1
|
Raee E, Liu B, Yang Y, Namani T, Cui Y, Sahai N, Li X, Liu T. Side Group of Hydrophobic Amino Acids Controls Chiral Discrimination among Chiral Counterions and Metal-Organic Cages. NANO LETTERS 2022; 22:4421-4428. [PMID: 35609117 DOI: 10.1021/acs.nanolett.2c00908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The self-assembly of chiral Pd12L24 metal-organic cages (MOCs) based on hydrophobic amino acids, including alanine (Ala), valine (Val), and leucine (Leu), into single-layered hollow spherical blackberry-type structures is triggered by nitrates through counterion-mediated attraction. In addition to nitrates, anionic N-(tert-butoxycarbonyl) (Boc)-protected Ala, Val, and Leu were used as chiral counterions during the self-assembly of d-MOCs. Previously, we showed that l-Ala suppresses the self-assembly process of d-Pd12Ala24 but has no effect on l-Pd12Ala24, i.e., chiral discrimination. Here, we indicate when the amino acid used as the chiral counterion has a bulkier side group than the amino acid in the MOC structure, no chiral discrimination exists; otherwise, chiral discrimination exists. For example, Ala can induce chiral discrimination in all chiral MOCs, whereas Leu can induce chiral discrimination only in Pd12Leu24. Moreover, chiral anionic d- and l-alanine-based surfactants have no chiral discrimination, indicating that bulkier chiral counterions with more hydropohobic side groups can erase chiral discrimination.
Collapse
Affiliation(s)
- Ehsan Raee
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Bingqing Liu
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Yuqing Yang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Trishool Namani
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yunpeng Cui
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Nita Sahai
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Tianbo Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
2
|
Chen J, Luo J, Bekele S, Tsige M, Liu T. Rational Control of Self-Recognition of Macroionic γ-Cyclodextrin by Host-Guest Interaction with Super-Chaotropic Borate Cluster Ions. Chempluschem 2020; 85:2316-2319. [PMID: 33058510 DOI: 10.1002/cplu.202000536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/26/2020] [Indexed: 11/11/2022]
Abstract
We report a feasible method to control self-recognition during the self-assembly of a hydrophilic macroion, phosphate-functionalized γ-cyclodextrin (γ-CD-P), though host-guest interactions. We confirmed that γ-CD-P can form a host-guest complex with a super-chaotropic anion, namely the B12 F12 2- borate cluster, by using NMR spectroscopy and isothermal titration calorimetry. The loaded γ-CD-P, which has a higher charge density, can be distinguished from the uncomplexed γ-CD-P, leading to self-sorting behavior during the self-assembly process, confirmed by the formation of two types of individual supramolecular structures (Rh of ca. 57 nm and 18 nm, determined by light scattering) instead of hybrid structures in mixed dilute solution. This self-recognition behavior is accounted for by the difference in intermolecular electrostatic interactions arising from the loading.
Collapse
Affiliation(s)
- Jiahui Chen
- School of Polymer Science and Engineering, The University of Akron, 44325, Akron, OH, USA
| | - Jiancheng Luo
- School of Polymer Science and Engineering, The University of Akron, 44325, Akron, OH, USA
| | - Selemon Bekele
- School of Polymer Science and Engineering, The University of Akron, 44325, Akron, OH, USA
| | - Mesfin Tsige
- School of Polymer Science and Engineering, The University of Akron, 44325, Akron, OH, USA
| | - Tianbo Liu
- School of Polymer Science and Engineering, The University of Akron, 44325, Akron, OH, USA
| |
Collapse
|
3
|
Zhang D, Luo J, Ma Y, Zhang T, Li N, Li C, Ma P, Li T, Wang G, Liu T, Wang J, Niu J. Unraveling the Effects of Cobalt on Crystal Growth and Solution Behavior of Nb 6P 2W 12-based Dimeric Clusters. Inorg Chem 2020; 59:6747-6754. [PMID: 32250607 DOI: 10.1021/acs.inorgchem.9b03700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the synthesis, characterization, and solution self-assembly of plenary Nb6P2W12-based transition-metal substituted polyoxometalate, which is obtained by simply adding transition metals (Co2+) into aqueous solution containing cluster [(NbO2)6P2W12O56]12-, which is obtained by an in situ synthetic method. The incorporation of Co2+ ions significantly affects the crystal structure, resulting in the formation of a 1D chain-like crystal and the first example of a niobotungstate-based cobalt derivative cluster. The behavior and stability of this cluster in solution are confirmed by time-resolved static light scattering, dynamic light scattering, small-angle X-ray scattering, and electrospray mass spectrometry studies.
