1
|
Fattahi N, Gorgannezhad L, Masoule SF, Babanejad N, Ramazani A, Raoufi M, Sharifikolouei E, Foroumadi A, Khoobi M. PEI-based functional materials: Fabrication techniques, properties, and biomedical applications. Adv Colloid Interface Sci 2024; 325:103119. [PMID: 38447243 DOI: 10.1016/j.cis.2024.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cationic polymers have recently attracted considerable interest as research breakthroughs for various industrial and biomedical applications. They are particularly interesting due to their highly positive charges, acceptable physicochemical properties, and ability to undergo further modifications, making them attractive candidates for biomedical applications. Polyethyleneimines (PEIs), as the most extensively utilized polymers, are one of the valuable and prominent classes of polycations. Owing to their flexible polymeric chains, broad molecular weight (MW) distribution, and repetitive structural units, their customization for functional composites is more feasible. The specific beneficial attributes of PEIs could be introduced by purposeful functionalization or modification, long service life, biocompatibility, and distinct geometry. Therefore, PEIs have significant potential in biotechnology, medicine, and bioscience. In this review, we present the advances in PEI-based nanomaterials, their transfection efficiency, and their toxicity over the past few years. Furthermore, the potential and suitability of PEIs for various applications are highlighted and discussed in detail. This review aims to inspire readers to investigate innovative approaches for the design and development of next-generation PEI-based nanomaterials possessing cutting-edge functionalities and appealing characteristics.
Collapse
Affiliation(s)
- Nadia Fattahi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Shabnam Farkhonde Masoule
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Elham Sharifikolouei
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin (TO), Italy
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Khoobi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Rehman HU, Hedenqvist MS, Chen Y, Guo Y, Li H, Liu H. Stretchable, Strong, Recyclable Helicide Elastomer Based on Dynamic Covalent Interactions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46280-46291. [PMID: 37729208 DOI: 10.1021/acsami.3c08329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Current methods for making and disposing synthetic polymers have been widely pursued and are largely unsustainable. As a part of the solution, the reversible nature of dynamic covalent bonds emerges as an extraordinarily diverse and valuable feature in the development of exotic molecules and extended structures. With these bonds, it should be possible to construct recyclable and mechanically interlocked molecular structures using relatively simple precursors with preorganized geometries. A new helicide-based elastomer network is developed here with self-healing, recycling, and degradation features using a similar concept. The best self-healing performance (100%) was noted over 10-20 min, with various H2O, HCl, and NaOH solutions that delivered mechanical properties in the 1-1.4 MPa range. For hydrolytic degradation, the parameters are defined based on the type of binding, the pH of the solutions, and the copolymer network, which endowed a degradation time of approximately 4-11 h for each prepared sample. However, due to the reversible nature of the dynamic bonds, the material showed good recyclable mechanical properties compared to the pristine samples after five consecutive cycles, which meet the requirements of recyclable materials and recyclable packaging.
Collapse
Affiliation(s)
- Hafeez Ur Rehman
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Department of Physics, The University of Lahore, 1-KM Defense Road, Lahore 54000, Pakistan
| | - Mikael S Hedenqvist
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Yujie Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yutong Guo
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hua Li
- Collaborative Innovation Centre for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hezhou Liu
- Collaborative Innovation Centre for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
3
|
Noureen S, Noreen S, Ghumman SA, Abdelrahman EA, Batool F, Aslam A, Mehdi M, Shirinfar B, Ahmed N. A novel pH-responsive hydrogel system based on Prunus armeniaca gum and acrylic acid: Preparation and evaluation as a potential candidate for controlled drug delivery. Eur J Pharm Sci 2023; 189:106555. [PMID: 37543064 DOI: 10.1016/j.ejps.2023.106555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
pH-responsive hydrogels have become effective and attractive materials for the controlled release of drugs at pre-determined destinations. In the present study, a novel hydrogel system based on Prunus armeniaca gum (PAG) and acrylic acid (AA) was prepared by a free radical mechanism using N, N-methylene bisacrylamide (MBA) as cross-linker and potassium persulfate (KPS) as initiator. A series of hydrogels varying PAG, AA, and MBA concentration was developed to determine the impact of these components. Formulated hydrogels were characterized for pH-responsive swelling, drug release, gel content, and porosity. Structural analysis was performed by FTIR, XRD, and SEM analysis. TGA study was applied to assess thermal stability. Oral acute toxicity and in vivo drug release were performed in rabbits. Hydrogels exhibited pH-dependent swelling and drug release. Swelling, drug loading and release, and porosity increased by increasing PAG and AA concentration while decreased by increasing MBA. The gel content of formulations was increased by increasing all three components. FTIR studies confirmed the development of copolymeric networks and the loading of drug. XRD studies revealed that hydrogels were amorphous, and the crystalline drug was changed into an amorphous form during loading. TGA results indicated that hydrogels were stable up to 600 °C. Acute oral toxicity results confirm that hydrogels were nontoxic up to a dose of 2 g/kg body weight in rabbits. The pharmacokinetic evaluation revealed that hydrogels prolonged the availability of the drug and the peak plasma concentration of the drug was obtained in 6 h as compared to the oral solution of the drug. Tramadol hydrochloride (THC) was used as a model drug. Hence, pH-responsive swelling and release, nontoxic nature and improved pharmacokinetics support that PAG-based hydrogels may be considered as potential controlled-release polymeric carriers.
