1
|
Mishra PS, Kumar A, Kaur K, Jaitak V. Recent Developments in Coumarin Derivatives as Neuroprotective Agents. Curr Med Chem 2024; 31:5702-5738. [PMID: 37455459 DOI: 10.2174/0929867331666230714160047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/16/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Neurodegenerative diseases are among the diseases that cause the foremost burden on the health system of the world. The diseases are multifaceted and difficult to treat because of their complex pathophysiology, which includes protein aggregation, neurotransmitter breakdown, metal dysregulation, oxidative stress, neuroinflammation, excitotoxicity, etc. None of the currently available therapies has been found to be significant in producing desired responses without any major side effects; besides, they only give symptomatic relief otherwise indicated off-episode relief. Targeting various pathways, namely choline esterase, monoamine oxidase B, cannabinoid system, metal chelation, β-secretase, oxidative stress, etc., may lead to neurodegeneration. By substituting various functional moieties over the coumarin nucleus, researchers are trying to produce safer and more effective neuroprotective agents. OBJECTIVES This study aimed to review the current literature to produce compounds with lower side effects using coumarin as a pharmacophore. METHODS In this review, we have attempted to compile various synthetic strategies that have been used to produce coumarin and various substitutional strategies used to produce neuroprotective agents from the coumarin pharmacophore. Moreover, structure-activity relationships of substituting coumarin scaffold at various positions, which could be instrumental in designing new compounds, were also discussed. RESULTS The literature review suggested that coumarins and their derivatives can act as neuroprotective agents following various mechanisms. CONCLUSION Various studies have demonstrated the neuroprotective activity of coumarin due to an oxaheterocyclic loop, which allows binding with a broad array of proteins, thus motivating researchers to explore its potential as a lead against various neurodegenerative diseases.
Collapse
Affiliation(s)
- Prakash Shyambabu Mishra
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| | - Amit Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| |
Collapse
|
2
|
Kornicka A, Balewski Ł, Lahutta M, Kokoszka J. Umbelliferone and Its Synthetic Derivatives as Suitable Molecules for the Development of Agents with Biological Activities: A Review of Their Pharmacological and Therapeutic Potential. Pharmaceuticals (Basel) 2023; 16:1732. [PMID: 38139858 PMCID: PMC10747342 DOI: 10.3390/ph16121732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Umbelliferone (UMB), known as 7-hydroxycoumarin, hydrangine, or skimmetine, is a naturally occurring coumarin in the plant kingdom, mainly from the Umbelliferae family that possesses a wide variety of pharmacological properties. In addition, the use of nanoparticles containing umbelliferone may improve anti-inflammatory or anticancer therapy. Also, its derivatives are endowed with great potential for therapeutic applications due to their broad spectrum of biological activities such as anti-inflammatory, antioxidant, neuroprotective, antipsychotic, antiepileptic, antidiabetic, antimicrobial, antiviral, and antiproliferative effects. Moreover, 7-hydroxycoumarin ligands have been implemented to develop 7-hydroxycoumarin-based metal complexes with improved pharmacological activity. Besides therapeutic applications, umbelliferone analogues have been designed as fluorescent probes for the detection of biologically important species, such as enzymes, lysosomes, and endosomes, or for monitoring cell processes and protein functions as well various diseases caused by an excess of hydrogen peroxide. Furthermore, 7-hydroxy-based chemosensors may serve as a highly selective tool for Al3+ and Hg2+ detection in biological systems. This review is devoted to a summary of the research on umbelliferone and its synthetic derivatives in terms of biological and pharmaceutical properties, especially those reported in the literature during the period of 2017-2023. Future potential applications of umbelliferone and its synthetic derivatives are presented.
Collapse
Affiliation(s)
- Anita Kornicka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland; (Ł.B.); (M.L.); (J.K.)
| | | | | | | |
Collapse
|
3
|
Todorov L, Saso L, Kostova I. Antioxidant Activity of Coumarins and Their Metal Complexes. Pharmaceuticals (Basel) 2023; 16:ph16050651. [PMID: 37242434 DOI: 10.3390/ph16050651] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Ubiquitously present in plant life, coumarins, as a class of phenolic compounds, have multiple applications-in everyday life, in organic synthesis, in medicine and many others. Coumarins are well known for their broad spectrum of physiological effects. The specific structure of the coumarin scaffold involves a conjugated system with excellent charge and electron transport properties. The antioxidant activity of natural coumarins has been a subject of intense study for at least two decades. Significant research into the antioxidant behavior of natural/semi-synthetic coumarins and their complexes has been carried out and published in scientific literature. The authors of this review have noted that, during the past five years, research efforts seem to have been focused on the synthesis and examination of synthetic coumarin derivatives with the aim to produce potential drugs with enhanced, modified or entirely novel effects. As many pathologies are associated with oxidative stress, coumarin-based compounds could be excellent candidates for novel medicinal molecules. The present review aims to inform the reader on some prominent results from investigations into the antioxidant properties of novel coumarin compounds over the past five years.
