1
|
Wang D, Luo K, Tian H, Cheng H, Giannakis S, Song Y, He Z, Wang L, Song S, Fang J, Ma J. Transforming Plain LaMnO 3 Perovskite into a Powerful Ozonation Catalyst: Elucidating the Mechanisms of Simultaneous A and B Sites Modulation for Enhanced Toluene Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12167-12178. [PMID: 38920332 DOI: 10.1021/acs.est.4c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Herein, we propose preferential dissolution paired with Cu-doping as an effective method for synergistically modulating the A- and B-sites of LaMnO3 perovskite. Through Cu-doping into the B-sites of LaMnO3, specifically modifying the B-sites, the double perovskite La2CuMnO6 was created. Subsequently, partial La from the A-sites of La2CuMnO6 was etched using HNO3, forming novel La2CuMnO6/MnO2 (LCMO/MnO2) catalysts. The optimized catalyst, featuring an ideal Mn:Cu ratio of 4.5:1 (LCMO/MnO2-4.5), exhibited exceptional catalytic ozonation performance. It achieved approximately 90% toluene degradation with 56% selectivity toward CO2, even under ambient temperature (35 °C) and a relatively humid environment (45%). Modulation of A-sites induced the elongation of Mn-O bonds and decrease in the coordination number of Mn-O (from 6 to 4.3) in LCMO/MnO2-4.5, resulting in the creation of abundant multivalent Mn and oxygen vacancies. Doping Cu into B-sites led to the preferential chemisorption of toluene on multivalent Cu (Cu(I)/Cu(II)), consistent with theoretical predictions. Effective electronic supplementary interactions enabled the cycling of multiple oxidation states of Mn for ozone decomposition, facilitating the production of reactive oxygen species and the regeneration of oxygen vacancies. This study establishes high-performance perovskites for the synergistic regulation of O3 and toluene, contributing to cleaner and safer industrial activities.
Collapse
Affiliation(s)
- Da Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Kai Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haole Tian
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haijun Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Stefanos Giannakis
- E.T.S. de Ingenieros de Caminos, Canales Y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía Y Medio Ambiente, Unidad Docente Ingeniería Sanitaria, Universidad Politécnica de Madrid, C/Profesor Aranguren, S/n, ES-28040 Madrid, Spain
| | - Yang Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006 Guangdong, China
| | - Zhiqiao He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lizhang Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
2
|
Wang L, Shi S, Yin L, Zhai Y, Xuan T, Liu B, Xie RJ. Water-Soluble Quantum Dots for Inkjet Printing Color Conversion Films with Simultaneous High Efficiency and Stability. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5050-5057. [PMID: 38228493 DOI: 10.1021/acsami.3c13244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Water-soluble quantum dots (QDs) are necessary to prepare patterned pixels or films for high-resolution displays with less environmental burden but are very limited by the trade-off between photoluminescence and stability of QDs. In this work, we proposed synthesizing water-soluble QDs with simultaneous excellent luminescence properties and high stability by coating the amphiphilic poly(maleic anhydride-alt-1-octadecene)-ethanol amine (PMAO-EA) polymer on the surface of silane-treated QDs. These coated QDs show a photoluminescence quantum yield (PLQY) as high as 94%, and they have good photoluminescence stability against light irradiation and thermal attacks, owing to the suppression of the nonradiative recombination by the polymer layer and the isolation of oxygen and water by the silica layer. The water-soluble QDs, mixed with ethylene glycol, enable inkjet printing of QD color conversion films (QD-CCFs) with an average diameter of 68 μm for each pixel and a high PLQY of 91%. The QD-CCFs are demonstrated to fabricate red-emitting mini-LEDs by combining with blue mini-LED chips, which have an external quantum efficiency as high as 25.86% and a luminance of 2.44 × 107 cd/m2. We believe that the proposed strategy is applicable to other water-soluble QDs and paves an avenue for inkjet printing environmentally friendly QD-CCFs for mini/micro-LED displays.
