1
|
Liu Q, Liu J, Wang J, Chong Y. Corrosion inhibition effect of betaine type quaternary ammonium salt on AA2024-T3 in 0.01 mol·L−1 NaOH: Experimental and theoretical research. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
2
|
Wang X, Yang D, Zhang M, Hu Q, Gao K, Zhou J, Yu ZZ. Super-Hygroscopic Calcium Chloride/Graphene Oxide/Poly(N-isopropylacrylamide) Gels for Spontaneous Harvesting of Atmospheric Water and Solar-Driven Water Release. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33881-33891. [PMID: 35849823 DOI: 10.1021/acsami.2c08591] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although atmospheric water harvesting is a promising approach for extracting clean water in water deficient areas, most atmospheric water collectors require additional energy for releasing the water absorbed. It is still challenging to improve both moisture absorption capacity and desorption efficiency of moisture water collectors. Inspired by clean solar energy and the large humidity difference between day and night, super-hygroscopic calcium chloride (CaCl2)/graphene oxide (GO)/poly(N-isopropylacrylamide) (PNIPAM) gels are designed for spontaneous collection of atmospheric water in a wide range of relative humidity (RH) followed by solar-driven release of the water absorbed. An optimal CaCl2/GO/PNIPAM hygroscopic gel possesses a hierarchical porous structure with directional water transport channels, facilitating water capture and release, thus exhibiting a high moisture absorption capacity of up to 3.6 g g-1 at an RH of 90%. Driven by simulated sunlight, the solar-thermal energy conversion effect of the GO component triggers a unique hydrophilic-hydrophobic conformational transition and shrinkage of the PNIPAM for efficient release of the water absorbed. The integration of the spontaneous harvesting of atmospheric water and the solar-driven water release makes the super-hygroscopic gels promising for efficiently utilizing atmospheric water for special applications where water is desperately necessary but unavailable.
Collapse
Affiliation(s)
- Xuejiao Wang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongzhi Yang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Zhang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qian Hu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kejing Gao
- Petrochina Petrochemical Research Institute, Beijing 102206, China
| | - Jingsheng Zhou
- Petrochina Petrochemical Research Institute, Beijing 102206, China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Tailoring Intrinsic Properties of Polyaniline by Functionalization with Phosphonic Groups. Polymers (Basel) 2020; 12:polym12122820. [PMID: 33261182 PMCID: PMC7760660 DOI: 10.3390/polym12122820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Phosphonated polyanilines were synthesized by copolymerization of aniline (ANI) with both 2- and 4-aminophenylphosphonic acids (APPA). The material composition and the final properties of the copolymers can be easily tailored by controlling the monomers ANI/APPA molar feed ratio. An important influence on the reactivity of monomers has been found with the substituent position in the ring, leading to differences in the properties and size of blocks of each monomer in the polymer. As expected, while 2APPA shows more similarities to ANI, 4APPA is much less reactive. Phosphorus loading of ~5 at% was achieved in the poly(aniline-co-2-aminophenylphosphonic acid) (PANI2APPA) with a 50/50 molar feed ratio. All the resulting copolymers were characterized by different techniques. Experimental results and density functional theory (DFT) computational calculations suggest that the presence of phosphonic groups in the polymeric chain gives rise to inter- and intra-chain interactions, as well as important steric effects, which induce a slight twist in the substituted PANI structure. Therefore, the physicochemical, electrical, and electrochemical properties are modified and can be suitably controlled.