Collapse
Affiliation(s)
- Lozan Todorov
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Faculty of Pharmacy and Medicine, Sapienza University, 00185 Rome, Italy
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
4
|
Metwally HM, Khalaf NA, Abdel-Latif E, Ismail MA. Synthesis, DFT investigations, antioxidant, antibacterial activity and SAR-study of novel thiophene-2-carboxamide derivatives. BMC Chem 2023; 17:6. [PMID: 36803621 PMCID: PMC9940361 DOI: 10.1186/s13065-023-00917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
Synthetic strategy for the synthesis of thiophene 2-carboxamide derivatives substituted with hydroxyl, methyl and amino groups at position-3 was proposed. The strategy includes the cyclization of the precursor ethyl 2-arylazo-3-mercapto-3-(phenylamino)acrylate derivatives, 2-acetyl-2-arylazo-thioacetanilide derivatives and N-aryl-2-cyano-3-mercapto-3-(phenylamino)acrylamide derivatives with N-(4-acetylphenyl)-2-chloroacetamide in alcoholic sodium ethoxide. IR, 1H NMR, and mass spectroscopic analyses were used to characterize the synthesized derivatives. In addition, molecular, electronic properties of the synthesized products were studied by the density functional theory (DFT) where they exhibited close HOMO-LUMO energy gap (ΔEH-L) in which the amino derivatives 7a-c have the highest while the methyl derivatives 5a-c were the lowest. Using the ABTS method, the antioxidant properties of the produced compounds were evaluated, where amino thiophene-2-carboxamide 7a exhibit significant inhibition activity 62.0% compared to ascorbic acid The antibacterial activity against two pathogenic Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two of pathogenic Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) revealed that 7b records the highest activity index compared to ampicillin 83.3, 82.6, 64.0, 86.9%, respectively. Furthermore, the thiophene-2-carboxamide derivatives were docked with five different proteins with the use molecular docking tools and the results explained interactions between amino acid residue of enzyme and compounds. Compounds 3b and 3c showed the highest binding score with 2AS1 protein.
Collapse
Affiliation(s)
- Heba M. Metwally
- grid.10251.370000000103426662Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| | - Norhan A. Khalaf
- grid.10251.370000000103426662Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| | - Ehab Abdel-Latif
- grid.10251.370000000103426662Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| | - Mohamed A. Ismail
- grid.10251.370000000103426662Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| |
Collapse
|
5
|
New Schiff bases based on isatin and (thio)/carbohydrazone: preparation, experimental–theoretical spectroscopic characterization, and DFT approach to antioxidant characteristics. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04908-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Alshorifi FT, Tobbala DE, El-Bahy SM, Nassan MA, Salama RS. The role of phosphotungstic acid in enhancing the catalytic performance of UiO-66 (Zr) and its applications as an efficient solid acid catalyst for coumarins and dihydropyrimidinones synthesis. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
7
|
Synthesis and Antimicrobial Action of Ninhydrin, Isatin, and 5-Acetyl-4-Hydroxy-1,3-Thiazine-2,6-Dione Derivatives Against Staphylococcus aureus and Pseudomonas aeruginosa Opportunistic Microflora. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Click approach for synthesis of 3,4-dihydro-2(1H) quinolinone, coumarin moored 1,2,3-triazoles as inhibitor of mycobacteria tuberculosis H37RV, their antioxidant, cytotoxicity and in-silico studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Osipova VP, Polovinkina MA, Kolyada MN, Osipova AD, Berberova NT, Velikorodov AV. Study of Antioxidant Activity of New Compounds with 1,3-Thiazin-2,6-Dione and Pyrrolidine Fragments. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500821090020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Molecular modeling and antioxidant activity of newly synthesized 3‑hydroxy-2-substituted-thiophene derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Molecular modeling and docking of new 2-acetamidothiazole-based compounds as antioxidant agents. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Damuka N, Kammari K, Potshangbam AM, Kondapi AK, Vindal V. Epoxydicoumarin Derivative is a Novel Non‐Nucleoside TLR8 Agonist: Screening, Synthesis and Biological Evaluation. ChemistrySelect 2021. [DOI: 10.1002/slct.202100368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Naresh Damuka
- Department of Biotechnology and Bioinformatics University of Hyderabad Hyderabad 500046 India
| | - Kurumurthy Kammari
- Department of Biotechnology and Bioinformatics University of Hyderabad Hyderabad 500046 India