Collapse
Affiliation(s)
- Shazia Noureen
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan.
| | | | - Ehab A Abdelrahman
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Fozia Batool
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Afeefa Aslam
- Department Of Pharmacy, Comsats University, Abbottabad 22020, Pakistan
| | - Muhammad Mehdi
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Bahareh Shirinfar
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom.
| |
Collapse
|
4
|
Suhail M, Chiu IH, Liu JY, Ullah H, Lin IL, Minhas MU, Tsai MJ, Wu PC. Fabrication and In vitro Evaluation of Carbopol/Polyvinyl Alcohol-based pH-sensitive Hydrogels for Controlled Drug Delivery. Curr Pharm Des 2023; 29:2489-2500. [PMID: 37881070 DOI: 10.2174/0113816128268132231016061548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/23/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Diclofenac sodium has a short half-life (about 1.5 hours), requiring repeated administration, and as a result, serious complications, such as GI bleeding, peptic ulcer, and kidney and liver dysfunction, are generated. Hence, a sustained/controlled drug delivery system is needed to overcome the complications caused by the administration of diclofenac sodium. AIMS This study aimed to fabricate and evaluate carbopol/polyvinyl alcohol-based pH-sensitive hydrogels for controlled drug delivery. OBJECTIVE pH-sensitive carbopol/polyvinyl alcohol graft-poly(acrylic acid) hydrogels (Cp/PVA-g-PAa hydrogels) were developed for the controlled delivery of diclofenac sodium. METHODS The combination of carbopol/polyvinyl alcohol, acrylic acid, and ethylene glycol dimethacrylate was used as polymer, monomer, and cross-linker, respectively. The effects of the formulation's composition on porosity, swelling index, and release pattern of diclofenac sodium from the developed hydrogels were investigated. RESULTS An increase in porosity and swelling was observed with the increasing amounts of carbopol and acrylic acid, whereas polyvinyl alcohol showed the opposite effect. Due to the formation of a highly viscous system, the drug release decreased with the increasing concentrations of carbopol and polyvinyl alcohol while increased with increasing acrylic acid concentration. The pH-responsive properties of the fabricated hydrogels were demonstrated by dynamic swelling and drug release studies at three different pH values. Higher dynamic swelling and diclofenac sodium (model drug) release were found at high pH values compared to low pH values, i.e., pH 7.4 > 4.6 > 1.2, respectively. Cytotoxicity studies reported no toxic effect of the prepared hydrogels, thus indicating that the prepared hydrogels are safe to be used on clinical basis. CONCLUSION The prepared carbopol/polyvinyl alcohol crosslinked hydrogel can be used as a promising carrier for the controlled release of drugs.