Collapse
|
4
|
Ni F, Qiu N, Xiao P, Zhang C, Jian Y, Liang Y, Xie W, Yan L, Chen T. Tillandsia‐Inspired Hygroscopic Photothermal Organogels for Efficient Atmospheric Water Harvesting. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Feng Ni
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Nianxiang Qiu
- Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences Ningbo China
| | - Peng Xiao
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Chang Zhang
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
| | - Yukun Jian
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Yun Liang
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Weiping Xie
- Analytical Center Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences Ningbo China
| | - Luke Yan
- Polymer Materials & Engineering Department School of Materials Science & Engineering Chang'an University Xi'an 710064 P. R. China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
5
|
Yilmaz G, Meng FL, Lu W, Abed J, Peh CKN, Gao M, Sargent EH, Ho GW. Autonomous atmospheric water seeping MOF matrix. SCIENCE ADVANCES 2020; 6:eabc8605. [PMID: 33067237 PMCID: PMC7567601 DOI: 10.1126/sciadv.abc8605] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/04/2020] [Indexed: 05/09/2023]
Abstract
The atmosphere contains an abundance of fresh water, but this resource has yet to be harvested efficiently. To date, passive atmospheric water sorbents have required a desorption step that relies on steady solar irradiation. Since the availability and intensity of solar radiation vary, these limit on-demand desorption and hence the amount of harvestable water. Here, we report a polymer-metal-organic framework that provides simultaneous and uninterrupted sorption and release of atmospheric water. The adaptable nature of the hydro-active polymer, and its hybridization with a metal-organic framework, enables enhanced sorption kinetics, water uptake, and spontaneous water oozing. We demonstrate continuous water delivery for 1440 hours, producing 6 g of fresh water per gram of sorbent at 90% relative humidity (RH) per day without active condensation. This leads to a total liquid delivery efficiency of 95% and an autonomous liquid delivery efficiency of 71%, the record among reported atmospheric water harvesters.
Collapse
Affiliation(s)
- G Yilmaz
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - F L Meng
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - W Lu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - J Abed
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, ON M5S 1A4, Canada
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, ON M5S 3E4, Canada
| | - C K N Peh
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - M Gao
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - E H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, ON M5S 1A4, Canada.
| | - G W Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive, Singapore 117575, Singapore
| |
Collapse
|
6
|
Ni F, Qiu N, Xiao P, Zhang C, Jian Y, Liang Y, Xie W, Yan L, Chen T. Tillandsia‐Inspired Hygroscopic Photothermal Organogels for Efficient Atmospheric Water Harvesting. Angew Chem Int Ed Engl 2020; 59:19237-19246. [DOI: 10.1002/anie.202007885] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/13/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Feng Ni
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Nianxiang Qiu
- Engineering Laboratory of Advanced Energy Materials Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences Ningbo China
| | - Peng Xiao
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Chang Zhang
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
| | - Yukun Jian
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Yun Liang
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Weiping Xie
- Analytical Center Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences Ningbo China
| | - Luke Yan
- Polymer Materials & Engineering Department School of Materials Science & Engineering Chang'an University Xi'an 710064 P. R. China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo 315201 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
7
|
Bachmann P, Steinhauer J, Späth F, Düll F, Bauer U, Eschenbacher R, Hemauer F, Scheuermeyer M, Bösmann A, Büttner M, Neiß C, Görling A, Wasserscheid P, Steinrück HP, Papp C. Dehydrogenation of the liquid organic hydrogen carrier system 2-methylindole/2-methylindoline/2-methyloctahydroindole on Pt(111). J Chem Phys 2019; 151:144711. [DOI: 10.1063/1.5112835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Philipp Bachmann