| | - Angamba Meetei Potshangbam
- Department of Biotechnology and Bioinformatics University of Hyderabad Hyderabad 500046 India
- Department of Biotechnology Manipur University Imphal 795003 India
| | - Anand Kumar Kondapi
- Department of Biotechnology and Bioinformatics University of Hyderabad Hyderabad 500046 India
| | - Vaibhav Vindal
- Department of Biotechnology and Bioinformatics University of Hyderabad Hyderabad 500046 India
| |
Collapse
|
13
|
Amin KM, Abdel Rahman DE, Abdelrasheed Allam H, El-Zoheiry HH. Design and synthesis of novel coumarin derivatives as potential acetylcholinesterase inhibitors for Alzheimer's disease. Bioorg Chem 2021; 110:104792. [PMID: 33799178 DOI: 10.1016/j.bioorg.2021.104792] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022]
Abstract
Twenty novel 7-benzyloxycoumarin based compounds were synthesized with a variety of bioactive chemical fragments. The synthesized compounds showed remarkable acetylcholinesterase (AChE) inhibitory activity. In vitro assay revealed that compounds 7-benzyloxy-4-{[(4-phenylthiazol-2(3H)-ylidene)hydrazono]methyl}-2H-chromen-2-one (5b, IC50= 0.451μM), 7-benzyloxy-4-({[4-(4-methoxyphenyl)thiazol-2(3H)-ylidene]hydrazono}methyl)-2H-chromen-2-one (5d, IC50= 0.625μM), 5-amino-1-[2-(7-benzyloxy-2-oxo-2H-chromen-4-yl)acetyl]-1H-pyrazole-4-carbonitrile (13c, IC50= 0.466μM), 2-(7-benzyloxy-2-oxo-2H-chromen-4-yl)-N-(2-methylimino-4-phenylthiazol-3(2H)-yl)acetamide (16a, IC50= 0.500μM) and 2-(7-benzyloxy-2-oxo-2H-chromen-4-yl)-N-[4-(4-methoxyphenyl)-2-methyliminothiazol-3(2H)-yl]acetamide (16b, IC50= 0.590μM) exhibited promising AChE inhibitory activity even better than donepezil (IC50= 0.711μM). Kinetic study for compound 5b implied mixed type inhibitor which could bind peripheral anionic site (PAS) and catalytic active site (CAS) of AChE enzyme. In addition, in vivo evaluation of compounds 5b, 13c and 16a confirmed significant memory improvement in scopolamine-induced impairment model in tested mice. Furthermore, in silico studies were performed on the synthesized compounds which included molecular docking study at the active site of recombinant human acetylcholinesterase enzyme (rhAChE) as well as prediction of ADMET and other physicochemical parameters. A correlation between the docking results and IC50 of tested compounds was routinely observed and shared similar binding pattern to the co-crystallized ligand donepezil.
Collapse
Affiliation(s)
- Kamilia M Amin
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Doaa E Abdel Rahman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Heba Abdelrasheed Allam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
| | - Haidy H El-Zoheiry
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt.
| |
Collapse
|
14
|
Zhou L, Shi X, Yin H, Huang Y, Wang R, Ma L. Design, Synthesis and Biological Evaluation of Nobiletin Derivatives as Multifunctional Agents for the Treatment of Alzheimer's Disease. ChemistrySelect 2021. [DOI: 10.1002/slct.202004239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Licheng Zhou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Ximeng Shi
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Huanhuan Yin
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yi Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
15
|
Xing S, Li Q, Xiong B, Chen Y, Feng F, Liu W, Sun H. Structure and therapeutic uses of butyrylcholinesterase: Application in detoxification, Alzheimer's disease, and fat metabolism. Med Res Rev 2020; 41:858-901. [PMID: 33103262 DOI: 10.1002/med.21745] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Structural information of butyrylcholinesterase (BChE) and its variants associated with several diseases are discussed here. Pure human BChE has been proved safe and effective in treating organophosphorus (OPs) poisoning and has completed Phase 1 and 2 pharmacokinetic (PK) and safety studies. The introduction of specific mutations into native BChE to endow it a self-reactivating property has gained much progress in producing effective OPs hydrolases. The hydrolysis ability of native BChE on cocaine has been confirmed but was blocked to clinical application due to poor PK properties. Several BChE mutants with elevated cocaine hydrolysis activity were published, some of which have shown safety and efficiency in treating cocaine addiction of human. The increased level of BChE in progressed Alzheimer's disease patients made it a promising target to elevate acetylcholine level and attenuate cognitive status. A variety of selective BChE inhibitors with high inhibitory activity published in recent years are reviewed here. BChE could influence the weight and insulin secretion and resistance of BChE knockout (KO) mice through hydrolyzing ghrelin. The BChE-ghrelin pathway could also regulate aggressive behaviors of BChE-KO mice.