Collapse
Affiliation(s)
- Le Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Shuchen Shi
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, No. 422, Siming South Road, Xiamen 361005, China
| | - Lu Yin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Yue Zhai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Tongtong Xuan
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, No. 422, Siming South Road, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, No. 19, Gaoxin South Fourth Road, Nanshan District, Shenzhen 518000, China
| | - Bo Liu
- Nanjing University of Information Science & Technology, Institute of Optics and Electronics, Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing 210044, China
| | - Rong-Jun Xie
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, No. 422, Siming South Road, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, No. 19, Gaoxin South Fourth Road, Nanshan District, Shenzhen 518000, China
- State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Hou S, Xie Z, Zhang D, Yang B, Lei Y, Liang F. High-purity graphene and carbon nanohorns prepared by base-acid treated waste tires carbon via direct current arc plasma. ENVIRONMENTAL RESEARCH 2023; 238:117071. [PMID: 37669736 DOI: 10.1016/j.envres.2023.117071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
As the accumulation of waste tires continues to rise year by year, effectively managing and recycling these discarded materials has become an urgent global challenge. Among various potential solutions, pyrolysis stands out due to its superior environmental compatibility and remarkable efficiency in transforming waste tires into valuable products. Thus, it is considered the most potential method for disposing these tires. In this work, waste tire powder is pyrolyzed at 560 °C to yield pyrolysis carbon black, and meanwhile, the purification effects of base-acid solutions on pyrolysis carbon black are discussed. High-purity few-layer graphene flakes and carbon nanohorns are synthesized by a direct current arc plasma with H2 and N2 as buffer gases and high-purity pyrolysis carbon black as raw material. Under an H2 atmosphere, hydrogen effectively terminates the suspended carbon bonds, preventing the formation of closed structures and facilitating the expansion of graphene sheets. During the preparation of carbon nanohorns, the nitrogen atoms rapidly bond with carbon atoms, forming essential C-N bonds. This nitrogen doping promotes the formation of carbon-based five-membered and seven-membered rings and makes the graphite lamellar change in the direction of towards negative curvature. Consequently, such change facilitates the formation of conical structures, ultimately yielding the coveted carbon nanohorns. This work not only provides an economical raw material for efficient large-scale synthesis of few-layer graphene and carbon nanohorns but also broadens the intrinsic worth of pyrolysis carbon black, which is beneficial to improving the recycling value of waste tires.
Collapse
Affiliation(s)
- Shengping Hou
- Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China; National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, 650093, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Zhipeng Xie
- Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China; National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, 650093, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Da Zhang
- Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China; National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, 650093, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Bin Yang
- Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China; National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, 650093, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yong Lei
- Fachgebiet Angewandte Nanophysik, Institut für Physik & ZMN MacroNano (ZIK), Technische Universität Ilmenau, Ilmenau, 98693, Germany
| | - Feng Liang
- Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China; National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, 650093, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| |
Collapse
|
4
|
Wang Y, Yang Z, Zhang C, Feng Y, Shao H, Chen J, Hu J, Zhang L. Fabricating carbon quantum dots of graphitic carbon nitride vis ultrasonic exfoliation for highly efficient H 2O 2 production. ULTRASONICS SONOCHEMISTRY 2023; 99:106582. [PMID: 37678066 PMCID: PMC10494465 DOI: 10.1016/j.ultsonch.2023.106582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
A promising and sustainable approach for producing hydrogen peroxide is the two-electron oxygen reduction reaction (2e- ORR), which uses very stable graphitic carbon nitride (g-C3N4). However, the catalytic performance of pristine g-C3N4 is still far from satisfactory. Here, we demonstrate for the first time the controlled fabrication of carbon quantum dots (CQDs)-modified graphitic carbon nitride carbon (g-C3N4/CQDs-X) by ultrasonic stripping for efficient 2e- ORR electrocatalysis. HRTEM, UV-vis, EPR and EIS analyses are in good consistent which prove the in-situ generation of CQDs. The effect of sonication time on the physical properties and ORR activity of g-C3N4 is discussed for the first time. The g-C3N4/CQDs-12 catalyst shows a selectivity of up to 95% at a potential of 0.35 V vs. RHE, which is much higher than that of the original g-C3N4 catalyst (88%). Additionally, the H2O2 yield is up to 1466.6 mmol g-1 in 12 h, which is twice as high as the original g-C3N4 catalyst. It is discovered that the addition of CQDs through ultrasonic improves the g-C3N4 catalyst's electrical conductivity and electron transfer capability in addition to its high specific surface area and distinctive porous structure, speeding up the reaction rate. This research offers a green method for enhancing g-C3N4 activity.
Collapse
Affiliation(s)
- Yue Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| | - Zhaojing Yang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Chengxu Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Yuebin Feng
- Faculty of Science, Kunming University of Science and Technology, Kunming 650093, China
| | - Haodong Shao
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| | - Jian Chen
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Jue Hu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China.
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China.