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
| | - Johann Steinhauer
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
| | - Florian Späth
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
| | - Fabian Düll
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
| | - Udo Bauer
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
| | - Roman Eschenbacher
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
| | - Felix Hemauer
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
| | - Marlene Scheuermeyer
- Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
| | - Andreas Bösmann
- Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
| | - Miriam Büttner
- Lehrstuhl für Theoretische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
| | - Christian Neiß
- Lehrstuhl für Theoretische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
| | - Andreas Görling
- Lehrstuhl für Theoretische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
| | - Peter Wasserscheid
- Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), D-91058 Erlangen, Germany
| | - Hans-Peter Steinrück
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
| | - Christian Papp
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
| |
Collapse
|
8
|
Mateos M, Tchangaï MD, Meunier-Prest R, Heintz O, Herbst F, Suisse JM, Bouvet M. Low Conductive Electrodeposited Poly(2,5-dimethoxyaniline) as a Key Material in a Double Lateral Heterojunction, for Sub-ppm Ammonia Sensing in Humid Atmosphere. ACS Sens 2019; 4:740-747. [PMID: 30773874 DOI: 10.1021/acssensors.9b00109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a new device called a double lateral heterojunction (DLH) as an ammonia sensor in humid atmosphere. It combines polyaniline derivatives in their poor conducting state with a highly conductive molecular material, lutetium bisphthalocyanine, LuPc2. Polyaniline and poly(2,5-dimethoxyaniline) are electrodeposited on ITO interdigitated electrodes, leading to an original device that can be obtained only by electrochemistry and not by other solution processing techniques. Both polymers lead to highly conducting materials that require a neutralization step before their coverage by LuPc2. While the device based on polyaniline shows ohmic behavior, the nonlinear I- V characteristics of the poly(2,5-dimethoxyaniline)-based DLH prove the existence of energy barriers at the interfaces, as demonstrated by impedance spectroscopy. It exhibits a particularly interesting sensitivity to ammonia, at room temperature and in a broad relative humidity range. Thanks to its higher energy barriers, the poly(2,5-dimethoxyaniline)/LuPc2 DLH is the most sensitive device with a limit of detection of 320 ppb. This work paves the way for the use of substituted polyanilines in conductometric sensors not only in the field of air quality monitoring but also in the field of health diagnosis by measurement in human breath.
Collapse
Affiliation(s)
- Mickaël Mateos
- Institut de Chimie
Moléculaire de l’Université de Bourgogne (ICMUB),
UMR CNRS 6302, Université Bourgogne Franche-Comté, 9 avenue Alain Savary, 21078 Dijon cedex, France
| | - Marie-Donga Tchangaï
- Institut de Chimie
Moléculaire de l’Université de Bourgogne (ICMUB),
UMR CNRS 6302, Université Bourgogne Franche-Comté, 9 avenue Alain Savary, 21078 Dijon cedex, France
| | - Rita Meunier-Prest
- Institut de Chimie
Moléculaire de l’Université de Bourgogne (ICMUB),
UMR CNRS 6302, Université Bourgogne Franche-Comté, 9 avenue Alain Savary, 21078 Dijon cedex, France
| | - Olivier Heintz
- Laboratoire
Interdisciplinaire
Carnot de Bourgogne (LICB), UMR CNRS 6303, Université Bourgogne
Franche-Comté, 9 avenue Alain Savary, 21078 Dijon cedex, France
| | - Frédéric Herbst
- Laboratoire
Interdisciplinaire
Carnot de Bourgogne (LICB), UMR CNRS 6303, Université Bourgogne
Franche-Comté, 9 avenue Alain Savary, 21078 Dijon cedex, France
| | - Jean-Moïse Suisse
- Institut de Chimie
Moléculaire de l’Université de Bourgogne (ICMUB),
UMR CNRS 6302, Université Bourgogne Franche-Comté, 9 avenue Alain Savary, 21078 Dijon cedex, France
| | - Marcel Bouvet
- Institut de Chimie
Moléculaire de l’Université de Bourgogne (ICMUB),
UMR CNRS 6302, Université Bourgogne Franche-Comté, 9 avenue Alain Savary, 21078 Dijon cedex, France
| |
Collapse
|
9
|