Collapse
Affiliation(s)
- Dongdi Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Jiancheng Luo
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Yachun Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Tong Zhang
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Nan Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Chen Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States.,X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Guan Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Tianbo Liu
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
4
|
Luo J, Ye S, Ustriyana P, Wei B, Chen J, Raee E, Hu Y, Yang Y, Zhou Y, Wesdemiotis C, Sahai N, Liu T. Unraveling Chiral Selection in the Self-assembly of Chiral Fullerene Macroions: Effects of Small Chiral Components Including Counterions, Co-ions, or Neutral Molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4702-4710. [PMID: 32293900 DOI: 10.1021/acs.langmuir.0c00611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lactic acid-functionalized chiral fullerene (C60) molecules are used as models to understand chiral selection in macroionic solutions involving chiral macroions, chiral counterions, and/or chiral co-ions. With the addition of Zn2+ cations, the C60 macroions exhibit slow self-assembly behavior into hollow, spherical, blackberry-type structures, as confirmed by laser light scattering (LLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) techniques. Chiral counterions with high charge density show no selection to the chirality of AC60 macroions (LAC60 and DAC60) during their self-assembly process, while obvious chiral discrimination between the assemblies of LAC60 and DAC60 is observed when chiral counterions with low charge density are present. Compared with chiral counterions, chiral co-ions show weaker effects on chiral selection with larger amounts needed to trigger the chiral discrimination between LAC60 and DAC60. However, they can induce a higher degree of discrimination when abundant chiral co-ions are present in solution. Furthermore, the self-assembly of chiral AC60 macroions is fully suppressed by adding significant amounts of neutral molecules with opposite chirality. Thermodynamic parameters from isothermal titration calorimetry (ITC) reveal that chiral selection is controlled by the ion pairing and the destruction of solvent shells between ions, and meanwhile originates from the delicate balance between electrostatic interaction and molecular chirality.
Collapse
Affiliation(s)
- Jiancheng Luo
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Songtao Ye
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Putu Ustriyana
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Benqian Wei
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Jiahui Chen
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Ehsan Raee
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Yinghe Hu
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Yuqing Yang
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Yifan Zhou
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Chrys Wesdemiotis
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Nita Sahai
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Tianbo Liu
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
5
|
Luo J, Liu T. Competition and Cooperation among Different Attractive Forces in Solutions of Inorganic-Organic Hybrids Containing Macroionic Clusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7603-7616. [PMID: 31117725 DOI: 10.1021/acs.langmuir.9b00480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hybrids composed of nanoscale inorganic clusters and organic ligands are ideal models for understanding the different attractive forces during the self-assembly processes of complex macromolecules in solution. The counterion-mediated attraction induced by electrostatic interaction from the large, hydrophilic macroionic clusters can compete or cooperate with other types of attractive forces such as hydrophobic interactions, hydrogen bonding, π-π stacking, and cation-π interactions from the organic ligands, consequently determining the solution behaviors of the hybrid molecules including their self-assembly process and the final supramolecular structures. The incorporation of organic ligands also leads to interesting responsive behaviors to external stimuli. Through the manipulation of the hybrid composition, architecture, topology, and solution conditions (e.g., solvent polarity, pH, and temperature), versatile self-assembled morphologies can be achieved, providing new scientific opportunities and potential applications.
Collapse
Affiliation(s)
- Jiancheng Luo
- Department of Polymer Science , The University of Akron , Akron , Ohio 44325 , United States
| | - Tianbo Liu
- Department of Polymer Science , The University of Akron , Akron , Ohio 44325 , United States
| |
Collapse
|
6
|
Ball V, Mougharbel AS, Kortz U. Uniform trend in layer-by-layer deposition of heteropolytungstates. J Colloid Interface Sci 2018; 533:771-778. [PMID: 30199833 DOI: 10.1016/j.jcis.2018.08.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 11/28/2022]
Abstract
HYPOTHESIS The layer-by-layer deposition of films including polyoxometalates (POMs) results in a very interesting range of applications in various fields such as electrochemical devices and as photochromic coatings. However, the fundamental knowledge of the parameters responsible for tuning the properties of the film (i.e. relation between the structure and composition of the POM and the properties of the final film) is still lacking. EXPERIMENTS The current work establishes the relationship between the film thickness, the quantity of POM incorporated in each layer and the electrochemical response of the (PAH-POM)x coatings, where PAH is poly(allylamine hydrochloride). FINDINGS The results presented in this work show that the film thickness, composition and electrochemical activity scale proportionally with the number of W atoms in a series of heteropolytungstates ranging from 5 to 48 (P2W5, PW12, P2V3W15, P2W18, P5W30, P8W48). The obtained results allow us to establish a method to predict the behavior as well as the properties of the film based on the nature of the POM used.