| |
Collapse
|
5
|
Zhang J, Deng W, Weng Y, Li X, Mao H, Lu T, Zhang W, Long D, Jiang F. Experimentally revealed and theoretically certified synergistic electronic interaction of V-doped CoS for facilitating the oxygen evolution reaction. Phys Chem Chem Phys 2023; 25:21661-21672. [PMID: 37551545 DOI: 10.1039/d3cp02849f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Since electrocatalytic oxygen evolution (OER) is a four-electron transfer reaction with very slow kinetics, there is great competition to develop cheap, durable and efficient catalysts for oxygen evolution. A molecular model is designed for density functional theory (DFT) simulation calculations to guide the experiment, and this hypothesis is fully supported by the experimental data. Herein, regulating the composition and morphology of the bimetallic VCo and MoCo sulfide and monometallic sulfide nanoparticles (NPs) at the oil-water interface was achieved via a one-step hydrothermal method for efficient and durable OER electrocatalysts. Compared to CoS and MoCoS, the VCoS NPs show superior OER performance. By adjusting the atomic composition ratio of the VCoS nanoparticles, the VCoS NPs (1 : 2 : 1.5 mole ratio) showed a significant OER overpotential η = 255 mV (10 mA cm-2), and their outstanding stability was demonstrated after 48 h of continuous testing. The CoS and MoCoS NPs were also tested for comparison. Density functional theory (DFT) calculations showed that appropriate V doping (VCoS) can heighten the density of states (DOS) of the Fermi level, which generates more charge density and reduces the intermediate adsorption energy. This study not only provides efficient and powerful integrated catalysts, but also details a DFT calculation model guided by experiments to regulate the oxygen insertion technology, thus leading to the design of ideal materials and enabling more far-reaching applications in electrocatalysis.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yun Weng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textile, Donghua University, Shanghai 201620, China
| | - Xiang Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Haifang Mao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Tiandong Lu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Wenqian Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Dewu Long
- Key Laboratory in Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Fei Jiang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
6
|
Arkan MZ, Kinas Z, Yalcin E, Arkan E, Özel F, Karabiber A, Chorążewski M. One Material-Opposite Triboelectrification: Molecular Engineering Regulated Triboelectrification on Silica Surface to Enhance TENG Efficiency. Molecules 2023; 28:5662. [PMID: 37570632 PMCID: PMC10420044 DOI: 10.3390/molecules28155662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Molecular engineering is a unique methodology to take advantage of the electrochemical characteristics of materials that are used in energy-harvesting devices. Particularly in triboelectric nanogenerator (TENG) studies, molecular grafting on dielectric metal oxide surfaces can be regarded as a feasible way to alter the surface charge density that directly affects the charge potential of triboelectric layers. Herein, we develop a feasible methodology to synthesize organic-inorganic hybrid structures with tunable triboelectric features. Different types of self-assembled monolayers (SAMs) with electron-donating and withdrawing groups have been used to modify metal oxide (MO) surfaces and to modify their charge density on the surface. All the synthetic routes for hybrid material production have been clearly shown and the formation of covalent bonds on the MO's surface has been confirmed by XPS. The obtained hybrid structures were applied as dopants to distinct polymer matrices with various ratios and fiberization processes were carried out to the prepare opposite triboelectric layers. The formation of the fibers was analyzed by SEM, while their surface morphology and physicochemical features have been measured by AFM and a drop shape analyzer. The triboelectric charge potential of each layer after doping and their contribution to the TENG device's parameters have been investigated. For each triboelectric layer, the best-performing tribopositive and tribonegative material combination was separately determined and then these opposite layers were used to fabricate TENG with the highest efficiency. A comparison of the device parameters with the reference indicated that the best tribopositive material gave rise to a 40% increase in the output voltage and produced 231 V, whereas the best tribonegative one led to a 33.3% rise in voltage and generated 220 V. In addition, the best device collected ~83% more charge than the reference device and came up with 250 V that corresponds to 51.5% performance enhancement. This approach paved the way by addressing the issue of how molecular engineering can be used to manipulate the triboelectric features of the same materials.
Collapse
Affiliation(s)
- Mesude Zeliha Arkan
- Institute of Chemistry, University of Silesia, Szkolna, 40-006 Katowice, Poland;
| | - Zeynep Kinas
- Electrical Engineering Department, Bingol University, Bingol 12000, Türkiye; (Z.K.); (A.K.)
| | - Eyup Yalcin
- Metallurgy and Materials Engineering Department, Ondokuz Mayis University, Samsun 55030, Türkiye;
| | - Emre Arkan
- Institute of Chemistry, University of Silesia, Szkolna, 40-006 Katowice, Poland;
| | - Faruk Özel
- Department of Metallurgy and Materials Engineering, Karamanoglu Mehmetbey University, Karaman 70200, Türkiye;
| | - Abdulkerim Karabiber
- Electrical Engineering Department, Bingol University, Bingol 12000, Türkiye; (Z.K.); (A.K.)
| | - Mirosław Chorążewski
- Institute of Chemistry, University of Silesia, Szkolna, 40-006 Katowice, Poland;
| |
Collapse
|
7
|
Peng S, Luo J, Liu W, He X, Xie F. Enhanced Capacity Retention of Li 3V 2(PO 4) 3-Cathode-Based Lithium Metal Battery Using SiO 2-Scaffold-Confined Ionic Liquid as Hybrid Solid-State Electrolyte. Molecules 2023; 28:4896. [PMID: 37446558 DOI: 10.3390/molecules28134896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Li3V2(PO4)3 (LVP) is one of the candidates for high-energy-density cathode materials matching lithium metal batteries due to its high operating voltage and theoretical capacity. However, the inevitable side reactions of LVP with a traditional liquid-state electrolyte under high voltage, as well as the uncontrollable growth of lithium dendrites, worsen the cycling performance. Herein, a hybrid solid-state electrolyte is prepared by the confinement of a lithium-containing ionic liquid with a mesoporous SiO2 scaffold, and used for a LVP-cathode-based lithium metal battery. The solid-state electrolyte not only exhibits a high ionic conductivity of 3.14 × 10-4 S cm-1 at 30 °C and a wide electrochemical window of about 5 V, but also has good compatibility with the LVP cathode material. Moreover, the cell paired with a solid-state electrolyte exhibits good reversibility and can realize a stable operation at a voltage of up to 4.8 V, and the discharge capacity is well-maintained after 100 cycles, which demonstrates excellent capacity retention. As a contrast, the cell paired with a conventional liquid-state electrolyte shows only an 87.6% discharge capacity retention after 100 cycles. In addition, the effectiveness of a hybrid solid-state electrolyte in suppressing dendritic lithium is demonstrated. The work presents a possible choice for the use of a hybrid solid-state electrolyte compatible with high-performance cathode materials in lithium metal batteries.