Collapse
Affiliation(s)
- Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - I-Hui Chiu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jia-Yu Liu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hamid Ullah
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - I-Ling Lin
- Department of Medicine Laboratory Science and Biotechnology, College of Health Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | | | - Ming-Jun Tsai
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
- Department of Neurology, China Medical University Hospital, Taichung 404, Taiwan
- Department of Neurology, An-Nan Hospital, China Medical University, Tainan 709, Taiwan
| | - Pao-Chu Wu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Water-soluble non-conjugated polymer dots with strong green fluorescence for sensitive detection of organophosphate pesticides. Anal Chim Acta 2022; 1206:339792. [DOI: 10.1016/j.aca.2022.339792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/19/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
|
6
|
Suhail M, Liu JY, Hsieh WC, Lin YW, Usman Minhas M, Wu PC. Designing of pH-responsive ketorolac tromethamine loaded hydrogels of alginic acid: Characterization, in-vitro and in-vivo evaluation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
7
|
Lee TH, Liu Y, Kim HJ, Lee SH, Song HH, Shim YK, Lee WK, Yoon I. Mitochondrial Targeting Cationic Purpurinimide–Polyoxometalate Supramolecular Complexes for Enhanced Photodynamic Therapy with Reduced Dark Toxicity. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Tae Heon Lee
- Center for Nano Manufacturing and Department of Nanoscience and Engineering Inje University 197 Injero Gimhae, Gyeongnam 50834 Republic of Korea
| | - Yang Liu
- Center for Nano Manufacturing and Department of Nanoscience and Engineering Inje University 197 Injero Gimhae, Gyeongnam 50834 Republic of Korea
| | - Hye Jeong Kim
- Center for Nano Manufacturing and Department of Nanoscience and Engineering Inje University 197 Injero Gimhae, Gyeongnam 50834 Republic of Korea
| | - Sang Hyeob Lee
- Center for Nano Manufacturing and Department of Nanoscience and Engineering Inje University 197 Injero Gimhae, Gyeongnam 50834 Republic of Korea
| | - Hyeon Ho Song
- Center for Nano Manufacturing and Department of Nanoscience and Engineering Inje University 197 Injero Gimhae, Gyeongnam 50834 Republic of Korea
| | - Young Key Shim
- Center for Nano Manufacturing and Department of Nanoscience and Engineering Inje University 197 Injero Gimhae, Gyeongnam 50834 Republic of Korea
| | - Woo Kyoung Lee
- Center for Nano Manufacturing and Department of Nanoscience and Engineering Inje University 197 Injero Gimhae, Gyeongnam 50834 Republic of Korea
| | - Il Yoon
- Center for Nano Manufacturing and Department of Nanoscience and Engineering Inje University 197 Injero Gimhae, Gyeongnam 50834 Republic of Korea
| |
Collapse
|
8
|
Franco MKKD, Sepulveda AF, Vigato AA, Oshiro A, Machado IP, Kent B, Clemens D, Yokaichiya F, Araujo DR. Supramolecular Structure of Temperature‐Dependent Polymeric Hydrogels Modulated by Drug Incorporation. ChemistrySelect 2020. [DOI: 10.1002/slct.202001116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Anderson F. Sepulveda
- Human and Natural Sciences Center Federal University of ABC Santo André, SP Brazil
- Drugs and Bioactives Delivery Systems Research Group – SISLIBIO Federal University of ABC. Av. dos Estados 5001. Bl. A, T3, Lab. 503-3. Bangú. Santo André-SP Brazil
| | - Aryane A. Vigato
- Human and Natural Sciences Center Federal University of ABC Santo André, SP Brazil
- Drugs and Bioactives Delivery Systems Research Group – SISLIBIO Federal University of ABC. Av. dos Estados 5001. Bl. A, T3, Lab. 503-3. Bangú. Santo André-SP Brazil
| | - Alisson Oshiro
- Human and Natural Sciences Center Federal University of ABC Santo André, SP Brazil
| | - Ian Pompermayer Machado
- Department of Fundamental Chemistry Institute of Chemistry University of São Paulo São Paulo SP Brazil
| | - Ben Kent
- Institute for Soft Matter and Functional Materials Helmholtz-Zentrum Berlin für Materialien Berlin Germany
- School of Chemistry University of New South Wales. Kensington Australia
| | - Daniel Clemens
- Institute for Soft Matter and Functional Materials Helmholtz-Zentrum Berlin für Materialien Berlin Germany
| | - Fabiano Yokaichiya
- Institute for Soft Matter and Functional Materials Helmholtz-Zentrum Berlin für Materialien Berlin Germany
| | - Daniele Ribeiro Araujo
- Human and Natural Sciences Center Federal University of ABC Santo André, SP Brazil