Collapse
Affiliation(s)
- Vincent Ball
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 Rue Sainte Elisabeth, 67000 Strasbourg, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1121, 11 Rue Humann, 67085 Strasbourg Cedex, France.
| | - Ali S Mougharbel
- Jacobs University, Department of Life Sciences and Chemistry, Campus Ring 1, 28759 Bremen, Germany.
| | - Ulrich Kortz
- Jacobs University, Department of Life Sciences and Chemistry, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
7
|
Luo J, Zhang B, Yvon C, Hutin M, Gerislioglu S, Wesdemiotis C, Cronin L, Liu T. Self-Assembly of Polyoxometalate-Peptide Hybrids in Solution: Elucidating the Contributions of Multiple Possible Driving Forces. Eur J Inorg Chem 2018; 2019:380-386. [PMID: 31007577 PMCID: PMC6472639 DOI: 10.1002/ejic.201800158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Indexed: 11/23/2022]
Abstract
Incorporating the building blocks of nature (e.g., peptides and DNA) into inorganic polyoxometalate (POM) clusters is a promising approach to improve the compatibilities of POMs in biological fields. To extend their biological applications, it is necessary to understand the importance of different non‐covalent interactions during self‐organization. A series of Anderson POM–peptide hybrids have been used as a simple model to demonstrate the role of different interactions in POM–peptide (biomolecules) systems. Regardless of peptide chain length, these hybrids follow similar solution behaviors, forming hollow, spherical supramolecular structures in acetonitrile/water mixed solvents. The incorporation of peptide tails introduces interesting stimuli‐responsive properties to temperature, hybrid concentration, solvent polarity and ionic strength. Unlike the typical bilayer amphiphilic vesicles, they are found to follow the blackberry‐type assemblies of hydrophilic macroions, which are regulated by electrostatic interaction and hydrogen bonding. The formation of electrostatic assemblies before the supramolecular formation is confirmed by ion‐mobility mass spectrometry (IMS‐MS).
Collapse
Affiliation(s)
- Jiancheng Luo
- Department of Polymer Science University of Akron 44325 Akron OH USA
| | - Baofang Zhang
- Department of Polymer Science University of Akron 44325 Akron OH USA
| | - Carine Yvon
- WEST Chem School of Chemistry University of Glasgow University Avenue G12 8QQ Glasgow UK
| | - Marie Hutin
- WEST Chem School of Chemistry University of Glasgow University Avenue G12 8QQ Glasgow UK
| | | | | | - Leroy Cronin
- WEST Chem School of Chemistry University of Glasgow University Avenue G12 8QQ Glasgow UK
| | - Tianbo Liu
- Department of Polymer Science University of Akron 44325 Akron OH USA
| |
Collapse
|
8
|
Luo J, Chen K, Yin P, Li T, Wan G, Zhang J, Ye S, Bi X, Pang Y, Wei Y, Liu T. Effect of Cation-π Interaction on Macroionic Self-Assembly. Angew Chem Int Ed Engl 2018; 57:4067-4072. [PMID: 29441703 DOI: 10.1002/anie.201800409] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Indexed: 01/29/2023]
Abstract
A series of rod-shaped polyoxometalates (POMs) [Bu4 N]7 [Mo6 O18 NC(CH2 O)3 MnMo6 O18 (OCH2 )3 CNMo6 O18 ] and [Bu4 N]7 [ArNMo6 O17 NC(CH2 O)3 MnMo6 O18 (OCH2 )3 CNMo6 O17 NAr] (Ar=2,6-dimethylphenyl, naphthyl and 1-methylnaphthyl) were chosen to study the effects of cation-π interaction on macroionic self-assembly. Diffusion ordered spectroscopy (DOSY) and isothermal titration calorimetry (ITC) techniques show that the binding affinity between the POMs and Zn2+ ions is enhanced significantly after grafting aromatic groups onto the clusters, leading to the effective replacement of tetrabutylammonium counterions (TBAs) upon the addition of ZnCl2 . The incorporation of aromatic groups results in the significant contribution of cation-π interaction to the self-assembly, as confirmed by the opposite trend of assembly size vs. ionic strength when compared with those without aromatic groups. The small difference between two aromatic groups toward the Zn2+ ions is amplified after combining with the clusters, which consequently triggers the self-recognition behavior between two highly similar macroanions.