Collapse
Affiliation(s)
- Shihao Peng
- College of Physical Science and Engineering Technology, Yichun University, Yichun 336000, China
| | - Jiakun Luo
- College of Physical Science and Engineering Technology, Yichun University, Yichun 336000, China
| | - Wenwen Liu
- College of Physical Science and Engineering Technology, Yichun University, Yichun 336000, China
| | - Xiaolong He
- College of Physical Science and Engineering Technology, Yichun University, Yichun 336000, China
| | - Fang Xie
- College of Physical Science and Engineering Technology, Yichun University, Yichun 336000, China
| |
Collapse
|
8
|
Ham J, Kim HU, Jeon N. Key Factors in Enhancing Pseudocapacitive Properties of PANI-InO x Hybrid Thin Films Prepared by Sequential Infiltration Synthesis. Polymers (Basel) 2023; 15:2616. [PMID: 37376262 DOI: 10.3390/polym15122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Sequential infiltration synthesis (SIS) is an emerging vapor-phase synthetic route for the preparation of organic-inorganic composites. Previously, we investigated the potential of polyaniline (PANI)-InOx composite thin films prepared using SIS for application in electrochemical energy storage. In this study, we investigated the effects of the number of InOx SIS cycles on the chemical and electrochemical properties of PANI-InOx thin films via combined characterization using X-ray photoelectron spectroscopy, ultraviolet-visible spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and cyclic voltammetry. The area-specific capacitance values of PANI-InOx samples prepared with 10, 20, 50, and 100 SIS cycles were 1.1, 0.8, 1.4, and 0.96 mF/cm², respectively. Our result shows that the formation of an enlarged PANI-InOx mixed region directly exposed to the electrolyte is key to enhancing the pseudocapacitive properties of the composite films.
Collapse
Affiliation(s)
- Jiwoong Ham
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyeong-U Kim
- Department of Plasma Engineering, Korea Institute of Machinery & Materials (KIMM), Daejeon 34103, Republic of Korea
| | - Nari Jeon
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
9
|
Zhong Y, Wan X, Lian X, Cheng W, Ma X, Wang D. Hydroxylamine facilitated catalytic degradation of methylene blue in a Fenton-like system for heat-treatment modified drinking water treatment residues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27780-x. [PMID: 37284959 DOI: 10.1007/s11356-023-27780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Rational treatment of drinking water treatment residues (WTR) has become an environmental and social issue due to the risk of secondary contamination. WTR has been commonly used to prepare adsorbents because of its clay-like pore structure, but then requires further treatment. In this study, a Fenton-like system of H-WTR/HA/H2O2 was constructed to degrade organic pollutants in water. Specifically, WTR was modified by heat treatment to increase its adsorption active site, and to accelerate Fe(III)/Fe(II) cycling on the catalyst surface by the addition of hydroxylamine (HA). Moreover, the effects of pH, HA and H2O2 dosage on the degradation were discussed with methylene blue (MB) as the target pollutant. The mechanism of the action of HA was analyzed and the reactive oxygen species in the reaction system were determined. Combined with the reusability and stability experiments, the removal efficiency of MB remained 65.36% after 5 cycles. Consequently, this study may provide new insights into the resource utilization of WTR.
Collapse
Affiliation(s)
- Yu Zhong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiancheng Wan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaoyan Lian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wenyu Cheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaoying Ma
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Dongtian Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
- Jiangsu Key Laboratory for Environment Functional Materials, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
10
|
Liu Y, He H, Zhang TJ, Zhang TC, Wang Y, Yuan S. A biomimetic beetle-like membrane with superoleophilic SiO 2-induced oil coalescence on superhydrophilic CuC 2O 4 nanosheet arrays for effective O/W emulsion separation. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131142. [PMID: 36893603 DOI: 10.1016/j.jhazmat.2023.131142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
It is highly attractive to develop highly efficient oil-in-water (O/W) emulsion separation technologies for promoting the oily wastewater treatment. Herein, a novel inversely Stenocara beetle-like hierarchical structure of superhydrophobic SiO2 nanoparticle-decorated CuC2O4 nanosheet arrays were prepared on copper mesh membrane by bridging polydopamine (PDA) to make a SiO2/PDA@CuC2O4 membrane for substantially enhanced separation of O/W emulsions. The superhydrophobic SiO2 particles on the as-prepared SiO2/PDA@CuC2O4 membranes were served as localized active sites to induce coalescence of small-size oil droplets in oil-in-water (O/W) emulsions. Such innovated membrane delivered outstanding demulsification ability of O/W emulsion with a high separation flux of 2.5 kL⋅m-2⋅h-1 and its filtrate's chemical oxygen demand (COD) being 30 and 100 mg⋅L-1 for surfactant-free emulsion (SFE) and surfactant-stabilized emulsion (SSE), respectively, and also exhibited a good anti-fouling performance in cycling tests. The innovative design strategy developed in this work broadens the application of superwetting materials for oil-water separation and presents a promising prospect in practical oily wastewater treatment applications.