Collapse
Affiliation(s)
- Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China.,Institute of Food and Pharmaceuticals Research, Jiangsu Food and Pharmaceuticals Science College, Nanjing, China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
16
|
Shkoor M, Mehanna H, Shabana A, Farhat T, Bani-Yaseen AD. Experimental and DFT/TD-DFT computational investigations of the solvent effect on the spectral properties of nitro substituted pyridino[3,4-c]coumarins. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Kaya M, Menteşe E. Synthesis and solvent‐dependent photophysics of a novel fluorescent triazole‐coumarin‐based dye. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mehmet Kaya
- Faculty of Arts and SciencesRecep Tayyip Erdogan University Rize Turkey
| | - Emre Menteşe
- Faculty of Arts and SciencesRecep Tayyip Erdogan University Rize Turkey
| |
Collapse
|
18
|
Dindarloo Inaloo I, Majnooni S. Deep Eutectic Solvents (DES) as Green and Efficient Solvent/Catalyst Systems for the Synthesis of Carbamates and Ureas from Carbonates. ChemistrySelect 2019. [DOI: 10.1002/slct.201901567] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Sahar Majnooni
- Chemistry DepartmentUniversity of Isfahan Isfahan 81746–73441 Iran
| |
Collapse
|
19
|
Popova SA, Shevchenko OG, Chukicheva IY, Kutchin AV. Synthesis and Biological Evaluation of Novel Coumarins with tert-Butyl and Terpene Substituents. Chem Biodivers 2019; 16:e1800317. [PMID: 30565828 DOI: 10.1002/cbdv.201800317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022]
Abstract
Coumarins with terpene and tert-butyl substituents were synthesized via Pechmann condensation reaction. New derivatives were investigated in different model system for the exhibition of antioxidant, radical scavenging and membrane-protective activities. It has been found that 4-methylcoumarin derivatives with monoterpene moieties exhibit high antioxidant activities. The most active and promising for further investigations is 5-hydroxy-6,8-diisobornyl-4-methylcoumarin, containing two isobornyl substituents on the benzopyran ring.
Collapse
Affiliation(s)
- Svetlana A Popova
- Institute of Chemistry, Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences, 48, Pervomayskaya St., Syktyvkar, 167000, Russia
| | - Oksana G Shevchenko
- Institute of Biology, Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences, 28, Kommunisticheskaya St., Syktyvkar, 167000, Russia
| | - Irina Y Chukicheva
- Institute of Chemistry, Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences, 48, Pervomayskaya St., Syktyvkar, 167000, Russia
| | - Aleksander V Kutchin
- Institute of Chemistry, Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences, 48, Pervomayskaya St., Syktyvkar, 167000, Russia
| |
Collapse
|
20
|
Gondru R, Sirisha K, Raj S, Gunda SK, Kumar CG, Pasupuleti M, Bavantula R. Design, Synthesis, In Vitro Evaluation and Docking Studies of Pyrazole-Thiazole Hybrids as Antimicrobial and Antibiofilm Agents. ChemistrySelect 2018. [DOI: 10.1002/slct.201801391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ramesh Gondru
- Department of Chemistry; National Institute of Technology; Warangal-506004, Telangana State India
| | - K Sirisha
- Medicinal Chemistry and Biotechnology Division; CSIR-Indian Institute of Chemical Technology; Uppal Road Hyderabad 500007, Telangana India
| | - Sneha Raj
- Division of Microbiology; CSIR−Central Drug Research Institute, Sector 10, Jankipuram extension; Sitapur Road Lucknow-226031, Uttar Pradesh India
| | - Shravan Kumar Gunda
- Bioinformatics Division; PGRRCDE; Osmania University; Hyderabad-500007, Telangana India
| | - C Ganesh Kumar
- Medicinal Chemistry and Biotechnology Division; CSIR-Indian Institute of Chemical Technology; Uppal Road Hyderabad 500007, Telangana India
| | - Mukesh Pasupuleti
- Division of Microbiology; CSIR−Central Drug Research Institute, Sector 10, Jankipuram extension; Sitapur Road Lucknow-226031, Uttar Pradesh India
| | - Rajitha Bavantula
- Department of Chemistry; National Institute of Technology; Warangal-506004, Telangana State India
| |
Collapse
|