med 2020; 68:183-189. [PMID: 32624428 DOI: 10.1016/j.retram.2020.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 02/01/2023]
Abstract
Myelomeningocele (MMC) is a spinal cord congenital defect that leads to paraplegia, bladder incontinence and bowel dysfunction. A randomized human trial demonstrated that in utero surgical repair of the MMC defect improves lower limb motor function. However, functional recovery remains incomplete. Stem cell therapy has recently generated great interest in the field of prenatal repair of MMC. In this systematic review we attempt to provide an overview of the current application of stem cells in different animal models of MMC. Publications were retrieved from PubMed and Cochrane Library databases. This process yielded twenty-two studies for inclusion in this review, experimenting five different types of stem cells: human embryonic stem cells, neural stem cells, induced pluripotent stem cells, human amniotic fluid stem cells, and mesenchymal stem cells (MSCs). Rodents and ovine were the two major species used for animal model studies. The source, the aims, and the main results were analyzed. Stem cell therapy appears to be a promising candidate for prenatal repair of MMC, especially MSCs. Further explorations in ovine and rodent models, reporting clinical and functional results, are necessary before an application in humans.
Collapse
|
27
|
Atkinson SP. A Preview of Selected Articles. Stem Cells Transl Med 2019. [PMCID: PMC6811692 DOI: 10.1002/sctm.19-0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|