Collapse
Affiliation(s)
- Yajie Liu
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Huaqiang He
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Tie-Jun Zhang
- Department of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Tian C Zhang
- Civil and Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, NE 68182-0178, USA
| | - Yuan Wang
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Shaojun Yuan
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
11
|
Xing X, Shi X, Ruan M, Wei Q, Guan Y, Gao H, Xu S. Sulfonic acid functionalized β zeolite as efficient bifunctional solid acid catalysts for the synthesis of 5-hydroxymethylfurfural from cellulose. Int J Biol Macromol 2023:125037. [PMID: 37245768 DOI: 10.1016/j.ijbiomac.2023.125037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
Introduction of the sulfonic acid group into H-β zeolite to prepare β-SO3H bifunctional catalysts for the efficient synthesis of 5-hydroxymethylfurfural (HMF) from cellulose. Catalysts characterization, such as XRD, ICP-OES, SEM (Mapping), FTIR, XPS, N2 adsorption-desorption isotherm, NH3-TPD, Py-FTIR demonstrate the sulfonic acid group was successfully grafted onto the β zeolite. A superior HMF yield (59.4 %) and cellulose conversion (89.4 %) was obtained in the H2O(NaCl)/THF biphasic system under 200 °C for 3 h with β-SO3H(3) zeolite as catalyst. More valuable, β-SO3H(3) zeolite converts other sugars and obtains ideal HMF yield, including fructose (95.5 %), glucose (86.5 %), sucrose (76.8 %), maltose (71.5 %), cellobiose (67.0 %), starch (68.1 %), glucan (64.4 %) and also converts plant material (25.1 % for moso bamboo and 18.7 % for wheat straw) with great HMF yield. β-SO3H(3) zeolite catalyst keeps an appreciable recyclability after 5 cycles. Moreover, in the presence of β-SO3H(3) zeolite catalyst, the by-products during the production of HMF from cellulose were detected, and the possible conversion pathway of cellulose to HMF was proposed. The β-SO3H bifunctional catalyst has excellent potential for the biorefinery of high value platform compound from carbohydrates.
Collapse
Affiliation(s)
- Xinyi Xing
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xian Shi
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Mengya Ruan
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Qichun Wei
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Ying Guan
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Gao
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Siquan Xu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
12
|
Lee DH, Baek J, Kim DH, Roh JW, Kim J, Lee D. Three-dimensional ternary Ni xCu yZn z(CO 3)(OH) 2 electrodes for supercapacitors: electrochemical properties and applications. Dalton Trans 2023; 52:3333-3343. [PMID: 36807449 DOI: 10.1039/d3dt00143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Transition metal-based binary and ternary compound arrays were directly grown on a porous Ni foam substrate using a facile one-step hydrothermal method. Transition metals are considered ideal electrode materials for faradaic capacitors because they exhibit a wide range of oxidation states enabling effective redox charge transfer. Furthermore, compounds in which two or more transition metals react can help increase the number of active sites for charge-discharge reactions and provide more valence changes for improved charge transfer. In this work, we fabricated ternary electrodes with Ni, Cu, and Zn ions, exhibiting a larger surface area and higher entropy than those made with binary compounds. The NixCuyZnz-based ternary electrode had a shorter diffusion path for the electrolyte ions owing to its larger surface area. Ternary compounds can increase the entropy of the electrode because of the reaction between atoms of different sizes, bringing about a synergistic effect for high characteristic electrochemical values. The optimized NixCuyZnz(CO3)(OH)2 compound showed a maximum specific capacity of 344 mA h g-1 at a current density of 3 A g-1, which was remarkably higher than that of the binary electrode, and a cycling stability of 84.9% after 5000 cycles. An asymmetric supercapacitor produced with this compound as the positive electrode and graphene as the negative electrode exhibited a high energy density of 36.2 W h kg-1 at a power density of 103.1 W kg-1 and a current density of 2 A g-1. The asymmetric supercapacitor fabricated using the NixCuyZnz(CO3)(OH)2 compound as the positive electrode exhibited excellent electrical properties when used in an illuminated LED device.