Collapse
Affiliation(s)
- Jiancheng Luo
- Department of Polymer Science, University of Akron, Akron, OH, 44325, USA
| | - Kun Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Panchao Yin
- Department of Polymer Science, University of Akron, Akron, OH, 44325, USA
| | - Tao Li
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA.,Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Gang Wan
- Material Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Jin Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Songtao Ye
- Department of Polymer Science, University of Akron, Akron, OH, 44325, USA
| | - Xiaoman Bi
- Department of Chemistry, University of Akron, Akron, OH, 44325, USA
| | - Yi Pang
- Department of Chemistry, University of Akron, Akron, OH, 44325, USA
| | - Yongge Wei
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Tianbo Liu
- Department of Polymer Science, University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
9
|
Luo J, Chen K, Yin P, Li T, Wan G, Zhang J, Ye S, Bi X, Pang Y, Wei Y, Liu T. Effect of Cation–π Interaction on Macroionic Self‐Assembly. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jiancheng Luo
- Department of Polymer Science University of Akron Akron OH 44325 USA
| | - Kun Chen
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Panchao Yin
- Department of Polymer Science University of Akron Akron OH 44325 USA
| | - Tao Li
- X-Ray Science Division Advanced Photon Source Argonne National Laboratory Argonne IL 60439 USA
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - Gang Wan
- Material Science Division Argonne National Laboratory Argonne IL 60439 USA
| | - Jin Zhang
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Songtao Ye
- Department of Polymer Science University of Akron Akron OH 44325 USA
| | - Xiaoman Bi
- Department of Chemistry University of Akron Akron OH 44325 USA
| | - Yi Pang
- Department of Chemistry University of Akron Akron OH 44325 USA
| | - Yongge Wei
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Tianbo Liu
- Department of Polymer Science University of Akron Akron OH 44325 USA
| |
Collapse
|
10
|
Yang P, Li H, Ma T, Haso F, Liu T, Fan L, Lin Z, Hu C, Kortz U. Rational Design of Organically Functionalized Polyoxopalladates and Their Supramolecular Properties. Chemistry 2018; 24:2466-2473. [PMID: 29205556 DOI: 10.1002/chem.201705303] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Indexed: 11/06/2022]
Abstract
The SrII -centered 12-palladate(II) open-cube {SrPd12 (OAc)3 } has been systematically evolved by substitution of the three acetate ligands by a library of saturated carboxylic acids with increasing chain lengths leading to four novel polyoxopalladates(II) with the formula [SrPd12 O6 (OH)3 (PhAsO3 )6 (L)3 ]4- (SrPd12 L3 , L=Cn H2n+1 COO, n=2 to 5). These first examples of surfactant-type polyoxopalladates with a hydrophilic metal-oxo unit and three hydrophobic alkyl chains were characterized in the solid state (single-crystal XRD, FTIR, TGA), in solution (1 H, 13 C NMR spectroscopy), and in the gas phase (ESI-MS). The two polyanions SrPd12 L3 with chain lengths of 5 and 6 are the first examples of polyoxopalladates that are soluble and stable in organic media. The Na salts of the amphiphilic polyoxopalladates SrPd12 L3 were shown to self-assemble into "blackberry"-type spherical supramolecular structures in dilute solutions, of which an unusual "volcano"-shaped trend of assembly size versus solvent polarity is chiefly influenced by directional hydrogen bonding interactions.
Collapse
Affiliation(s)
- Peng Yang
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759, Bremen, Germany
| | - Hui Li
- Department of Polymer Science, The University of Akron, Akron, OH, 44325-3909, USA
| | - Tian Ma
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759, Bremen, Germany
| | - Fadi Haso
- Department of Polymer Science, The University of Akron, Akron, OH, 44325-3909, USA
| | - Tianbo Liu
- Department of Polymer Science, The University of Akron, Akron, OH, 44325-3909, USA
| | - Linyuan Fan
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Zhengguo Lin
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759, Bremen, Germany.,Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Changwen Hu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759, Bremen, Germany
| |
Collapse
|