- Drugs and Bioactives Delivery Systems Research Group – SISLIBIO Federal University of ABC. Av. dos Estados 5001. Bl. A, T3, Lab. 503-3. Bangú. Santo André-SP Brazil
| |
Collapse
|
9
|
Chitosan nanogels as nanocarriers of polyoxometalates for breast cancer therapies. Carbohydr Polym 2019; 213:159-167. [DOI: 10.1016/j.carbpol.2019.02.091] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/02/2019] [Accepted: 02/25/2019] [Indexed: 12/27/2022]
|
10
|
Ullah K, Sohail M, Mannan A, Rashid H, Shah A, Murtaza G, Khan SA. Facile Synthesis of Chitosan Based-(AMPS-co-AA) Semi-IPNs as a Potential Drug Carrier: Enzymatic Degradation, Cytotoxicity, and Preliminary Safety Evaluation. Curr Drug Deliv 2018; 16:242-253. [PMID: 30360742 DOI: 10.2174/1567201815666181024152101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/08/2018] [Accepted: 10/18/2018] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The study describes the development of chitosan-based (AMPS-co-AA) semi-IPN hydrogels using free radical polymerization technique. METHODS The resulting hydrogels were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), X-Ray diffraction (XRD), and Scanning Electron Microscopy (SEM). The successful crosslinking of chitosan, 2- Acrylamido-2-Methylpropane Sulfonic Acid (AMPS), and Acrylic Acid (AA) was confirmed by FT IR. Unloaded and drug-loaded hydrogels exhibited higher thermal stability after crosslinking compared to the individual components. XRD confirmed the decrease in crystallinity after hydrogel formation and molecular dispersion of Oxaliplatin (OXP) in the polymeric network. SEM showed rough, vague and nebulous surface resulting from crosslinking and loading of OXP. RESULTS The experimental results revealed that swelling and drug release were influenced by the pH of the medium being low at acidic pH and higher at basic pH. Increasing the concentration of chitosan and AA enhanced the swelling, drug loading and drug release while AMPS was found to act inversely. CONCLUSION It was confirmed that the hydrogels were degraded more by specific enzyme lysozyme as compared to the non-specific enzyme collagenase. In-vitro cytotoxicity suggested that the unloaded hydrogels were non-cytotoxic while crude drug and drug-loaded hydrogel exhibited dose-dependent cytotoxicity against HCT-116 and MCF-7. Results of acute oral toxicity on rabbits demonstrated that the hydrogels are non-toxic up to 3900 mg/kg after oral administration, as no toxicity or histopathological changes were observed in comparison to control rabbits. These pH-sensitive hydrogels appear to provide an ideal basis as a safe carrier for oral drug delivery.
Collapse
Affiliation(s)
- Kaleem Ullah
- Department of Pharmacy, COMSATS University, Islamabad (Abbottabad campus 22060), Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad (Abbottabad campus 22060), Pakistan
| | - Abdul Mannan
- Department of Pharmacy, COMSATS University, Islamabad (Abbottabad campus 22060), Pakistan
| | - Haroon Rashid
- Institut für Chemie/ Physikalische Chemie der Polymere, Von-Danckelmann-Platz 4, Martin-Luther-Universitat Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Aamna Shah
- Department of Pharmacy, COMSATS University, Islamabad (Abbottabad campus 22060), Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University, Islamabad (Lahore campus), Pakistan
| | - Shujaat Ali Khan
- Department of Pharmacy, COMSATS University, Islamabad (Abbottabad campus 22060), Pakistan
| |
Collapse
|
11
|
Azizullah, Al-Rashida M, Haider A, Kortz U, Joshi SA, Iqbal J. Development and In vitro Anticancer Evaluation of Self-Assembled Supramolecular pH Responsive Hydrogels of Carboxymethyl Chitosan and Polyoxometalate. ChemistrySelect 2018. [DOI: 10.1002/slct.201702253] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Azizullah
- Centre for Advanced Drug Research; COMSATS Institute of Information Technology; Abbottabad - 22060 Pakistan
| | - Mariya Al-Rashida
- Department of Chemistry; Forman Christian College (A Chartered University); Ferozepur Road Lahore 54600 Pakistan
| | - Ali Haider
- Department of Life Sciences and Chemistry; Jacobs University, Campus Ring 1; 28759 Bremen Germany
- Department of Chemistry; Quaid-i-Azam University; 45320 - Islamabad Pakistan
| | - Ulrich Kortz
- Department of Life Sciences and Chemistry; Jacobs University, Campus Ring 1; 28759 Bremen Germany
| | - Sachin A. Joshi
- Dr. K. C. Patel Research and Development Centre; Charotar University of Science and Technology (CHARUSAT), Dist. Anand; 388421, Gujarat India
| | - Jamshed Iqbal
- Centre for Advanced Drug Research; COMSATS Institute of Information Technology; Abbottabad - 22060 Pakistan
| |
Collapse
|