Collapse
Affiliation(s)
- Dong Hyun Lee
- Division of Nanotechnology, DGIST, 333 Techno Jungang-daero, Daegu 42988, Republic of Korea. .,Regional Leading Research Center for Smart Energy System, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Juyoung Baek
- Division of Nanotechnology, DGIST, 333 Techno Jungang-daero, Daegu 42988, Republic of Korea.
| | - Dong Hwan Kim
- Division of Nanotechnology, DGIST, 333 Techno Jungang-daero, Daegu 42988, Republic of Korea.
| | - Jong Wook Roh
- Regional Leading Research Center for Smart Energy System, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jeongmin Kim
- Division of Nanotechnology, DGIST, 333 Techno Jungang-daero, Daegu 42988, Republic of Korea.
| | - Damin Lee
- Division of Nanotechnology, DGIST, 333 Techno Jungang-daero, Daegu 42988, Republic of Korea. .,Regional Leading Research Center for Smart Energy System, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
13
|
Ma X, Wang Y, Wang W, Heinlein J, Pfefferle LD, Tian X. Strategic preparation of porous magnetic molecularly imprinted polymers via a simple and green method for high-performance adsorption and removal of meropenem. Talanta 2023; 258:124419. [PMID: 36893497 DOI: 10.1016/j.talanta.2023.124419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
In this study, a facile method has been developed to synthesize a novel type of porous magnetic molecularly imprinted polymers (Fe3O4-MER-MMIPs) for the selective adsorption and removal of meropenem. The Fe3O4-MER-MMIPs, with abundant functional groups and sufficient magnetism for easy separation, are prepared in aqueous solutions. The porous carriers reduce the overall mass of the MMIPs, greatly improving their adsorption capacity per unit mass and optimizing the overall value of the adsorbents. The green preparation conditions, adsorption performance, and physical and chemical properties of Fe3O4-MER-MMIPs have been carefully studied. The developed submicron materials exhibit a homogeneous morphology, satisfactory superparamagnetism (60 emu g-1), large adsorption capacity (11.49 mg g-1), quick adsorption kinetics (40 min), and good practical implementation in human serum and environmental water. Finally, the protocol developed in this work delivers a green and feasible method for synthesizing highly efficient adsorbents for the specific adsorption and removal of other antibiotics as well.
Collapse
Affiliation(s)
- Xuan Ma
- The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yue Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Wenting Wang
- Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, Jiangsu, 210023, China
| | - Jake Heinlein
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, 06520-8286, United States
| | - Lisa D Pfefferle
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, 06520-8286, United States
| | - Xuemeng Tian
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
14
|
Green synthesis of anthraquinone by one-pot method with Ni-modified Hβ Zeolite. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Xiong Q, Yue X, Zhuang Z, Xu J, Qiu F, Zhang T. Biomimetic fabrication of PET composite membranes with enhanced stability and demulsibility for emulsion separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
16
|
Xu Y, Hu W, Li Y, Su H, Liang W, Liu B, Gong J, Liu Z, Liu X. Manipulating the Cobalt Species States to Break the Conversion–Selectivity Trade-Off Relationship for Stable Ethane Dehydrogenation over Ligand-Free-Synthesized Co@MFI Catalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yuebing Xu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122Wuxi, China
| | - Wenjin Hu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122Wuxi, China
| | - Yufeng Li
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122Wuxi, China
| | - Haixia Su
- Sinopec Catalyst Co., Ltd., 100029Beijing, China
| | - Weijun Liang
- Sinopec Catalyst Co., Ltd., 100029Beijing, China
| | - Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122Wuxi, China
| | - Jianyi Gong
- Sinopec Catalyst Co., Ltd., 100029Beijing, China
| | - Zhijian Liu
- Sinopec Catalyst Co., Ltd., 100029Beijing, China
| | - Xiaohao Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122Wuxi, China
| |
Collapse
|
17
|
Han Y, Gao YK, Wang BJ, Zhang X, Chu GW, Luo Y, Chen JF. Highly Efficient Monolithic Catalyst with Excellent Adhesion of SiO 2 Coating for Catalytic Hydrogenation in the Rotating Packed Bed Reactor. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yu Han
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Yi-Kai Gao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Bao-Ju Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Xin Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Guang-Wen Chu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Yong Luo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Jian-Feng Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| |
Collapse
|
18
|
Jin Q, Meng X, Ji W, Wu P, Xu M, Zhang Y, Zhu C, Xu H. SO2 reduction for sulfur production by CO over Ce-Al-Ox composite oxide catalyst. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
19
|
Duan L, Zhang Y, Zhao J, Zhang J, Li Q, Lu Q, Fu L, Liu J, Liu Q. New Strategy and Excellent Fluorescence Property of Unique Core-Shell Structure Based on Liquid Metals/Metal Halides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204056. [PMID: 36101903 DOI: 10.1002/smll.202204056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/11/2022] [Indexed: 06/15/2023]
Abstract
The further applications of liquid metals (LMs) are limited by their common shortcoming of silver-white physical appearance, which deviates from the impose stringent requirements for color and aesthetics. Herein, a concept is proposed for constructing fluorescent core-shell structures based on the components and properties of LMs, and metal halides. The metal halides endow LMs with polychromatic and stable fluorescence characteristics. As a proof-of-concept, LMs-Al obtained by mixing of LMs with aluminum (Al) is reported. The surface of LMs-Al is transformed directly from Al to a multi-phase metal halide of K3 AlCl6 with double perovskites structure, via redox reactions with KCl + HCl solution in a natural environment. The formation of core-shell structure from the K3 AlCl6 and LMs is achieved, and the shell with different phases can emit a cyan light by the superimposition of the polychromatic spectrum. Furthermore, the LMs can be directly converted into a fluorescent shell without affecting their original features. In particular, the luminescence properties of shells can be regulated by the components in LMs. This study provides a new direction for research in spontaneous interfacial modification and fluorescent functionalization of LMs and promises potential applications, such as lighting and displays, anti-counterfeiting measures, sensing, and chameleon robots.