Schwarz M, Bachmann P, Silva TN, Mohr S, Scheuermeyer M, Späth F, Bauer U, Düll F, Steinhauer J, Hohner C, Döpper T, Noei H, Stierle A, Papp C, Steinrück HP, Wasserscheid P, Görling A, Libuda J. Model Catalytic Studies of Novel Liquid Organic Hydrogen Carriers: Indole, Indoline and Octahydroindole on Pt(111). Chemistry 2017; 23:14806-14818. [DOI: 10.1002/chem.201702333] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Matthias Schwarz
- Lehrstuhl für Physikalische Chemie II; Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
| | - Philipp Bachmann
- Lehrstuhl für Physikalische Chemie II; Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
| | - Thais Nascimento Silva
- Lehrstuhl für Physikalische Chemie II; Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
| | - Susanne Mohr
- Lehrstuhl für Physikalische Chemie II; Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
| | - Marlene Scheuermeyer
- Lehrstuhl für Chemische Reaktionstechnik; Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
| | - Florian Späth
- Lehrstuhl für Physikalische Chemie II; Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
| | - Udo Bauer
- Lehrstuhl für Physikalische Chemie II; Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
| | - Fabian Düll
- Lehrstuhl für Physikalische Chemie II; Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
| | - Johann Steinhauer
- Lehrstuhl für Physikalische Chemie II; Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
| | - Chantal Hohner
- Lehrstuhl für Physikalische Chemie II; Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
| | - Tibor Döpper
- Lehrstuhl für Theoretische Chemie; Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
| | - Heshmat Noei
- Deutsches Elektronen-Synchrotron DESY; Notkestrasse 85 22603 Hamburg Germany
- Fachbereich Physik; Universität Hamburg; 20355 Hamburg Germany
| | - Andreas Stierle
- Deutsches Elektronen-Synchrotron DESY; Notkestrasse 85 22603 Hamburg Germany
- Fachbereich Physik; Universität Hamburg; 20355 Hamburg Germany
| | - Christian Papp
- Lehrstuhl für Physikalische Chemie II; Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
| | - H.-P. Steinrück
- Lehrstuhl für Physikalische Chemie II; Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
- Erlangen Catalysis Resource Center; Friedrich-Alexander-Universität Erlangen-Nürnberg; 91058 Erlangen Germany
- Interdisciplinary Center Interface Controlled Processes; Friedrich-Alexander-Universität Erlangen-Nürnberg; 91058 Erlangen Germany
| | - Peter Wasserscheid
- Lehrstuhl für Chemische Reaktionstechnik; Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
- Erlangen Catalysis Resource Center; Friedrich-Alexander-Universität Erlangen-Nürnberg; 91058 Erlangen Germany
- Forschungszentrum Jülich GmbH; Helmholtz-Institute Erlangen-Nuremberg for Renewable Energy (IEK-11); 91058 Erlangen Germany
| | - Andreas Görling
- Lehrstuhl für Theoretische Chemie; Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
- Erlangen Catalysis Resource Center; Friedrich-Alexander-Universität Erlangen-Nürnberg; 91058 Erlangen Germany
- Interdisciplinary Center Interface Controlled Processes; Friedrich-Alexander-Universität Erlangen-Nürnberg; 91058 Erlangen Germany
| | - Jörg Libuda
- Lehrstuhl für Physikalische Chemie II; Friedrich-Alexander-Universität Erlangen-Nürnberg; Egerlandstraße 3 91058 Erlangen Germany
- Erlangen Catalysis Resource Center; Friedrich-Alexander-Universität Erlangen-Nürnberg; 91058 Erlangen Germany
- Interdisciplinary Center Interface Controlled Processes; Friedrich-Alexander-Universität Erlangen-Nürnberg; 91058 Erlangen Germany
| |
Collapse
|
10
|
Abd El-Salam HM, Askalany HG. Synthesis and characterization of crystalline poly( N-(2-hydroxyethyl)aniline) microspheres. HIGH PERFORM POLYM 2017; 29:227-236. [DOI: 10.1177/0954008316638135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Poly( N-(2-hydroxyethyl)aniline) microsphere was prepared in aqueous hydrochloric acid (HCl) in one step, using ammonium persulphate as an oxidant. The effect of monomer, oxidant, HCl concentrations and temperature on polymerization rates was investigated. The data show that polymerization rate increases with increasing reactant concentrations. In addition, the initial rate increases with raising the temperature. The apparent activation energy found was 57.4319 kJ/mole. Also, Δ H* and Δ S* found were 55.0691 kJ/mole and 78.3662 J/mole K respectively. Infrared and proton nuclear magnetic resonance spectroscopies, thermogravimetric analysis, X-ray diffraction, scanning electron microscopy and elemental analysis characterize the obtained polymer sample to confirm the suggested structure. The mechanism of the polymerization reaction are discussed.