Collapse
Affiliation(s)
- Liangfei Duan
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Yumin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Jianhong Zhao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Jin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Qian Li
- CAS Key Laboratory of Cryogenics and Beijing Key Laboratory of Cryo- Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qingjie Lu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Li Fu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| | - Jing Liu
- CAS Key Laboratory of Cryogenics and Beijing Key Laboratory of Cryo- Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Department of Biomedical Engineering School of Medicine Tsinghua University Beijing, Beijing, 100084, China
| | - Qingju Liu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, China
| |
Collapse
|
20
|
Wang Y, Xie P, Huang K, Fan S, Deng A, She J, Huang X. Biomass-based diatomite coating to prepare a high-stability zinc anode for rechargeable aqueous zinc-ion batteries. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Fu L, Liu S, Deng Y, He H, Yuan S, Ouyang L. Fabrication of the PdAu Surface Alloy on an Ordered Intermetallic Au 3Cu Core for Direct H 2O 2 Synthesis at Ambient Pressure. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lian Fu
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shijie Liu
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yanbo Deng
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Huaqiang He
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shaojun Yuan
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Like Ouyang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
22
|
Tang Y, Li M, Zhou J, Liao X, Shi B. Polyethyleneimine/hydrated titanium oxide-functionalized fibrous adsorbent for removing cobalt: Adsorption performance and irradiation stability. ENVIRONMENTAL RESEARCH 2022; 211:112916. [PMID: 35231457 DOI: 10.1016/j.envres.2022.112916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/06/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Radionuclides of 60Co often encountered in the fields of radiation therapy, medical preparation, and equipment sterilization, which have been considered fatal. Therefore, developing efficient and irradiation-stable adsorbents for the removal of 60Co in wastewater is urgently needed. An irradiation-stable fibrous adsorbent was fabricated through the surface functionalization of collagen fibers (CFs) by polyethyleneimine (PEI) and hydrated titanium oxide (TiO) (PEI-TiO-CFs). PEI-TiO-CFs, including their adsorption performance and irradiation stability, were systematically investigated. Results showed that PEI-TiO-CFs exhibit a maximum adsorption capacity of 0.5575 mmol g-1. In addition, the adsorption capacity of PEI-TiO-CFs only demonstrated a slight decrease in the selectivity investigation of Co2+ mixed with another coexisting ion, such as Na+, K+, and NO3-, Cl-. Furthermore, breakthrough point of PEI-TiO-CFs in column is high at 80 BV (bed volume) and the PEI-TiO-CF column can be mostly regenerated using 12 BV of Na2EDTA solution. Excellent irradiation stability of PEI-TiO-CFs was confirmed by the maintained morphology and adsorption capacity after irradiation at 350 kGy of 60Co γ-ray. Results indicated that PEI-TiO-CFs are an effective adsorbent for radioactive cobalt removal from aqueous solutions.
Collapse
Affiliation(s)
- Yi Tang
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, China
| | - Meifeng Li
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jibo Zhou
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xuepin Liao
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China.
| | - Bi Shi
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
23
|
Wang L, Li Z, Luo J, Fan H, Zhao R. Dendrite-free lithium deposition via a fumed silica interlayer as an electron inhibitor in all-solid-state batteries. Chem Commun (Camb) 2022; 58:6962-6965. [PMID: 35642930 DOI: 10.1039/d2cc01532c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, nanosized fumed silica (FS) with poor electrical conductivity is used as an "electron inhibitor" between Li metal and garnet solid electrolyte (SE) to prevent lithium dendrite growth. The FS demonstrated its effectiveness in preventing the fast lithium dendrite propagation during the long-term lithium stripping and plating processes, leading to an enhanced battery performance. We believe this study could help shed light on such electron inhibitors in constructing all-solid-state batteries (ASSBs) with superior cycling performance.
Collapse
Affiliation(s)
- Liuyang Wang
- School of Chemistry, Engineering Research Centre of MTEES (Ministry of Education), South China Normal University, Guangzhou, Guangdong, 510006, P. R. China.
| | - Zhuohua Li
- School of Chemistry, Engineering Research Centre of MTEES (Ministry of Education), South China Normal University, Guangzhou, Guangdong, 510006, P. R. China.
| | - Jianchuan Luo
- School of Chemistry, Engineering Research Centre of MTEES (Ministry of Education), South China Normal University, Guangzhou, Guangdong, 510006, P. R. China.
| | - Hongyang Fan
- School of Chemistry, Engineering Research Centre of MTEES (Ministry of Education), South China Normal University, Guangzhou, Guangdong, 510006, P. R. China.