Collapse
Affiliation(s)
- HM Abd El-Salam
- Department of Chemistry, Faculty of Science, Polymer Research Laboratory, Beni-Suef University, Beni-Suef City, Egypt
| | - HG Askalany
- Department of Chemistry, Faculty of Science, Polymer Research Laboratory, Beni-Suef University, Beni-Suef City, Egypt
| |
Collapse
|
11
|
Li S, Shu K, Zhao C, Wang C, Guo Z, Wallace G, Liu HK. One-step synthesis of graphene/polypyrrole nanofiber composites as cathode material for a biocompatible zinc/polymer battery. ACS APPLIED MATERIALS & INTERFACES 2014; 6:16679-16686. [PMID: 25198621 DOI: 10.1021/am503572w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The significance of developing implantable, biocompatible, miniature power sources operated in a low current range has become manifest in recent years to meet the demands of the fast-growing market for biomedical microdevices. In this work, we focus on developing high-performance cathode material for biocompatible zinc/polymer batteries utilizing biofluids as electrolyte. Conductive polymers and graphene are generally considered to be biocompatible and suitable for bioengineering applications. To harness the high electrical conductivity of graphene and the redox capability of polypyrrole (PPy), a polypyrrole fiber/graphene composite has been synthesized via a simple one-step route. This composite is highly conductive (141 S cm(-1)) and has a large specific surface area (561 m(2) g(-1)). It performs more effectively as the cathode material than pure polypyrrole fibers. The battery constructed with PPy fiber/reduced graphene oxide cathode and Zn anode delivered an energy density of 264 mWh g(-1) in 0.1 M phosphate-buffer saline.
Collapse
Affiliation(s)
- Sha Li
- Institute for Superconducting and Electronic Materials and ‡ARC Centre of Excellence for Electromaterials Science, University of Wollongong , AIIM Facility, Innovation Campus, North Wollongong, NSW 2500, Australia
| | | | | | | | | | | | | |
Collapse
|
12
|
Sarvi A, Gelves GA, Sundararaj U. Facile one step-synthesis and characterisation of high aspect ratio core-shell copper-polyaniline nanowires. CAN J CHEM ENG 2014. [DOI: 10.1002/cjce.21973] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ali Sarvi
- Department of Chemical and Petroleum Engineering; University of Calgary; 2500 University Dr. Calgary Alberta T2N 1N4 Canada
| | - Genaro A. Gelves
- Department of Chemical and Petroleum Engineering; University of Calgary; 2500 University Dr. Calgary Alberta T2N 1N4 Canada
| | - Uttandaraman Sundararaj
- Department of Chemical and Petroleum Engineering; University of Calgary; 2500 University Dr. Calgary Alberta T2N 1N4 Canada
| |
Collapse
|
13
|
Kotal M, Thakur AK, Bhowmick AK. Polyaniline-carbon nanofiber composite by a chemical grafting approach and its supercapacitor application. ACS APPLIED MATERIALS & INTERFACES 2013; 5:8374-8386. [PMID: 23911041 DOI: 10.1021/am4014049] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Unlike conventional routes by van der Waals forces, a facile and novel approach using covalent bonding is established in the present work to synthesize polyaniline (PANI)-grafted carbon nanofiber (CNF) composites as promising supercapacitors. For this purpose, toluenediisocyanate was initially functionalized to carboxylated CNF via amidation followed by reaction with excess aniline to form a urea derivative and residual aniline, which was subsequently polymerized and grafted with a urea derivative. Amidation of CNF (TCNF) and, consequently, the grafting of PANI on TCNF were verified by IR, Raman, 1H NMR, X-ray photoelectron, and UV-visible spectroscopic methods, X-ray diffraction, and thermogravimetric analysis. Morphological analysis revealed uniform distribution of PANI on the surface of TCNF, indicating strong interaction between them. Electrochemical tests of the composite containing 6 wt % TCNF demonstrated efficient capacitance of ∼557 F g(-1) with a capacity retention of 86% of its initial capacitance even after 2000 charge-discharge cycles at a current density of 0.3 A g(-1), suggesting its superiority compared to the materials formed by van der Waals forces. The remarkably enhanced electrochemical performance showed the importance of the phenyl-substituted amide linkage in the development of a π-conjugated structure, which facilitated charge transfer and, consequently, made it attractive for efficient supercapacitors.
Collapse
Affiliation(s)
- Moumita Kotal
- Department of Chemistry and ‡Department of Physics, Indian Institute of Technology , Patna 800013, India
| | | | | |
Collapse
|
14
|
Mourato A, Cabrita JF, Ferraria AM, Botelho do Rego AM, Abrantes LM. Electrocatalytic activity of polypyrrole films incorporating palladium particles. Catal Today 2010. [DOI: 10.1016/j.cattod.2010.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Outirite M, Lagrenée M, Lebrini M, Traisnel M, Jama C, Vezin H, Bentiss F. ac impedance, X-ray photoelectron spectroscopy and density functional theory studies of 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles as efficient corrosion inhibitors for carbon steel surface in hydrochloric acid solution. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2009.10.048] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Wang B, Gao F, Ma H. Preparation and XPS studies of macromolecule mixed-valent Cu(I, II) and Fe(II, III) complexes. JOURNAL OF HAZARDOUS MATERIALS 2007; 144:363-8. [PMID: 17118554 DOI: 10.1016/j.jhazmat.2006.10.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 10/12/2006] [Accepted: 10/13/2006] [Indexed: 05/12/2023]
Abstract
A new macromolecule ligand and its mixed-valent Cu(I, II) and Fe(II, III) complexes have been prepared by using ethylenediamine as core and maleic anhydride as branched units and characterized by UV-vis, FT-IR, thermal analysis and X-ray photoelectron spectroscopy (XPS). The data obtained from these studies suggested that the coordinate bonds of N-->M, Cl-->M, Ph-OH-->M and H(2)O-->M have been formed and possible binding models are proposed for these complexes. The thermal analysis (TG-DTG) reveals that these complexes possess thermal stable property below 800 degrees C.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Energy Chemistry, College of Chemistry and Materials Science, Shaanxi Normal University, Xi'An 710062, PR China.
| | | | | |
Collapse
|
17
|
Planes GA, Miras MC, Barbero C. Strong effects of counterions on the electrochemistry of poly(N-methylaniline) thin films. POLYM INT 2002. [DOI: 10.1002/pi.830] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
|
19
|
Ma Z, Han H, Tan K, Kang E, Neoh K. Surface graft copolymerization induced adhesion of polyaniline film to polytetrafluoroethylene film and copper foil. Eur Polym J 1999. [DOI: 10.1016/s0014-3057(98)00196-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Kang ET, Ma ZH, Tan KL, Zhu BR, Uyama Y, Ikada Y. Surface modification and functionalization of electroactive polymer films. POLYM ADVAN TECHNOL 1999. [DOI: 10.1002/(sici)1099-1581(199907)10:7<421::aid-pat887>3.0.co;2-o] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Synthesis and properties of the water-soluble self-acid-doped polypyrrole: poly[4-(3-pyrrolyl)butanesulfonic acid]. JOURNAL OF POLYMER RESEARCH 1998. [DOI: 10.1007/s10965-006-0064-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Kang ET, Neoh KG, Huang SW, Lim SL, Tan KL. Surface-Functionalized Polyaniline Films. J Phys Chem B 1997. [DOI: 10.1021/jp9727052] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
|
24
|
|
25
|
Properties of electronically conductive polyaniline: a comparison between well-known literature data and some recent experimental findings. POLYMER 1994. [DOI: 10.1016/0032-3861(94)90402-2] [Citation(s) in RCA: 217] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Kang E, Neoh K, Tan K. Charge transfer interactions and redox states in ring-substituted polyanilines and their complexes. Eur Polym J 1994. [DOI: 10.1016/0014-3057(94)90055-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
|
28
|
Kang E, Ting Y, Neoh K, Tan K. Spontaneous and sustained gold reduction by polyaniline in acid solution. POLYMER 1993. [DOI: 10.1016/0032-3861(93)90034-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|