| | - Ruirui Zhao
- School of Chemistry, Engineering Research Centre of MTEES (Ministry of Education), South China Normal University, Guangzhou, Guangdong, 510006, P. R. China.
| |
Collapse
|
24
|
Zhao B, Wang X, Liu P, Zhao Y, Men YL, Pan YX. Visible-Light-Driven Photocatalytic H 2 Production from H 2O Boosted by Hydroxyl Groups on Alumina. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Binran Zhao
- School of Chemical Engineering, Northwest University, Xi’an 710069, People’s Republic of China
| | - Xujun Wang
- School of Chemical Engineering, Northwest University, Xi’an 710069, People’s Republic of China
| | - Peng Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Yiyi Zhao
- School of Chemical Engineering, Northwest University, Xi’an 710069, People’s Republic of China
| | - Yu-Long Men
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Yun-Xiang Pan
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
25
|
Ji C, Wang H, Sun S, Li Q, Zou JJ, Yu S, Shi H, Nie G, Liu S. One-pot synthesis of 2-ethylanthraquinone from phthalic anhydride and ethylbenzene over a Sc-modified Hβ catalyst. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Bulk Co3O4 for Methane Oxidation: Effect of the Synthesis Route on Physico-Chemical Properties and Catalytic Performance. Catalysts 2022. [DOI: 10.3390/catal12010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The synthesis of bulk pure Co3O4 catalysts by different routes has been examined in order to obtain highly active catalysts for lean methane combustion. Thus, eight synthesis methodologies, which were selected based on their relatively low complexity and easiness for scale-up, were evaluated. The investigated procedures were direct calcination of two different cobalt precursors (cobalt nitrate and cobalt hydroxycarbonate), basic grinding route, two basic precipitation routes with ammonium carbonate and sodium carbonate, precipitation-oxidation, solution combustion synthesis and sol-gel complexation. A commercial Co3O4 was also used as a reference. Among the several examined methodologies, direct calcination of cobalt hydroxycarbonate (HC sample), basic grinding (GB sample) and basic precipitation employing sodium carbonate as the precipitating agent (CC sample) produced bulk catalysts with fairly good textural and structural properties, and remarkable redox properties, which were found to be crucial for their good performance in the oxidation of methane. All catalysts attained full conversion and 100% selectivity towards CO2 formation at a temperature of 600 °C while operating at 60,000 h−1. Among these, the CC catalyst was the only one that achieved a specific reaction rate higher than that of the reference commercial Co3O4 catalyst.
Collapse
|
27
|
Xu Y, Yu W, Zhang H, Xin J, He X, Liu B, Jiang F, Liu X. Suppressing C–C Bond Dissociation for Efficient Ethane Dehydrogenation over the Isolated Co(II) Sites in SAPO-34. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yuebing Xu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Wenda Yu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Hao Zhang
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Jian Xin
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Xiaohui He
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Feng Jiang
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| | - Xiaohao Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, People’s Republic of China
| |
Collapse
|
28
|
Djellabi R, Basilico N, Delbue S, D’Alessandro S, Parapini S, Cerrato G, Laurenti E, Falletta E, Bianchi CL. Oxidative Inactivation of SARS-CoV-2 on Photoactive AgNPs@TiO 2 Ceramic Tiles. Int J Mol Sci 2021; 22:ijms22168836. [PMID: 34445543 PMCID: PMC8396237 DOI: 10.3390/ijms22168836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 12/29/2022] Open
Abstract
The current SARS-CoV-2 pandemic causes serious public health, social, and economic issues all over the globe. Surface transmission has been claimed as a possible SARS-CoV-2 infection route, especially in heavy contaminated environmental surfaces, including hospitals and crowded public places. Herein, we studied the deactivation of SARS-CoV-2 on photoactive AgNPs@TiO2 coated on industrial ceramic tiles under dark, UVA, and LED light irradiations. SARS-CoV-2 inactivation is effective under any light/dark conditions. The presence of AgNPs has an important key to limit the survival of SARS-CoV-2 in the dark; moreover, there is a synergistic action when TiO2 is decorated with Ag to enhance the virus photocatalytic inactivation even under LED. The radical oxidation was confirmed as the the central mechanism behind SARS-CoV-2 damage/inactivation by ESR analysis under LED light. Therefore, photoactive AgNPs@TiO2 ceramic tiles could be exploited to fight surface infections, especially during viral severe pandemics.
Collapse
Affiliation(s)
- Ridha Djellabi
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy;
- Correspondence: (R.D.); (C.L.B.)
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy; (N.B.); (S.D.)
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy; (N.B.); (S.D.)
| | - Sarah D’Alessandro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy;
| | - Silvia Parapini
- Department of Biomedical Sciences for Health, University of Milan, Via Carlo Pascal 36, 20133 Milan, Italy;
| | - Giuseppina Cerrato
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy; (G.C.); (E.L.)
| | - Enzo Laurenti
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy; (G.C.); (E.L.)
| | - Ermelinda Falletta
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy;
| | - Claudia Letizia Bianchi
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy;
- Correspondence: (R.D.); (C.L.B.)
| |
Collapse
|